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Abstract

Passivity-based control (PBC) is a well-established technique that has shown to be very powerful to design robust controllers for
physical systems described by Euler–Lagrange (EL) equations of motion. For regulation problems of mechanical systems, which can be
stabilized “shaping” only the potential energy, PBC preserves the EL structure and furthermore assigns a closed-loop energy function equal
to the di:erence between the energy of the system and the energy supplied by the controller. Thus, we say that stabilization is achieved
via energy balancing. Unfortunately, these nice properties of EL–PBC are lost when used in other applications which require shaping
of the total energy, for instance, in electrical or electromechanical systems, or even some underactuated mechanical devices. Our main
objective in this paper is to develop a new PBC theory which extends to a broader class of systems the aforementioned energy-balancing
stabilization mechanism and the structure invariance. Towards this end, we depart from the EL description of the systems and consider
instead port-controlled Hamiltonian models, which result from the network modelling of energy-conserving lumped-parameter physical
systems with independent storage elements, and strictly contain the class of EL models. ? 2002 Published by Elsevier Science Ltd.
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1. Introduction

The term passivity-based control (PBC) was introduced
in Ortega and Spong (1989) to de?ne a controller design
methodology which achieves stabilization by passivation.
More precisely, the control objective is to passivize the
system with a storage function which has a minimum at
the desired equilibrium point. (A second requirement that
ensures asymptotic stability is detectability of the passive
output.) The idea has been very successful for simple
mechanical systems that can be stabilized shaping only the
potential energy. In this case, the closed-loop is still an

� This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Carlos
Canudas de Wit under the direction of Editor Hassan Khalil.
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Euler–Lagrange (EL) system with total energy being
the di:erence between the stored and the supplied en-
ergies, hence stabilization can be explained in terms of
energy-balancing, see Ortega, van der Schaft, Mareels, and
Maschke (2001). These nice features—that simplify the
controller commissioning—explain the practical success of
PBC.
PBC has also been applied to physical systems described

by EL equations of motion, which includes mechani-
cal, electrical and electromechanical applications—for a
complete set of references see Ortega, Loria, Nicklasson,
and Sira-Ramirez (1998). Unfortunately, for applications
that required the modi?cation of the kinetic energy, the
closed-loop—although still de?ning a passive operator—is
no longer an EL system, and the storage function of the pas-
sive map (which is typically quadratic in the errors) does
not have the interpretation of total energy. As explained
in Section 10:3:1 of Ortega et al. (1998), this situation
stems from the fact that these designs carry out an inver-
sion of the system along the reference trajectories, which
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on one hand destroy the EL structure, and on the other
hand impose an unnatural stable invertibility requirement
to the system. In Section 7 we will elaborate further on
these issues taking as case in point the example of a power
converter.
Our main objective in this paper is to develop a new

PBC theory—called interconnection and damping assign-
ment (IDA) PBC—which extends, to a broader class of
systems, e.g., to applications that require shaping of the to-
tal energy, the nice features of PBC of simple mechani-
cal systems described above. Namely, that (i) the physical
(Hamiltonian) structure is preserved in closed-loop, and (ii)
the storage function of the passive map is precisely the to-
tal energy of the closed-loop system. We will, furthermore,
give conditions on the dissipation such that this total en-
ergy is the di:erence between the stored and the supplied
energies.
Towards this end, we depart from the EL description of

the systems and consider instead port-controlled Hamilto-
nian (PCH) models, which encompass a very large class
of physical nonlinear systems, strictly containing the class
of EL models. They result from the network modelling of
energy-conserving lumped-parameter physical systems with
independent storage elements, and have been advocated in
a series of recent papers, see Chapter 4 of van der Schaft
(1999) and references therein, as an alternative to more
classical EL (or standard Hamiltonian) models. Besides
capturing the energy balance features of physical systems,
as in EL models, PCH models provide a classi?cation of
the variables and the equations into those associated to phe-
nomenological properties and those de?ning the intercon-
nection structure related with the exchanges of energy. They
are, therefore, well suited to carry out the basic steps of PBC
of modifying the energy function and adding dissipation.
Furthermore, the geometric structure of the state-space of
PCH systems can be pro?tably used for PBC. For instance,
the rank de?ciency of the internal interconnection matrix
reveals the existence of invariants of motion of the system
dynamics which are independent of the energy function, the
so-called Casimir functions (Marsden & Ratiu, 1994). The
generation, through the action of the controller, of Casimir
functions underlies the developments presented in this
paper.
The main distinguishing feature between the “classical”

PBC (e.g., as presented in Ortega et al., 1998) and IDA–PBC
is that in the former we ?rst select the storage function to be
assigned and then design the controller that ensures this ob-
jective (by rendering the storage function non-increasing).
On the other hand, in IDA–PBC the closed-loop energy
function is obtained—via the solution of a partial di:eren-
tial equation (PDE)—as a result of our choice of desired
subsystems interconnections and damping. It is well known
that solving PDEs is, in general, not easy. However, the
particular PDE that we have to solve in IDA–PBC is pa-
rameterized in terms of the interconnection and damping
matrices, which can be judiciously chosen invoking physical

considerations to solve it. 1 Even though we cannot provide
explicit conditions for the existence of solutions of the PDE
in general we prove, however, that the IDA–PBC methodol-
ogy is “universally stabilizing”, in the sense that it generates
all asymptotically stabilizing controllers for PCH systems.
One ?nal advantage of the design is that it is rather system-
atic and amenable for symbolic computation.
The remaining of the paper is organized as follows. In

Section 2 we brieJy describe the class of PCH models stud-
ied in the paper. The main result of our work, namely a pro-
cedure to design a stabilizing PBC for PCH systems which
preserves the Hamiltonian structure, is presented in Section
3. In Section 4 we prove the universal stabilization property
of IDA–PBC. In Section 5 we show that, if the damping sat-
is?es some structural constraints, then the energy function
assigned by IDA–PBC is the di:erence between the stored
and the supplied energies. In Section 6 we prove that in this
case it is possible to invoke the method of Energy–Casimir
functions (Marsden & Ratiu, 1994) to give an interconnec-
tion interpretation of IDA–PBC. In Section 7 we work out
a simple power converter example, and wrap up the pa-
per with some open problems and concluding remarks in
Section 8.

2. Port controlled Hamiltonian systems

In this section we brieJy describe the class of PCHmodels
studied in the paper, derive some of its properties and for-
mulate for them the, by now classical, passivation problem.
The interested reader is referred to van der Schaft (1999),
and references therein, for further details.

2.1. Systems model

Network modelling of lumped-parameter physical sys-
tems with independent storage elements leads to models of
the form—called PCH systems van der Schaft (1999)

�:

{
ẋ = [J (x)−R(x)] @H@x (x) + g(x)u;

y = g�(x) @H@x (x);
(1)

where x∈Rn are the energy variables, the smooth func-
tion H (x) : Rn → R represents the total stored energy and
u; y∈Rm are the port power variables. 2 The port variables
u and y are conjugated variables, in the sense that their

1 This point has been illustrated in several practical applications includ-
ing mass–balance systems (Ortega, Astol?, Bastin, & Rodriguez, 1999),
electrical motors (Petrovic, Ortega, & Stankovic, 2000), magnetic levi-
tation systems (Rodriguez, Ortega, & Mareels, 2000), power converters
(Rodriguez, Ortega, Escobar, & Barabanov, 2000), underactuated me-
chanical systems (Ortega & Spong, 2000), design of power system sta-
bilizers (Ortega, Galaz, Bazanella, & Stankovic, 2001) and underwater
vehicles (Astol?, Chhabra, & Ortega, 2001).

2 We note that all vectors de?ned in the paper are column vectors,
even the gradient of a scalar function.
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duality product de?nes the power Jows exchanged with the
environment of the system, for instance currents and volt-
ages in electrical circuits or forces and velocities in mechan-
ical systems. The interconnection structure is captured in the
n×n skew-symmetric matrix J (x)=−J�(x) and the n×m
matrix g(x), while R(x) =R�(x)¿ 0 represents the dissi-
pation, all these matrices depend smoothly on the state x.
We want to study also systems where the control acts

through the interconnection structure. These are typically
systems with switches where the controller commutes be-
tween di:erent topologies. Assuming a suPciently fast
sampling and (for instance) a PWM implementation of the
control action we can approximate the average behaviour of
the switched system by a smooth system, where the control
is now the PWM duty ratio. This situation, which is very
common in power electronic devices (Ortega et al., 1998),
leads us to consider systems of the form

ẋ = [J (x; u)−R(x)]
@H
@x

(x) + g(x; u); (2)

where J (x; u) = −J�(x; u). The vector function g(x; u) is
introduced to capture two kind of interconnections, the stan-
dard g(x)u and “constant source inputs”, where u denotes the
switching of the source input. See, for instance, the model
of the QC uk converter in Ortega et al. (1998).

2.2. Energy balance, passivity and stabilization

Evaluating the rate of change of the total energy we obtain

d
dt
H =−

[
@H
@x

(x)
]�

R(x)
@H
@x

(x) + u�y; (3)

where the ?rst term on the right-hand side (which is
non-positive) represents the dissipation due to the resistive
(friction) elements in the system. Integrating (3), we obtain
the energy-balance equation∫ t

0
u�(s)y(s) ds︸ ︷︷ ︸
supplied

=H [x(t)]− H [x(0)]︸ ︷︷ ︸
stored

+
∫ t

0

[
@H
@x

[x(s)]
]�

R[x(s)]
@H
@x

[x(s)] ds︸ ︷︷ ︸
dissipated energy

(4)

which holds for all t¿ 0. If the total energy functionH (x) is
bounded from below 3 PCH systems, analogously to EL sys-
tems, de?ne a passive operator � : u �→ y with storage func-
tion H (x). In this case, (4) expresses the fact that a passive

3 Since energy is only de?ned up to a constant, we can equivalently
say that H (x) is non-negative.

system cannot store more energy than it is supplied to it from
the outside, with the di:erence being the dissipated energy.
From (4) we also have that − ∫ t

0 u
�(s)y(s) ds6H [x(0)],

which shows that we can only extract a ?nite amount of
energy from a passive system. (Notice that for the more
general class of systems (2), since u is not a port variable,
the passivity property is not established with respect to this
signal, but between suitable elements of @H=@x and g(x; u).
See, for instance, the example of Section 7.)
From (4) we easily see that the energy of the uncon-

trolled system (i.e., with u(t) ≡ 0) is non-increasing, that is,
H [x(t)]6H [x(0)], and it will actually decrease in the pres-
ence of dissipation. If the energy function is bounded from
below, the system will eventually stop in a point of mini-
mum energy. Also, the rate of convergence of the energy
function is increased if we extract energy from the system,
for instance setting u=−Kvy, with Kv=K�

v ¿ 0, a so-called
damping injection gain. The point where the open-loop en-
ergy is minimal is usually not the one of practical interest,
and control is introduced to operate the system around some
non-zero equilibrium point, say x∗.
Motivated by the discussion above, in PBC the stabiliza-

tion problem is posed in terms of the following:
Passivation objective: Given the PCH system (1) (or (2))

and a desired (constant) equilibrium point x∗, ?nd a control
action 4 u= �(x) + v so that the closed-loop dynamics is a
PCH system satisfying the new energy-balancing equation

Hd[x(t)]− Hd[x(0)] =
∫ t

0
v�(s)y′(s) ds− dd(t); (5)

where Hd(x) is the desired total energy function, which has
a strict (local) minimum at x∗, 5 y′ (which may be equal
to y) is the new passive output, and we have replaced the
natural dissipation term by some function dd(t)¿ 0 (which
will in general be an increasing function) to increase the
convergence rate.
It is clear that, with v = 0, the control that solves

the passivation problem stabilizes x∗ (with Lyapunov
function Hd(x)). Stability will be asymptotic if some
detectability-like conditions (to be speci?ed later) are sat-
is?ed.
One of our main concerns in this paper is to understand the

nature of the stabilization mechanism, and in particular what
is the role of dissipation. Towards this end, we give con-
ditions under which the energy function of the closed-loop
PCH system is the di:erence between the stored and the
supplied energy H [x(t)]− ∫ t

0 u
�(s)y(s) ds. In this case we

will say that stabilization is achieved via energy-balancing.

4 We consider here static state-feedback. Also, we will assume the
control is a function of the full state but, as will become clear below, all
results apply as well to the partial state-feedback case. See (Rodriguez
et al., 2000; Ortega et al., 1999) for application examples.

5 That is, there exists an open neighbourhood B of x∗ such that
Hd(x)¿Hd(x∗) for all x∈B.



588 R. Ortega et al. / Automatica 38 (2002) 585–596

3. Controller design

To solve the passivation problem we propose in this sec-
tion the IDA–PBC design methodology. We present our
derivations for the generalized PCH system (2), with slight
notational modi?cations they can be adapted for the simpler
case of (1).

3.1. Design procedure

The IDA–PBC design proceeds as follows: recalling that
in PCH systems the internal energy exchanges are captured
by the interconnection and damping matrices, we ?rst Cx the
desired structure of these matrices—hence the name IDA.
Then, we derive a PDE parameterized by the chosenmatrices
whose solutions characterize all the energy functions that can
be assigned. Finally, from this family of solutions we choose
one that satis?es the minimum requirement and compute the
control. More precisely, the ?nal objective of IDA–PBC is
to ?nd a static state-feedback control u= �(x) such that the
closed-loop dynamics is a PCH system with dissipation of
the form

ẋ = [Jd(x)−Rd(x)]
@Hd

@x
(x); (6)

where the new energy function Hd(x) has a strict local min-
imum at the desired equilibrium x∗, and Jd(x) = −J�

d (x)
and Rd(x) = R�

d (x)¿ 0 are some desired interconnection
and damping matrices, respectively.
The following proposition presents our main result in its

full generality, but in a rather conceptual form. More op-
erational versions, which allows to e:ectively construct the
stabilizing controllers, may be easily derived from it and are
discussed in point 1 of Subsection 3.2.

Proposition 1. Given J (x; u);R(x); H (x); g(x; u) and the
desired equilibrium to be stabilized x∗ ∈Rn. Assume we
can Cnd functions �(x); Ja(x);Ra(x) and a vector function
K(x) satisfying

[J (x; �(x)) + Ja(x)− (R(x) +Ra(x))]K(x)

=− [Ja(x)−Ra(x)]
@H
@x

(x) + g(x; �(x)) (7)

and such that
(i) (Structure preservation)

Jd(x) := J (x; �(x)) + Ja(x) =−[J (x; �(x)) + Ja(x)]�;

Rd(x) :=R(x) +Ra(x) = [R(x) +Ra(x)]�¿ 0:

(ii) (Integrability) K(x) is the gradient of a scalar func-
tion. That is,

@K
@x

(x) =
[
@K
@x

(x)
]�

: (8)

(iii) (Equilibrium assignment) K(x), at x∗, veriCes

K(x∗) =−@H
@x

(x∗): (9)

(iv) (Lyapunov stability) The Jacobian of K(x), at x∗,
satisCes the bound

@K
@x

(x∗)¿− @2H
@x2

(x∗): (10)

Under these conditions, the closed-loop system u=�(x) will
be a PCH system with dissipation of the form (6), where

Hd(x) :=H (x) + Ha(x) (11)

and

@Ha

@x
(x) = K(x): (12)

Furthermore, x∗ will be a (locally) stable equilibrium of the
closed-loop. It will be asymptotically stable if, in addition,
the largest invariant set under the closed-loop dynamics
contained in{
x∈Rn

∣∣∣∣
[
@Hd

@x
(x)

]�
Rd(x)

@Hd

@x
(x) = 0

}
(13)

equals {x∗}. An estimate of its domain of attraction is given
by the largest bounded level set {x∈Rn |Hd(x)6 c}.

Proof. For every given �(x); Ja(x);Ra(x); (and on any con-
tractible neighbourhood of Rn); the solution of Eq. (7) is
a gradient of the form (12) if and only if the integrability
condition (8) is satis?ed. Using (11) it is easy to see that; in
this case; the closed-loop is a PCH system of the form (6)
and total energy (11).
We will now prove that, under (9), (10), the stability

of the equilibrium is ensured. To this end, notice that the
equilibrium assignment condition (9) ensures Hd(x) has an
extremum at x∗, while the Lyapunov stability condition (10)
shows that it is actually an isolated minimum. On the other
hand, from (5) (with v=0 and a suitably de?ned dd(t)) we
have that, along the trajectories of the closed-loop, Hd(x(t))
is non-increasing, hence it quali?es as a Lyapunov function,
and we can conclude that x∗ is a stable equilibrium. Asymp-
totic stability follows immediately invoking La Salle’s
invariance principle (Khalil, 1996) and the condition (13).
Finally, to ensure the solutions remain bounded, we give the
estimate of the domain of attraction as the largest bounded
level set.

3.2. Discussion

1. We have given in Proposition 1 a general—somehow
“conceptual”—formulation of the design technique. More
constructive procedures are as follows.

• For systems of the form (1) we can ?x Ja(x) and Ra(x)
(in the ?rst instance taken them equal to zero) and then look
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for a solution of the PDE

g⊥(x)[J (x) + Ja(x)− (R(x) +Ra(x))]
@Ha

@x
(x)

=− g⊥(x)[Ja(x)−Ra(x)]
@H
@x

(x)

in terms of Ha(x), where g⊥(x) is a left annihilator of
g(x), i.e., g⊥(x)g(x) = 0. This is a linear PDE of the form
A(x)(@Ha=@x)(x) = b(x), for which powerful solution tech-
niques, in particular the method of characteristics, are avail-
able. 6 The control can then be directly calculated using the
formula

�(x) = [g�(x)g(x)]−1g�(x)
{
[J (x) + Ja(x)− (R(x)

+Ra(x))]
@Ha

@x
(x) + [Ja(x)−Ra(x)]

@H
@x

(x)
}
:

• For the general case, we can ?x again Ja(x);Ra(x), then
solve the algebraic equation (7) for K(x)—which is trivial if
the matrix J (x; �(x))+Ja(x)− [R(x)+Ra(x)] is invertible.
Finally, the integrability conditions (8) de?ne a new PDE
directly for the control �(x).
• If there are no clear physical considerations for the

choice of Ja(x);Ra(x) we can simply select them to simplify
the solution of the PDE. This procedure is adopted in Ortega
and Spong (2000) to design globally stabilizing IDA–PBCs
for several underactuated mechanical systems. See also
(Fujimoto & Sugie, 2001) for an alternative formulation.

2. Notice that in our construction we do not need to
“guess” candidate energy–Lyapunov functions, moreover
it does not even require its explicit derivation. (This
can be obtained, though, as a by-product integrating
@Ha=@x(x).) This situation should be contrasted with classi-
cal Lyapunov-based designs (or EL–PBC, e.g., Fa la Ortega
et al., 1998), where we ?x a priori the Lyapunov (energy)
function—typically a quadratic in the increments—, and
then calculate the control law that makes its derivative
negative de?nite.
3. Frobenius theorem (Nijmeijer & van der Schaft, 1990)

provides us with a necessary and suPcient condition for
the solvability of homogeneous equations of the form
A(x)@Ha=@x(x) = 0. Namely, that the dimension of the in-
volutive closure of the distribution spanned by the vector
?elds formed by the rows of the matrix A(x) is strictly less
than n. We show in Ortega et al. (1999), that this simple
test can help us in the choice of Ja(x);Ra(x). It is interest-
ing to note that, for the case R(x) =Ra(x) = 0, Frobenius’
conditions are satis?ed if J (x; �(x)) + Ja(x) satis?es the
Jacobi identities (van der Schaft, 1999)
4. The IDA–PBC of Proposition 1 does not ensure, in

general, passivity with respect to the natural output y, but
with respect to y′ = g�(x)(@Hd=@x)(x). As pointed out in

6 Notice that the solution of the PDE, which is parameterized in terms
of free constants and function compositions, should satisfy the “boundary
conditions” (9) and (10).

the introduction, to ensure robustness via Ta vis unmodelled
dynamics which are wrapped around y—e.g., frictions and
parasitic resistances—it is desirable to have y as the passive
output. From (7) and (11) it follows immediately that this
will be the case if g�(x)K(x) ≡ 0.

5. In some applications (Rodriguez et al., 2000; Ortega
& Spong, 2000) physical considerations can be invoked to
choose the desired interconnection and damping matrices.
The choice of the latter should be done, however, cautiously.
For instance, contrary to conventional wisdom, performance
is not necessarily improved by adding positive damping.
It is shown in Ortega et al. (1998) that, in some cases,
increasing the damping to reduce the ampli?cation factor
of the energy of the input noise (in the spirit of the H∞
approach) can actually degrade performance. Furthermore,
we illustrate in the example of Section 7—see also (Ortega et
al., 1999; Rodriguez et al., 2000)—that sometimes shuUing
the damping between the channels can be bene?cial for our
control objective.

4. Universal stabilizing property of IDA–PBC

We have seen in the previous section that the success of
our design hinges upon our ability to solve a PDE.We cannot
provide explicit conditions for the existence of solutions
of the PDE in general. Instead, we prove in this section
that the IDA–PBC methodology is “universally stabilizing”,
in the sense that it generates all asymptotically stabilizing
controllers for PCH systems of the form (1). Towards this
end, we need the following.

Lemma 1. If the system ẋ=f(x); f(x)∈C1 has an asymp-
totically stable equilibrium point x∗; then there exist a C1

positive deCnite (w.r.t. x∗) function Hd(x) and C0 matrix
functions Jd(x) =−J�

d (x); Rd(x) =R�
d (x)¿ 0 such that

f(x) = [Jd(x)−Rd(x)]
@Hd

@x
(x): (14)

Proof. From the converse Lyapunov theorem (Khalil;
1996) we know the existence of a C1 positive de?nite (w.r.t.
x∗) function Hd(x) such that [(@Hd=@x)(x)]�f(x)6 0. Let
us now de?ne

Rd(x):=− 1
|@Hd=@x(x)|4

@Hd

@x
(x)

[
@Hd

@x
(x)

]�
f�(x)

@Hd

@x
(x);

Jd(x) :=
1

|@Hd=@x(x)|2
{
f(x)

[
@Hd

@x
(x)

]�

−@Hd

@x
(x)f�(x)

}
;

where | · | is the standard Euclidean norm. Clearly Jd(x) =
−J�

d (x); Rd(x) =R�
d (x). Furthermore; the stability condi-

tion above also ensures Rd(x)¿ 0; and direct substitution
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shows that (14) holds. Although these functions may not
satisfy the required smoothness properties a standard regu-
larization procedure will yield the desired result. 7

The proof of the proposition below follows immediately
from Lemma 1.

Proposition 2. If there exists a C1 function �(x) such that
ẋ= [J (x)−R(x)](@H=@x)(x) + g(x)�(x) is asymptotically
stable; then there exist C0 matrix functions Ja(x); Ra(x)
and a C1 function Ha(x) which satisfy the conditions of
Proposition 1. In other words; IDA–PBC generates all
asymptotically stabilizing controllers for PCH systems of
the form (1)

An alternative construction of the matrix functions
Jd(x);Rd(x) proceeds as follows. First, given Hd(x) and
f(x), solve for Rd(x) the equation[
@Hd

@x
(x)

]�
f(x) +

[
@Hd

@x
(x)

]�
Rd(x)

@Hd

@x
(x) = 0:

Then, solve for Jd(x) the linear equation

Jd(x)
@Hd

@x
(x) =Rd(x)

@Hd

@x
(x) + f(x):

In this way we can avoid the regularization procedure re-
quired in Lemma 1.

5. Stabilization via energy-balancing

In this section we derive conditions on the systems
natural damping such that stabilization is achieved via
energy-balancing. More precisely, we investigate when the
function Ha(x) veri?es

Ha[�(x; t)]− Ha[�(x; s)]

=−
∫ t

s
��[�(x; �)]g�[�(x; �)]

@H
@x

[�(x; �)] d�

for all x and all t¿ s, where �(x; t) denotes the solution
of (1) with u= �(x) starting from the initial condition x at
time t. With some abuse of notation we will say in this case
that the energy function assigned to the closed-loop by the
IDA–PBC satis?es

Hd(x(t)) = H (x(t))−
∫ t

0
u�(s)y(s) ds+ � (15)

which is the di:erence between the total energy of the
open-loop and the energy provided to the system from the
controller, and � is a constant determined by the initial con-
ditions. We will give a necessary and a suPcient condition
for energy-balancing stabilization.

7 This procedure, being quite technical and not constructive, is omitted
here. See also the derivations at the end of the section.

5.1. Necessary condition

Energy-balancing stabilization can be—in principle—
applied to general passive (f; g; h) nonlinear systems of the
form

�:
{
ẋ = f(x) + g(x)u;
y = h(x):

(16)

We have the following simple proposition.

Proposition 3. Consider the passive system (16) with dif-
ferentiable storage function H (x) and an admissible equi-
librium x∗. If we can Cnd a vector function �(x) such that

(i) The partial diGerential equation

[f(x) + g(x)�(x)]�
@Ha

@x
(x) =−[g(x)�(x)]�

@H
@x

(x)

(17)

can be solved for Ha(x).
(ii) The function Hd(x) = H (x) + Ha(x) has a minimum

at x∗.

Then, u = �(x) is an energy-balancing stabilizer for the
equilibrium x∗. That is, the Lyapunov function Hd(x) sat-
isCes (15).

Proof. From the celebrated nonlinear version of the
Kalman–Yakubovich–Popov lemma we know that for this
class of system passivity is equivalent to the existence of a
non-negative scalar function H (x) such that[
@H
@x

(x)
]�

f(x)6 0; h(x) = g�(x)
@H
@x

(x):

The proof then follows immediately noting that the left-hand
side of (17) equals Ḣ a; while the right-hand side is −y�u;
and then integrating from 0 to t.

This result, although quite general, is of limited interest.
First of all, (f; g; h) models do not reveal the role played
by the energy function in the system dynamics. Hence, it
is diPcult to incorporate prior information to select a �(x)
to solve the PDE (17). Second, we will show now that,
beyond the realm of mechanical systems, the applicability
of energy-balancing stabilization is severely restricted by
the systems natural dissipation. Indeed, the left-hand side
of the PDE (17) is zero when evaluated at the equilibrium,
hence the right-hand side, which is the power extracted from
the controller, should also be zero at the equilibrium. This
implies that the energy dissipated by the system is bounded,
or equivalently that: the systems is stabilized extracting a
Cnite amount of energy from the controller. This is possible
in regulation of mechanical systems where the extracted
power is the product of force and velocity and we want to
drive the velocity to zero. Unfortunately, it is no longer the
case for most electrical or electromechanical systems where
power involves the product of voltages and currents, and the
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latter may be non-zero for non-zero equilibria. See Ortega
et al. (2001) for further discussions on this issue.

5.2. SuHcient condition

Proposition 4. Consider the IDA–PBC of Proposition 1
applied to the PCH system (1) without damping injection;
i.e.; Ra(x) = 0. Assume the natural damping of the system
veriCes

R(x)
@Ha

@x
(x) = 0: (18)

Then; the IDA–PBC is an energy-balancing stabilizer.

Proof. The proof is easily established with the following
simple calculations:

Ḣ d = u�y −
[
@H
@x

(x)
]�

R(x)
@H
@x

(x)︸ ︷︷ ︸
Ḣ

+ Ḣ a

=−
[
@Hd

@x
(x)

]�
Rd(x)

@Hd

@x
(x):

From the fact that Rd(x) =Ra(x) +R(x) we have that

Ḣ a =−u�y −
[
2
@H
@x

(x) +
@Ha

@x
(x)

]�
R(x)

@Ha

@x
(x)

−
[
@Hd

@x
(x)

]�
Ra(x)

@Hd

@x
(x):

Consequently; if Ra(x) = 0 and the natural damping R(x)
satis?es (18) we have that Ḣ a=−u�y and; upon integration;
we verify that Hd[x(t)] satis?es (15).

6. Energy–Casimir method

The IDA-PBC of Proposition 1 has been derived adopt-
ing a state-feedback viewpoint of the control action which
somehow obscures how energy is exchanged between the
controller and the plant. In order to unveil this funda-
mental feature of PBC it is necessary to adopt an alter-
native, and in many respects more natural, perspective
of control-as-interconnection—where energy shaping is
achieved adding up the energies of the plant and the con-
troller. This approach has been proposed in Ortega, Loria,
Kelly, and Praly (1995) to design EL controllers for poten-
tial energy shaping of mechanical systems, see also (Ortega
et al., 1998). It has been discussed in Dalsmo and van der
Schaft (1999) for static state-feedback control of mechan-
ical systems in PCH form, and in Stramigioli, Maschke,
and van der Schaft (1998) with a dynamic extension for
output-feedback damping injection. In Maschke, Ortega,
and van der Schaft (2000), which constitutes the analysis
counterpart of the present paper, we introduced it for

Lyapunov function generation for PCH systems with con-
stant forcing inputs.
As pointed out in Maschke et al. (2000) the construc-

tion has some close connections with the Energy–Casimir
method of mechanics (Marsden & Ratiu, 1994; van der
Schaft, 1999), where we exploit the existence of dynamical
invariants to generate Lyapunov functions. The purpose of
this section is to elaborate upon these connections for the
IDA-PBC proposed above. In particular, to show that the
IDA–PBC reduces to the controller obtained via the Energy–
Casimir method if and only if there is no damping injection
and the natural damping of the plant satis?es the condition
of Proposition 4. (Hence, the class of PCH systems stabiliz-
able by IDA-PBC is strictly larger.) To prove this statement
we view the IDA–PBC as a PCH source system in a power
preserving state-modulated interconnection with the plant.
To put our result in perspective we explain ?rst the rationale
of the Energy–Casimir method in its standard formulation.

6.1. PCH controllers: constant interconnection

We consider the system described by (1) in interconnec-
tion with a PCH controller

�C :




"̇= uC;

yC =
@HC

@"
(")

(19)

with state "∈Rm, input uC , output yC , andHC(") the energy
of the controller—which we assume bounded from below. 8

(See point 2 in the discussion below for an explanation for
the choice of this structure of the PCH controller.)
The interconnection constraints are power-preserving of

the form uC =y; u=−yC . The composed system is clearly
still Hamiltonian and can be written as[
ẋ

"̇

]
=

[
J (x)−R(x) −g(x)

g�(x) 0

][
@Hcl
@x (x; ")
@Hcl
@" (x; ")

]
(20)

with Hcl(x; ") the closed-loop energy function (de?ned in an
extended state space (x; "))

Hcl(x; "):=H (x) + HC("): (21)

We can easily see that this energy function is non-
increasing, and we would like to shape it to assign a mini-
mum at the desired point. However, although HC(") can be
freely assigned, the systems energy-function H (x) is given,
and its not clear how can we e:ectively shape the over-
all energy. One possibility is to restrict the motion of the
closed-loop system to a certain subspace of the extended
state space (x; "), say$ ⊂ Rn+m, by rendering$ invariant. 9

In this way, we can express the closed-loop total energy as a

8 We have introduced the notation HC here to highlight its interpretation
as controller energy. We will see later, that this function play essentially
the same role as Ha in Proposition 1.

9 A set $ ⊂ Rn+m is invariant if the following implication holds:
(x(0); "(0))∈$ ⇒ (x(t); "(t))∈$; ∀ t¿ 0.
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function of x only. In the Energy–Casimir method (Dalsmo
& van der Schaft, 1999; Marsden & Ratiu, 1994), we
look for dynamical invariants which are independent of the
Hamiltonian function. More precisely we look for functions
C(x; ")—called Casimir functions—such that along the dy-
namics of the PCH system (d=dt)C(x; ") = 0, independent
of the energy function. Without loss of generality, 10 we
consider Casimir functions of the form C(x; ") = F(x)− ".
Since we want these functions to remain constant along the
trajectories of the closed-loop dynamics (20) irrespective
of the precise form of Hcl(x; "), they should be solutions of
the PDEs[[

@F
@x

(x)
]� ... − Im

][
J (x)−R(x) −g(x)

g�(x) 0

]
= 0:

(22)

It is clear that the level sets$:={(x; ")|"=F(x)+�}; �∈R,
are invariant sets for the closed-loop system, hence the
closed-loop total energy (in these level sets) becomes

Hd(x):=H (x) + HC[F(x) + �]: (23)

This function can now be shaped with a suitable selec-
tion of the controller energy HC("). (Notice that, for
obvious reasons, we have adopted the notation Hd(x) of
Proposition 1.)
We are in position to present the following proposition,

whose proof may be found in van der Schaft (1999) and
Ortega et al. (2001).

Proposition 5. A necessary condition for the solution of
the PDEs (22); hence for existence of Casimir functions for
the closed-loop dynamics (20); is that the damping satisCes
the energy-balancing constraint (18).

6.2. State-modulated interconnection

In this subsection we view the IDA–PBC of Proposition 1
from the Energy–Casimir method perspective. Although we
have already proven that energy-shaping can be achieved
without generation of Casimir functions it is interesting to
know under which conditions both methods yield the same
controllers. We provide a de?nite answer to this question by
establishing that the closed-loop admits Casimir functions
if and only if Ja(x) = Ra(x) = 0 and the natural damping
satis?es the condition (18).
To adopt an interconnection viewpoint for the IDA–PBC

we introduce two key modi?cations. First, we consider the
controller to be an (in?nite energy) source, that is, a scalar
system of the form (19) but with energy function

HC(") =−": (24)

10 This is because we have assumed g(x) and J (x) − R(x) full rank,
hence this class generates (locally) all Casimir functions.

(Notice that since HC(") is not bounded from below, the
operator uC �→ yC is not passive, hence we can extract an
in?nite amount of energy from the controller to stabilize
systems with inCnite dissipation.) Second, we interconnect
the source system with the plant via a state-modulated in-
terconnection of the form[

u(s)

uC(s)

]
=

[
0 −�(x)

�(x) 0

][
y(s)

yC(s)

]
: (25)

This interconnection is clearly power preserving, i.e. u�y+
u�C yC = 0, and the composed system is still Hamiltonian of
the form[
ẋ
"̇

]
=

[
J (x)−R(x) −g(x)�(x)

��(x)g�(x) 0

]
 @Hcl

@x (x; ")

@Hcl
@" (x; ")


 (26)

with total energy Hcl(x; ") de?ned by (21) and (24).
The proposition below gives necessary and suPcient con-

ditions for the Energy–Casimir method to apply. The proof
is given in Ortega et al. (2001), hence is omitted.

Proposition 6. Consider the PCH system (1) with a
state-feedback control u = �(x). The closed-loop; which
can be represented as the augmented system (26); (21);
(24); admits a Casimir function of the form

C(x; ") =−Ha(x)− " (27)

if and only if

(i) the integrability condition (7); (8) with Ja(x) =
Ra(x) = 0 of Proposition 1 holds; that is

[J (x)−R(x)]
@Ha

@x
(x) = g(x)�(x)

(ii) the natural damping matrix R(x) veriCes the con-
straint (18).

7. Power converter example

In this section we illustrate our main result with a power
converter example. (Other practical applications of IDA–
PBC include: underactuated mechanical systems (Ortega &
Spong, 2000), mass–balance systems (Ortega et al., 1999),
design of power system stabilizers (Ortega et al., 2001),
synchronous generators (Petrovic et al., 2000), levitated
systems (Rodriguez et al., 2000) and underwater vehicles
(Astol? et al., 2001). In all cases we derive new controllers
that possess interesting implementation and robustness fea-
tures.)
A. Port-controlled Hamiltonian modelling: We consider

the well-known DC-to-DC boost power converter, whose
(averaged) dynamics is described by a PCH model of the
form (2) with x = [x1; x2]�, g= [E; 0]�, and

J (u):=
[
0 −u
u 0

]
; R:=

[
0 0
0 1

RL

]
;
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where

H (x) =
1
2L

x21 +
1
2C

x22 (28)

is the total energy of the circuit, x1 is the inductance Jux, x2
is the charge in the capacitor, u∈ [0; 1] represents the duty
ratio of the PWM, RL is the output load resistance and E is
the DC voltage source.
It is important to remark that u is not a port variable.

However, since the action of this signal is “workless”, the
circuit de?nes a passive operator E �→ x1=L, independently
of u. The control objective of the power converter of Fig. 1
is to drive the output capacitor voltage to some constant
desired value Vd ¿E, maintaining internal stability. Notice
that the equilibrium point for the desired output capacitor
voltage Vd is given by (x1∗; x2∗) = (LV 2

d =RLE; CVd), which
is attained with the constant control u∗ = E=Vd.
B. Controller with natural interconnection and damping:

Following the method proposed here, with Ja(x)=Ra(x)=0,
we de?ne the vector K(x) as

K(x) =
[
k1(x)
k2(x)

]
= [J (�(x))−R]−1

[
E
0

]

=

[− E
RL�2(x)

− E
�(x)

]
: (29)

The integrability condition (8) reduces in this case to
(@k2=@x1)(x) = (@k1=@x2)(x), which yields the nonlinear
PDE (@k2=@x1)(x) + 2

RLE
k2(@k2=@x2)(x) = 0: A solution for

this simple PDE may be obtained using standard computa-
tional tools as

k2(x) =
c1x2 + c3

(2=RLE)c1x1 + c2
; (30)

where ci; i = 1; 2; 3 are arbitrary constants. Replacing (30)
in (29) de?nes the control law

�(x) =−E
(
(2=RLE)c1x1 + c2

c1x2 + c3

)
: (31)

In the sequel we will check the remaining conditions of
Proposition 1 to de?ne intervals for the constants ci; i =
1; 2; 3 so that the stabilization objective is achieved with
u=�(x). To enforce (9) we evaluate the control (31) at the
equilibrium point. This gives the following linear function
that relates the constants c1, c2 and c3

c2 =−
(
2LV 2

d

R2
LE2

+ C
)
c1 − c3

Vd
: (32)

It is interesting to note that, if we set c1 = 0 in (31) and
(32) we recover the open-loop control u = u∗ = E=Vd.
Hence, it is a member of the family of controllers that is
generated by our method. After some simple calculations,
we can verify that the Hessian condition (10) is satis?ed
provided (R2

LE
2=4LV 3

d )c3 ¡c1 ¡ (1=CVd)c3 if c3 ¡ 0, or
−(1=CVd)c3 ¡c1 ¡− (R2

LE
2=4LV 3

d )c3 if c3 ¿ 0.

Once again, we should underscore that we did not require
the calculation of the Lyapunov function Hd(x). It can be,
however, easily computed as

Hd(x) =
1
2L

x21 +
1
2C

x22 +
1
2c1

(c1x2 + c3)2

((2=RLE)c1x1 + c2)

− LV 4
d

2R2
LE2

+
Vdc3
2c1

;

where we have added the two last constant terms to enforce
Hd(x∗) = 0.
C. Controller with damping assignment: Even though the

controller above ensures some stability properties it requires
full state feedback and is sensitive to the load resistance,
which might be unknown and=or time-varying. We will
show now that changing the damping structure we can over-
come these two drawbacks. Towards this end, we select the
injected damping matrix as Ra=diag{Ra;−1=RL}, Ra ¿ 0,
which yields the closed-loop damping Rd = diag{Ra; 0}.
We thus obtain

K(x) =
1

�(x2)

[ − 1
RLC

x2

− 1
LRax1 − E + Ra

RLC
x2

�(x2)

]
:

Taking into account that � is a function only of x2, the
integrability condition (@k2=@x1)(x) = (@k1=@x2)(x) reduces
to the simple ODE

d�
dx2

(x2) =
.
x2
�(x2);

where we have de?ned ., 1−RaRLC=L. This ODE can be
easily solved by the separation of variables method to get
�(x2) = c1x.2, where c1 is a constant, which we choose as
c1 = u∗=x.2∗, to assign the equilibrium. Now, to ensure that
x∗ is not just an extremum but a minimum of Hd(x) we look
at its Hessian (evaluated at x∗), and verify that it is posi-
tive de?nite if and only if −1¡.¡ 1. Now, in the deriva-
tions above we have assumed that the matrix J [�(x)]−Rd

is invertible, which is the case if x2 =0. On the other hand,
the model of the boost converter is physically meaningful
only in the positive quadrant. It is easy to see that, restrict-
ing 0¡.¡ 1, x2(t) ≡ 0 is a trajectory of the closed loop
dynamics. Unfortunately, this does not mean that trajecto-
ries starting in the half-plane x2 ¿ 0 will remain there, be-
cause the closed-loop vector ?eld is not continuous at x2 =0
and uniqueness of solutions is no more guaranteed! A more
detailed analysis—carried out in Rodriguez et al., 2000—
reveals that we can de?ne a set of initial conditions con-
tained in the domain of attraction of x∗ and such that the
trajectories of the closed-loop system remain in the positive
quadrant. Furthermore, we prove that there exists a value of
. such that control signal u(t) ranges in the set (0; 1).
In summary, we have shown that the output feedback

IDA-PBC

�(x2) = u∗

(
x2
x2∗

).

; 0¡.¡ 1
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asymptotically stabilizes x∗ for all load resistances RL ¿ 0,
while verifying the physical constraints.
D. Comparison with the Euler–Lagrange approach: In

Ortega et al. (1998) the problem of stabilization of the boost
converter is approached in the following form. First of all,
the model of the system is written as Mż+ J (u)z+Rz= g;
where z ∈R2 contains the input current and output capac-
itor voltage, and M :=diag{L; C}. An implicit de?nition
of the controller is derived from a copy of the system with
additional damping as

Mżd + J (u)zd +Rzd = g+Rdiz̃; (33)

where Rdi :=diag{R1; 0}; R1 ¿ 0, zd ∈R2 is an auxiliary
vector, z̃ := z − zd, and zd will be de?ned later. The idea is
that, for all u that verify (33), the error equation

M ˙̃z + [J (u) +Rd]z̃ = 0

with Rd :=R + Rdi, is exponentially convergent, that is,
z̃ → 0 (exp.). (This fact is easily established evaluating the
derivative of the quadratic function z̃�Mz̃.)
The next step is to ?nd a control u such that z̃ → 0 ⇒

z2 → Vd. One is then tempted to set z2d = Vd in (33), solve
for u and de?ne a di:erential equation for z1d. Unfortu-
nately, as shown in Ortega et al., 1998, this will lead to an
internally unstable system. This stems from the fact that the
zero dynamics of the system associated to the output volt-
age is unstable, and the proposed controller is implementing
an (asymptotic) inverse of the system. To go around this
problem, which is by the way conspicuous by its absence in
the PCH formulation elaborated here, we ?x instead z1d to
its desired value V 2

d =RE in (33). This leads to the following
asymptotically stabilizing control law

Cż2d =− 1
RL

z2d +
V 2
d

RLEz2d
(E + R1z̃1);

u=
1
z2d

(E + R1z̃1):

Notice that z2d is the state of our dynamic controller. To
complete the stability analysis we must show that z2d re-
mains bounded, which follows from the minimum phase
properties of the system with output z1.
Comparing the solution given above with the ones ob-

tained by the new method we see that, besides the obvious
complexity reduction, the latter is more “natural” for at least
two reasons. First, in the EL approach we try to assign to the
system a storage function which is quadratic in some error
quantities. Although this is a suitable choice for linear sys-
tems it need not be a reasonable one in the nonlinear case
(see Maschke et al., 2000). This point is corroborated by our
new developments which yield rational or fractional poly-
nomial Lyapunov functions! Second, as discussed in Ortega
et al. (1998) and clearly illustrated here, an (asymptotic)
inversion of the system is implicit in the EL design

procedure. It is reasonable to expect that this will bring
along some robustness problems inherent to the linearization
ideas.

8. Concluding remarks and future research

We have presented in this paper a procedure to design
stabilizing controllers for PCH models which e:ectively
exploits the structural properties of the system. The main
features of the proposed scheme may be summarized
as follows:
(i) The Hamiltonian structure is preserved in closed-loop,

which allows for an energy interpretation of the control ac-
tion. (ii) Given the clear-cut de?nition of the interconnection
structure and the damping (captured in the matrices J (x) and
R(x), respectively) the incorporation of the physical intu-
ition is e:ectively enhanced. This aspect is very important,
not only for the de?nition of the “desired dynamics”, but
also for the commissioning of the controller. (iii) Conditions
on the damping are given to ensure that the closed-loop stor-
age function is precisely the energy-balance function. (iv)
In principle, there is no need to explicitly derive the Lya-
punov function, only its existence need be ascertained. (v)
The procedure is amenable for symbolic manipulation lan-
guages.
Proposition 1, is a generalization of the Energy–Casimir

method, which has been developed for stability analy-
sis, to the controller synthesis problem. Indeed, in the
Energy–Casimir method one shapes the energy H (x) to
a desired function Hd(x) = H (x) + Ha(C1(x); : : : ; Cm(x)),
with Ci(x) the Casimirs. Note that for Ja(x) = Ra(x) = 0
and no input, that is g(x; �(x)) = 0, (7) reduces to
[J (x) − R(x)](@Ha=@x)(x) = 0, which yields the Casimir
functions.
The results reported here are restricted to the case of

stabilization of ?xed points. In some cases it is possible
to adapt the procedure to treat the stabilization of peri-
odic orbits. Current research is under way to extend our
approach to stabilization of general periodic orbits, and
eventually to handle the more challenging tracking prob-
lem. See Fujimoto and Sugie (2001) for some interesting
results.
In IDA–PBC it is possible to modify the kinetic energy

of mechanical systems by a suitable selection of the desired
interconnection matrix Jd(x). This feature has been used
in Ortega and Spong (2000) to globally stabilize an in-
verted pendulum with an inertia disk and the ball-and-beam
system. This possibility also allows us to establish some
connections with the Controlled-Lagrangian controllers
reported in Bloch, Leonhard, and Marsden (2000). In par-
ticular, it is possible to show that modifying the kinetic
energy of a simple mechanical system without a:ecting the
potential energy nor the damping (as done in Bloch et al.
(2000)) is tantamount—in our formulation—to selecting the
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closed-loop interconnection matrix as

Jd(q; p) =
[

0 M−1(q)Md(q)
−Md(q)M−1(q) J2(q; p)

]
;

where Md(q); M (q) are the closed-loop and open-loop iner-
tia matrices, respectively, and

J2(q; p) =Md(q)M−1(q)

{[
@
@q

(M (q)M−1
d (q)p)

]�

−
[
@
@q

(M (q)M−1
d (q)p)

]}
M−1(q)Md(q):

See Blankenstein, Ortega and van der Schaft (2001) for a
detailed comparison of both methods.
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