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Abstract

It has been veri"ed that a controllable series capacitor with a suitable control scheme can improve transient stability and help to
damp electromechanical oscillations. A question of great importance is the selection of the input signals and a control strategy for this
device in order to damp power oscillations in an e!ective and robust manner. Based on Lyapunov theory a control strategy for
damping of electromechanical power oscillations in a multi-machine power system is derived. Lyapunov theory deals with dynamical
systems without inputs. For this reason, it has traditionally been applied only to closed-loop control systems, that is, systems for
which the input has been eliminated through the substitution of a predetermined feedback control. However, in this paper, we use
Lyapunov function candidates in feedback design itself by making the Lyapunov derivative negative when choosing the control. This
control strategy is called control Lyapunov function for systems with control inputs. Also, two input signals for this control strategy
are used. The "rst one is based on local information and the second one on remote information derived by the single machine
equivalent method. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Power systems exhibit various modes of oscillation
due to interactions among system components. Many of
the oscillations are due to synchronous generator rotors
swinging relative to each other. These electromechanical
oscillations (initiated by faults) which typically are in the
frequency range of 0.1 to 2 Hz, are considered in this
paper.

Modern power systems are large scale and complex.
Disturbances typically change the network topology and
result in a nonlinear system response. Also, because of
deregulation the con"guration of the interconnected grid
will routinely be in a state of change. Therefore, a control
strategy that will counteract a wide variety of distur-

bances that may occur in the power system is attractive.
This paper derives a control strategy for a controllable
series capacitor (CSC), based on the control Lyapunov
function (CLF). This control strategy is based on input
signals that can easily be obtained from locally measur-
able variables. It has been shown in Ghandhari, Ander-
son and Hiskens (2000) and Ghandhari (2000) that local
signals can e!ectively damp the electromechanical oscil-
lations initiated by both large and small disturbances.
However, a remote input signal might be more e!ective
for this purpose. In the case of using remote input signal,
an important question is which (and/or which kind
of ) remote information should be chosen in a multi-
machine power system such that the concept of the CLF
is ful"lled.

For selecting a remote input signal, the single machine
equivalent (SIME) method (Pavella, Ernst, & Ruiz-Vega,
2000; Zhang, Wehenkel, Rousseaux, & Pavella, 1997)
may be a relevant choice. This method assesses the
behavior of a power system in its post-fault con"gura-
tion in terms of a generalized one-machine in"nite
bus (GOMIB) transformation to which the CLF can be
applied.
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Fig. 1. A CSC in the transmission line.

This paper is organized as follows. In Section 2
modeling of the CSC is presented. Section 3 describes the
concept of CLF and its application to power systems.
Section 4 gives a digest of the SIME method. We provide
some numerical test results, discussions and the con-
clusions of this paper in Sections 5, 6 and 7, respectively.

2. Modeling of controllable series capacitor

A CSC can be materialized by thyristor controlled
series capacitor (TCSC) and thyristor switched series
capacitor (TSSC). In a simpli"ed study CSC can be
considered as a continuously controllable reactance (nor-
mally capacitance), which is connected in series with the
transmission line (CIGRE Task Force 38.01.06, 1996).

Suppose a CSC is located between buses i and j in
a lossless transmission line as shown in Fig. 1.
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Note that in (1), u and �x
�

have the same sign, since x
�

is
(normally) less than x

�
. If the CSC has no steady-state set

point, then x
��
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�
and x
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�
. If the CSC is

not controlled, i.e. it is "xed, then u"�x
�
"0.

3. Control Lyapunov function

Theoretical considerations

Power systems are most naturally described by di!er-
ential algebraic (DA) models of the form x� "f (x, y) and
0"g(x, y). The algebraic states y are related to the dy-
namic states x through the algebraic equations g. By
virtue of the implicit function theorem, it can be shown
that this model is locally equivalent to an ordinary di!er-
ential equation (ODE) model

x� "f (x, h(x))"fI (x), x3�-R�� (2)

if �g/�y is nonsingular. Under certain modeling assump-
tions, e.g., constant admittance loads, local equivalence
extends to global equivalence. This model has become
known in the energy function literature as the reduced
network model (RNM). The presentation of CLF in this
paper is based on (2). Most ideas extend naturally to the
DA model though.

Let the origin be an equilibrium point of system (2), i.e.
fI (0)"0, possibly after a coordinate change. A function
V(x) is said to be a Lyapunov function for (2), if it is of
class (at least) C� and there exists a neighborhood Q of
the origin such that

V(x)'0 ∀x3Q, xO0 and V(0)"0, (3)

VQ (x)(0 ∀x3Q, xO0 and VQ (0)"0. (4)

If (2) has a Lyapunov function then the origin is locally
asymptotically stable. Conversely, for any locally asymp-
totically stable system, a Lyapunov function exists
(Khalil, 1996).

For mechanical and electrical systems, the physical
energy (or energy-like) functions are often used as
Lyapunov function candidates. The time derivatives of
these energy functions are negative semide"nite. There-
fore, these functions fail to satisfy condition (4) for
Lyapunov function. However, applying La Salle's invari-
ance principle or the theorems of Barbashin and Krasov-
skii (Khalil, 1996), the energy functions satisfy the
asymptotic stability condition and they can be con-
sidered as Lyapunov function candidates.

Lyapunov theory deals with dynamical systems with-
out inputs. For this reason, it has traditionally been
applied only to closed-loop control systems, that is, sys-
tems for which the input has been eliminated through
the substitution of a predetermined feedback control.
However, some authors (Artstein, 1983; Sontag, 1989;
Jurdjevic & Quinn, 1978), started using Lyapunov
function candidates in feedback design itself by making
the Lyapunov derivative negative when choosing the
control. Such ideas have been made precise with the
introduction of the concept of a CLF for systems with
control input (Freeman & Kokotovic, 1996).
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The following discussion largely follows that in
Bacciotti (1996) and references therein. Consider the
control system

x� "f (x, u), x3�-R�� , u3R�� . (5)

We want to "nd conditions for the existence of a feed-
back control u"u(x) de"ned in a neighborhood of the
origin such that the closed-loop system x� "f (x, u(x)) has
a locally asymptotically stable equilibrium point at the
origin, i.e. f (0, u(0))"0. If such a function u(x) exists, we
say that (5) is stabilizable at the origin and the function
u(x) is called a stabilizing feedback law or a stabilizer.
Assume that (5) is continuously stabilizable. According to
the converse Lyapunov's theorem, there must be a posit-
ive de"nite function V(x) such that

VQ (x)"grad(V) f (x, u(x))(0 ∀x3Q, xO0. (6)

A function V(x) satisfying (3) and (6) is called a CLF.
Next, consider the a$ne system
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a CLF. Sontag (1989) presented explicit formulas for
u
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(x). In the case of using an energy function as

a Lyapunov function candidate, the treatment of system
(7) "ts better in the framework of the Jurdjevic and Quinn
(1978) approach. We say that (7) satis"es a Lyapunov
condition of the Jurdjevic}Quinn type if there is a neigh-
borhood Q of the origin and a C� function V(x) such
that (3) holds and grad(V) f
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to the Jurdjevic and Quinn (1978) approach, a stabilizing
feedback law is typically de"ned componentwise, setting
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. Thus, the time derivative of V(x) for x3Q

with respect to the closed-loop system is given by
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To summarize, just as the existence of a Lyapunov
function is necessary and su$cient for the stability of
a system without inputs, the existence of a CLF is neces-
sary and su$cient for the stabilizability of a system with
a control input (Freeman & Kokotovic, 1996).

3.2. Application to power systems

Consider a power network which is modeled by
2n#N nodes connected by lossless transmission lines
which are represented by the node admittance matrix
>"j[B

	

]. The "rst n nodes are the internal buses of the

generators. The nodes n#1 to 2n are the terminal buses
of the generators where there may also be loads. Each
generator terminal bus is connected with its internal bus
through a lossless line with reactance equal to x�

�
, i.e. the

generator transient reactance. The remaining N nodes
are the load buses. It is assumed that the mechanical
input power of the generator is constant. The machine
model considered here is the #ux-decay model (the one-
axis model). Exciters and governors are not included in
this model. The rest of the treatment follows that in Pai
(1989) and references therein. The dynamics of the gener-
ators are described by the following di!erential equa-
tions(with respect to the center of inertia (COI) reference
frame). For k"12n,
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is the generated
electrical power. Full details are given in Pai (1989).

For the lossless system, the following equations can be
written at bus k where P

	
is the real power and Q

	
is the

reactive power injected into the system from bus k.
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For k"(n#1)22n, P
	

and Q
	

are similar, but also take
account of generated real and reactive power (Pai, 1989).

Real load at each bus is represented by a constant load
and reactive load by an arbitrary function of voltage at
the respective bus.

Thus, for k"(n#1)2(2n#N)
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Therefore, for k"(n#1)2(2n#N) the power #ow
equations can be written as
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An energy function for the di!erential algebraic equa-
tions (9) and (10) is given by
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where
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Thus, the time derivative of the energy function is
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Now assume that a CSC is located between buses i and
j in the transmission system. The introduction of the CSC
does not alter the energy function (11). However, it does
alter VQ ; in particular the terms (13) and (14) no longer
sum to zero. To see this, consider the ith term of (13),
i.e. (P
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Note that (12) and (15) are una!ected by the introduction
of a CSC.

Therefore, the time derivative of the energy function
becomes
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The energy function will be a CLF, if VQ
���

is negative.
Therefore, the following control law is suggested:

u"k
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where I
���

is the absolute value of current through CSC,
<

���
is the absolute value of voltage over CSC and k

�����
is

a positive gain which is chosen individually to obtain
appropriate damping. Thus, the control law based on the
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Fig. 2. The OMIB system.

CLF relies only on locally measurable information and is
independent of system topology and modeling of power
system components. Also, this control law does not re-
quire knowledge of the post-fault stable equilibrium
point.

4. Single machine equivalent

In the case of using remote input signal, an important
question is which (and/or which kind of ) remote in-
formation should be chosen in a multi-machine power
system such that the concept of the CLF is ful"lled.

For selecting a remote input signal, the SIME method
(Pavella et al., 2000; Zhang et al., 1997) may be a relevant
choice. This method assesses the behavior of a power
system in its post-fault con"guration in terms of a gener-
alized one-machine in"nite bus (GOMIB) transforma-
tion to which the CLF can be applied.

4.1. Foundations

SIME is a hybrid direct-temporal transient stability
method, which transforms the trajectories of a multi-
machine power system into the trajectory of a GOMIB
system, whose parameters are time-varying (Pavella et
al., 2000).

The GOMIB parameters are its rotor angle (�), rotor
speed (�), inertia coe$cient (M), mechanical power (P

�
),

and electrical power (P
�
).

Basically, SIME deals with the post-fault con"gura-
tion of a power system subjected to a disturbance which
presumably drives it to instability. However, the GOMIB
is also valid on a borderline stable case. Under such
conditions, SIME uses a time-domain program in order
to identify the mode of separation of its machines into
two groups, namely critical (subscript C) and non-critical
machines (subscript NC) which are replaced successively
by a two-machine equivalent. Then, this two-machine
equivalent is replaced by a GOMIB system. By de"ni-
tion, the critical machines are the machines responsible
for the loss of synchronism. Let
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By refreshing the GOMIB parameters at each integra-
tion time-step, SIME provides a faithful replica of the
transient stability assessment of the multi-machine sys-
tem, and also additional interesting pieces of informa-
tion, such as stability margins, identi"cation of the mode
of instability and corresponding critical machines, sensi-
tivity analysis and control techniques (Zhang et al., 1997).

4.2. Control law based on SIME

Consider the one-machine in"nite bus (OMIB) system
shown in Fig. 2 in which x includes line reactance, trans-
former reactance and generator transient reactance.

Dynamics of this system are given by
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as x� "f

�
(x). For (22) the following energy function exists:
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The time derivative of (23) along the trajectory of (22) is
given by
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Thus, the energy function (23) is a Lyapunov function
candidate for (22). Having a CSC in the system (22), then
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Using (23) as a Lyapunov function candidate for sys-
tem (25), we have
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By virtue of the Jurdjevic and Quinn (1978) approach, the
following stabilizing control law is given for CSC, (k'0):

u"!grad(V) f
�

(x)"k sin(�)�, (27)

which makes (26) negative. Therefore, the energy function
(23) becomes a CLF for the system (25).
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Fig. 3. Brazilian North}South interconnection.

Now, consider the power system shown in Fig. 3 with-
out CSCs. After a large disturbance, based on the SIME
method, the post-fault dynamics of the corresponding
GOMIB system are given by
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where parameters 
, � and � are time-varying, and are
calculated at each integration time-step.

Within the stability region of a real power system, (29)
and (30) are indeed bounded. Therefore, it is reasonable
to assume that there exist a constant P
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Now, the right-hand side of (28) is simpli"ed by
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(x) denote
the right-hand sides of (28) and (31), respectively. System
(28) can now be rewritten as
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Assuming p(x)"0, the GOMIB system has the same
dynamics as the physical OMIB system, i.e. system (22)
with D"0. Consequently, a similar Lyapunov function
to (23) (in which M, P
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M
�

, P
��



, P
��	�



, �
���	�

and �
���	�

, respectively) can
be used for the GOMIB system.

Having a CSC between the two systems in Fig. 3, the
dynamics of the GOMIB system with the CSC is similar
to the dynamics of the physical OMIB system with the
CSC, i.e. system (25). Thus, the control strategy for the
CSC in the GOMIB system is similar to (27), that is,

u"k
������

sin(�
���	�

)�
���	�

, (33)

where k
������

is a positive gain. Mathematically, any
positive k

�����
and k

������
should stabilize the system. In

practice, there are however limitations for these gains, see
Section 8.4 in Ghandhari (2000).

5. Numerical example

The control laws (20) and (33) have been applied to
various test systems, see Ghandhari (2000). In this sec-
tion, the Brazilian power system is used for applying the
control laws (20) and (33). Note that these control laws
were developed assuming some modeling restrictions.
However, they will be applied to a real system that is not
subject to those modeling restrictions. Fig. 3 shows
a sketch of the Brazilian North}South interconnection
described in Carraro and Salomao (1999). The
North/Northeast interconnected system (i.e. System 1 in
Fig. 3) consists of large hydro-generating complexes that
are linked to 230 and 500 kV transmission networks. The
South/Southeast/Midwest interconnected system (i.e.
System 2 in Fig. 3) consists of a large number of hydro-
generating plants linked to the main load centers by
transmission networks operating at 138 and 750 kV. The
North}South (i.e. System 1}System 2) interconnect trans-
mission line is 1028 km with a circuit rating of 1300 MW.
Two CSCs have been located in the North}South inter-
connect transmission line, full details are given in
Carraro and Salomao (1999). The CSC location was
recommended for reasons such as availability of reliable
auxiliary services, support for operation and mainten-
ance and further expansion of the transmission system.
For both CSCs, the steady-state set points (i.e. x

��
) are

15.84 ; and 13.2)x
�
)40 .

Four cases are studied. In case 1 and case 2, a line and
a shunt are tripped in System 1 and System 2, respective-
ly, after a fault. In both cases, the fault is cleared after
100 ms. In case 3, a generator with a production of
606 MW is disconnected in System 1. In case 4, a gener-
ator with a production of 395 MW is disconnected in
System 2.

Fig. 4 shows the variation of P (identi"ed in Fig. 3) and
the variation of the x

�
of the "rst CSC, i.e. CSC1 in Fig. 3,

vs. time when the CSCs are not controlled and controlled
by (20) and (33), respectively. The simulation results show
the ability of the control laws to damp power system
oscillations for various cases. They also show that the
proposed system has better damping with control law
(33) than control law (20) for the proposed cases.
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Fig. 4. Variation of P and the x
�

of CSC1 vs. time in the Brazilian network.
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Fig. 5. Variation of P and phase portrait of the corresponding GOMIB for case 5.

Next, an extreme case (case 5) is studied. In this case,
a generator with a production of 800 (MW) is dis-
connected in the South/Southeast/Midwest. This case
implies that the power through the North}South inter-
connect transmission line (in the post-fault steady state)
is almost 1300 (MW) which is the circuit rating of
the North}South interconnect transmission line.
Fig. 5 shows that the control law based on the local input
signals cannot stabilize the system for this case. However,
the system is stabilized when the remote input signals are
used. Note, however, that both control laws are based on
the CLF. They have also been derived based on a simpli-
"ed system.

6. Discussion and future work

The model used in the development of the control law
(20) had a very speci"c form. It was convenient for
obtaining a Lyapunov function, but it only approxim-
ately describes actual power system behavior. The issue
of modeling approximations, and their in#uence on the
stabilization of power systems, is yet to be fully ad-
dressed. Model (2) will be used to illustrate these ideas.

Assume that the model used in the development of the
CLF has the form

x� "f
�

(x). (34)

For instance, f
�

(x) can be considered as the ODE model,
(by virtue of the implicit function theorem), of the di!er-
ential algebraic equations (9) and (10) in which the power
system is assumed to be lossless, the real loads are con-
stant and also, one-axis model without turbine regulator
and AVR are used for the generators. Assume also that
the actual system is described by x� "F(x), that is, the
power system is not subjected to the above modeling
restrictions, see also systems (28), (31) and(32). Simple
manipulation gives

x� "F(x)"F(x)#f
�

(x)!f
�

(x)"f
�

(x)#p(x). (35)

Since it is di$cult to "nd a Lyapunov function for (35),
a Lyapunov function is derived for (34), i.e. when
p(x)"0, and a control law is established which makes
that Lyapunov function a CLF. The following questions
arise. How does this control law, derived for (34), a!ect
p(x)? In the context of CSC control, how good is the
control law (20) when the system is lossy, and more
detailed models are used for generators and loads? More
precisely, how good are the control laws (20) and (33)
when p(x)O0?

The simulation results in this paper provide a partial
answer. They indicate that the control laws are not
sensitive to the model approximations. However, it is
important to obtain an analytical justi"cation of this
observation. The following theorems (see Krasovskii
and Brenner (1963) Chapter 5) may provide a partial
answer.

We present the analysis in terms of the zero equilib-
rium point. The stability of any other equilibrium point
can be obtained by simply translating the coordinate
system so that the equilibrium of interest is at the origin
in the new coordinates. Let the origin be an equilibrium
point for the system (34). Let also X(t) denote the solution
of the actual system (35). We say that the origin is totally
stable, if for every positive number �, however small, there
are two positive numbers �

�
(�) and �

�
(�) such that

		X(t)		(� for t'0,

provided that

		X(0)		(�
�

(�)

and that in the domain 		x		(� and t'0, the inequality

		p(x)		(�
�

(�)

is satis"ed.
Note that in the de"nition of the total stability, it is not

required that p(x) should be zero at the origin, i.e.
p(0)O0. The only requirement on the function p(x) is
that this function is bounded in modulus for su$ciently
small values of x, i.e. p(x) remains small for all t'0.
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Theorem 1. If the origin of the system (34) is asymptotically
stable, it is also totally stable.

Applying the converse Lyapunov theorem, we can
then state the following theorem.

Theorem 2. If there exists a Lyapunov function for system
(34), the origin is totally stable.

The requirement that the function p(x) be small for all
t'0 is not realistic. It is more realistic to require that
p(x) may assume large values in certain small intervals of
time while being small most of the time. A function p(x)
with this property is called bounded in the mean. It can
be shown that Theorem 2 is also valid for p(x) that is
bounded in the mean (Krasovskii & Brenner, 1963).

The control law (20) relies only on locally measurable
information. Thus, the input signals are inexpensive, fast
and reliable. This control law has been applied to various
test systems for small and large disturbances as well as
meshed and radial systems. The simulation results (see
e.g. Ghandhari et al. (2000) and Ghandhari (2000), have
shown that (20) is an e!ective and robust control law.
The control law (33) is new. It relies on remote input
signals, i.e. data from all machines in the system. Thus,
the input signals can be expensive and less reliable in
a real power system. However, due to the latest develop-
ment in signal and communication technology, these
issues may be solved in the near future. The simulation
results in this paper have shown that the proposed sys-
tem has better damping with the control law (33) than the
control law (20) for the proposed cases. However, the
following questions arise. How e!ective is this control
law for small disturbances? How does it work in
a meshed system in which several CSCs are located in
di!erent locations? How fast can SIME predict on-line
a GOMIB system for large as well as small disturbances?
Answers to these questions are the basis for a project
which will be performed in a collaboration between the
Royal Institute of Technology in Stockholm and the
University of Liège.

7. Conclusions

It has been shown that the controllable series capacitor
(CSC) provides an e!ective means of adding damping to
power systems.

Two control laws, i.e. the control laws (20) and (33),
have been derived for CSC based on control Lyapunov
function (CLF) concepts. These control laws do not re-
quire knowledge of the post-fault stable equilibrium
points. The control law (20) relies only on locally measur-
able information; but the control law (33) relies on re-
mote input signals, i.e. data from all machines in the
system. The simulation results have shown that the pro-

posed system has better damping with the control law
(33) than the control law (20) for the proposed cases.
However, further research is required for a general con-
clusion regarding the control law (33).
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1998 from the University of Liège where he is currently a Ph.D. student.
His research is in the area of transient stability assessment and control.

Mania Pavella received the Electrical ( Electronics) engineering degree
and the Ph.D. degree from the University of Liège, where she is
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