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Abstract

Analysis of exclusively-kinetic two-link underactuated mechanical systems is undertaken in this paper. It is first shown that
such systems are not full-state feedback linearizable around any equilibirium point. Also, the equilibrium points for which
the system is small-time locally controllable (STLC) is at most a one dimensional submanifold. A concept less restrictive
than STLC, termed the small-time local output controllability (STLOC) is introduced, the satisfaction of which guarantees
that a chosen configuration output can be controlled at its desired value. It is shown that the class of systems considered are
STLOC, if the inertial coupling between the input and output is non-zero. Also, in such a case, the system is nonminimum
phase (NMP). An example section illustrates all results presented.
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1 Introduction

Underactuated mechanical systems have recently gained
research attention due to the variety of new problems
they have generated [3,10,12]. In most cases, simple con-
trol methodologies fail and sophisticated control tech-
niques based on heuristics and empirical observation
have been used for the control of such systems [6,7].
Analysis of a class of such underactuated systems is un-
dertaken in this paper. For the sake of simplicity, the
analysis is restricted to two-link underactuated systems
under the assumption that gravity and friction are ab-
sent. This class has received quite some attention, see
[2,12] and references therein.

The following notions play a key role in this paper:

• Full-state feedback linearizability (FL): This property
implies that the nonlinear system can be transformed
into a linear one with a nonlinear feedback and a state
transformation [5]. Then, standard linear control tech-
niques can be used for controller design.

It is shown here that the two-link exclusively ki-
netic underactuated systems do not satisfy the nec-
essary and sufficient conditions for full-state feedback
linearizability.
• Small-time local controllability (STLC): This is an ex-

tension to the well understood concept of Kalman con-
trollability to nonlinear systems. It implies that a state
arbitrarily close to the initial one can be reached in
arbitrarily small time. It is a property for which there

are some tractable conditions to assess it [13].
Though it has been shown in [2] that a planar 2R

robot does not satisfy the sufficient conditions for
STLC, the work is inconclusive towards establishing
or refuting this property. Herein, exclusively-kinetic
two-link underactuated mechanical systems are shown
not to be STLC.
• Small-time local output controllability (STLOC):

STLC is a fairly restrictive concept and a system
need not necessarily be STLC to keep a chosen con-
figuration output at its desired value. In this study,
a relatively new concept of small-time local output
controllability (STLOC) is introduced, which only
demands that a neighbourhood of the equilibirium in
the output space can be reached by manipulating the
inputs. Only configuration outputs will be considered,
i.e. outputs that do not depend on time derivatives
of the generalized coordinates. The good news is that
except for some pathological cases, exclusively-kinetic
two-link underactuated mechanical systems can be
shown to be STLOC almost everywhere.
• Nonminimum phase (NMP): The bad news, however,

is that in most cases the system is nonminimum phase.
A formal link between two-link exclusively-kinetic un-
deractuated systems and nonminimum-phase systems
has been initiated in [8]. The nonminimum-phase
property is an input-output property which is asso-
ciated with right-half-plane transmission zeros in the
case of linear systems. However, in the nonlinear sce-
nario, nonminimum-phase systems are defined based
on the stability of the zero dynamics [1].
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The paper is organized as follows. Section 2 introduces
certain preliminaries and new definitions. Rigid body
dynamics formulation for two-link systems is also given.
The analysis of full-state feedback linearizability is done
in Section 3, that of STLC in Section 4, and STLOC
in Section 5. Section 6 studies nonminimum-phase char-
acteristics that appear in exclusively-kinetic two-link
underactuated mechanical systems. Finally, Section 7
presents examples to illustrate the above concepts.

2 Preliminaries

Consider the affine-in-input system,

ẋ = f(x) + g(x) u, y = h(x), x(0) = x0 (1)

where x ∈ X ⊂ Rn and f(0) = 0 (i.e., x = 0 is an
equilibrium point). In this paper, the SISO setting will
be considered, i.e., u ∈ U ⊂ R and y ∈ Y ⊂ R. Moreover
f and g and all other vector fields will be considered
analytic unless otherwise specified. For a given input
u : [0, t] → U , let the solution to (1) starting from the
initial condition x0 and evaluated at time t be denoted
by x(t, x0, u).

2.1 Full-state Feedback Linearizability (FL)

The concepts pertaining to feedback linearization are
defined in the literature and the reader is referred to
standard texts on nonlinear control for these definitions
(see for example [5]). Nevertheless, for easy reference,
the necessary and sufficient conditions of feedback lin-
earization will be recalled.

Theorem 1 System (1) is state feedback linearizable
around a point x0 iff the following two conditions are
satisfied: (i) the matrix [g(x0), fg(x0), · · ·, fn−1g(x0)]
1 has rank n and (ii) the distribution span{g, fg, · · ·,
fn−2g} is involutive 2 in a neighborhood of x0.

2.2 Small-time Local Controllability (STLC)

Though a sufficient condition for STLC is presented in
[13], the following necessary condition will be used in
this paper:

Theorem 2 If system (1) is STLC at x0, then gfg(x0) ∈
S1(x0) = span{g(x0), fg(x0), ffg(x0), . . .}.

S1 is the space spanned by tangent vectors stemming
from brackets containing at most one g and arbitrarily
many f .

1 In this paper, the following notation will be used for the
Lie brackets: [v1, v2] = v1v2 and [v1, [v2, v3]] = v1v2v3.
2 Closed under Lie braketing

2.3 Small-time Local Output Controllability (STLOC)

An new controllability definition is introduced (see also
[4]). It restricts the concept of local controllability to the
output space.

Definition 3 System (1) is small-time localy output
controllable from x0 if h(x0) is in the interior of the
reachable set RYT (x0) = {y ∈ Y | ∃ u : [0, t] → U , t ∈
[0, T ], such that y = h(x(t, x0, u)), h(x(τ, x0, u)) ∈
Y, 0 ≤ τ ≤ t} for all neighbourhoods Y and for all T > 0.

2.4 Nonminimum-phase (NMP) Systems

Nonminimum phase systems are defined based on the
non asymptotic stability of the internal dynamics [1].

Definition 4 System (1) is (nonminimum) minimum
phase at x∗, if x∗ is (not) an asymptotically stable equi-
librium point of the internal dynamics

ẋ = f∗(x) = f(x) + g(x) u∗(x), x ∈ H∗ (2)

where H∗ is the manifold where h(x) = h∗, and u∗ :
H∗ → R is such that f(x)+g(x) u∗(x) is tangent toH∗.

It could be more appropriate to use the term “constant
output induced dynamics” in the present context, since
it is in-between the general definition of internal dynam-
ics (h(x) = href (t)) and the traditional definition of zero
dynamics (h(x) = 0). However, the term “internal dy-
namics” will be retained in the sequel, since it makes the
explanations clearer.

2.5 Two-link Underactuated Mechanical Systems

Definition 5 A system is underactuated if it has fewer
independent actuators than its degree of freedom [11].

Definition 6 A two-link mechanical system is a set of
two rigid bodies connected to each other by an articula-
tion, and one of the bodies is connected to a base frame
through another articulation. One degree of freedom is
allowed for each articulation. A two-link underactuated
mechanical system is a two-link system which is under-
actuated.

A natural choice of generalized coordinates correspond
to the link coordinates themselves. It specifies the po-
sition of the next link with respect to the previous one
along the movement permitted by the joint associated
to it. The rigid body dynamics of a two-link exclusively-
kinetic mechanical system in the link coordinates are
given by [7]:

q̈1 =−Γ1
11q̇

2
1 − 2Γ1

12q̇1q̇2 − Γ1
22q̇

2
2 + n11τ1 + n12τ2

q̈2 =−Γ2
11q̇

2
1 − 2Γ2

12q̇1q̇2 − Γ2
22q̇

2
2 + n21τ1 + n22τ2 (3)
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where q = [q1, q2]T , nmk denote the elements of the in-
verse of the inertia matrix N = D−1, and Γmij , m = 1, 2
are the Christoffel symbols of the second kind [7].

In the sequel, results will be obtained for any kind of
output not depending on the velocities q̇1 and q̇2.

Definition 7 A configuration output, c(q1, q2), is a sub-
mersion of the configuration space {q1, q2} into a one-
dimensional manifold.

For a given configuration output c(q1, q2), let ξ(q1, q2)
be another submersion such that ξ and c form a set of
generalized coordinates. This means that the transfor-
mation T : [q1 q2]T ↔ [c ξ]T is a diffeomorphism with a
non-singular Jacobian. The dynamic equations (3) can
be written in the new coordinates as:

c̈=−Υcċ
2 − 2Υcξ ċξ̇ −Υξ ξ̇

2 + σcτ
ξ̈ =−Ψcċ

2 − 2Ψcξ ċξ̇ −Ψξ ξ̇
2 + σξτ (4)

where Υc, Υcξ, Υξ, σc, Ψc, Ψcξ, Ψξ, and σξ are appro-
priately defined functions of c and ξ. τ = [τ1 τ2] e, where
e determines which joint is actuated. For example, if
τ = τ1, e = [1 0]T . Note that the choice of e influences
only the functions σc and σξ.

3 Analysis of Feedback Linearizability

In this section, the structure of the Lie algebra at the
equilibrium point will be analyzed first. It will then be
shown that two-link exclusively-kinetic underactuated
mechanical systems are not feedback linearizable around
any equilibirium point.

Consider the state vector x = [c, ξ, ċ, ξ̇]T and the input
u = τ . Then, from (4), the vector fields f and g read:

f =



ċ

ξ̇

−Υcċ
2 − 2Υcξ ċξ̇ − Υξ ξ̇

2

−Ψcċ
2 − 2Ψcξ ċξ̇ − Ψξ ξ̇

2


 , g =




0

0

σc

σξ


 (5)

The equilibrium states correspond to any choice with
ċ = ξ̇ = 0, i.e., define the two-dimensional equilibrium
manifold X ∗ = {x∗ | x∗ = [c∗, ξ∗, 0, 0]T , c∗ ∈ R, ξ∗ ∈
R}. The following lemma gives an idea of the Lie brack-
ets giving non vanishing vectors after evaluation at the
equilibrium.

Lemma 8 LetB(k, l) denote a bracket with k and l being
the number of times the vector fields g and f appear in
the bracket, respectively. Then, B(k, l) has the following
structure:

B(k, l) =
[
O2×1(l− k)
O2×1(l− k + 1)

]
(6)

where O2×1(p) represents a matrix of dimension 2 × 1,
where each element is a pth-order function of ċ and ξ̇
(e.g., O(−1) = 0, O(0): function independent of ċ and
ξ̇, O(1) = αċ+ βξ̇, O(2) = αċ2 + βċξ̇ + γξ̇2, etc.).

PROOF. Proof by induction. By inspection, it can be
seen that f and g satisfy (6). SupposeB(k, l) is a bracket
which satisfies (6). Then, the proof is complete if we
show that Lie-bracketing with f augments the orders by
1 and that with g reduces the orders by 1.

[f,B] =
[
O2×2(l− k) O2×2(l− k − 1)

O2×2(l− k + 1) O2×2(l− k)

] [
O2×1(1)

O2×1(2)

]
−[

02×2 I2×2

O2×2(2) O2×2(1)

] [
O2×1(l− k)
O2×1(l− k + 1)

]
=

[
O2×1(l− k + 1)

O2×1(l− k + 2)

]
(7)

[g,B] =
[
O2×2(l− k) O2×2(l− k − 1)

O2×2(l− k + 1) O2×2(l− k)

] [
02×1

O2×1(0)

]
−[

02×2 02×2

O2×2(0) O2×2(0)

] [
O2×1(l− k)
O2×1(l− k + 1)

]
=

[
O2×1(l− k − 1)

O2×1(l− k)

]
(8)

Since O(p) = 0 at the equilibrium for all p > 0, only
elements of type O(0) need to be considered. The tan-
gent vectors obtained by evaluating the brackets at an
equilibrium point span the vector subspace associated
to the third and fourth rows, if the associated brack-
ets satisfy k = l + 1. The brackets to be considered are
g, gfg, gfgfg, gfgfgfg, · · ·. Similarly, to span the vec-
tor subspace associated to the first and the second rows,
one needs k = l, with the necessary Lie brackets being
fg, fgfg, fgfgfg, · · · ,. More importantly, span{g(x∗),
fg(x∗) , · · ·, fn−1g(x∗)} obtained at any equilibrium
point x∗ has dimension 2.

Theorem 9 Two-link exclusively-kinetic underactuated
mechanical systems are not full-state feedback lineariz-
able at all equilibrium points.

PROOF. The proof follows since the first condition
of feedback linearizablity is not satisfied, rank[g(x∗),
fg(x∗), · · ·, fn−1g(x∗)] = 2 �= n = 4.

4 Analysis of Small-time Local Controllability

Using the structure of the Lie brackets discussed in the
previous section, it will be shown here that two-link
exclusively-kinetic underactuated mechanical systems
are not small-time locally controllable outside a set of
measure zero. Particularly, the vector field gfg plays
a very crucial role as will be discussed in the following
lemma.

Lemma 10 If gfg ∝ g 3 , then (gfgf · · · g) ∝ g and
(fgf · · · g) ∝ fg.

3 Given two vector fields v1 and v2, v1 ∝ v2 means that
there exists α : Rn → R, such that v1(x) = α(x)v2(x).
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PROOF. The proof is by induction. The hypothesis
of the lemma states gfg ∝ g. Suppose (gfgf · · · g) ∝ g.
Then [f, (gfgf · · · g)] ∝ [f, g]. Also [g, [f, (gfgf · · · g)]] ∝
[g, [f, g]] ∝ g.

Theorem 11 The submanifold of equilibria points for
which the system is STLC is at most one dimensional.

PROOF. Due to the structure of the Lie brackets ex-
plained in Lemma 8, the vector subspace spanned by the
tangent vectors obtained after evaluating at the equilib-
rium the brackets having at most one g, S1(x∗), is gener-
ated by only two vectors: S1(x∗) = span{g(x∗), fg(x∗)}
with

g(x∗) = [0, 0, σc(c∗, ξ∗), σξ(c∗, ξ∗)]T (9)
fg(x∗) = [σc(c∗, ξ∗), σξ(c∗, ξ∗), 0, 0]T . (10)

Whether or not the system is STLC at x∗ depends on
the inclusion of gfg(x∗) in the vector subspace S1(x∗).
Consider the function R(x) = rank[g(x), fg(x), gfg(x)].
Choose a 2 dimensional submanifold W of the equi-
librium manifold X ∗ containing x∗, such that the set
V = {x∗ | R(x∗) = 0} ∩ W defines a submanifold. No-
tice that gfg(x∗) ∈ S1(x∗) for all points x∗ ∈ V. Two
cases need to be envisaged:

(1) dim V = 2.
SinceR is an analytic function,R = 0 everywhere

in the manifold W and also in V, i.e. gfg(x∗) =
αg(x∗). This in turn implies gfg ∝ g since both
gfg and g do not depend on velocities. Lemma 10
then shows that all tangent vectors that can poten-
tially augment the rank at the equilibrium x∗ are
in S1(x∗). Since dim S1(x∗) = 2 < 4 the system
is not accessible at x∗ ([5]). Since accessibility is a
prerequisite for STLC (see [13]), the system is not
STLC at all equilibrium points.

(2) dim V ≤ 1.
The system cannot be STLC when x∗ �∈ V, since

in such a case there exists points x∗ ∈ W such
that x∗ �∈ V and gfg(x∗) �∈ S1(x∗). After applying
the contraposition of Theorem 2, the system is not
STLC at these points.

Remark 12 Notice that when dim V = 1, the equilibria
submanifold V for which the system might be STLC is
not dense in the equilibrium manifold. This statement is
not proven here.

5 Analysis of Small-time Local Output Control-
lability

Though in the earlier section, it is shown that
exclusively-kinetic two-link underactuated systems lose
the STLC property almost everywhere, the situation
is not as bad as one would imagine, since the output

is controllable for most configurations. This result is
formulated in the next theorem.

Theorem 13 The system (4) is STLOC at an equilib-
rium if σc(c∗, ξ∗) �= 0.

PROOF. The functional expansion described in [9] is
applied here to give the evolution of the system’s output
c(t) under the input τ(t). The expansion is done at the
equilibrium point x∗ = [c∗, ξ∗, 0, 0]T . Since small-time
controllability deals with the time instants 0 < t < ε
as ε → 0, it is sufficient to consider a constant input,
i.e τ(t) = τ with τ ∈ R. For the sake of this proof,
the notation ẋ = f(x) + g(x)τ = ρ0(x) + ρ1(x)τ will
be used, since it keeps the functional notation compact.
The functional expansion reads

c(t) = c∗ +
∞∑
k=0

1∑
i0,...,ik=0

(Lρi0 . . . Lρik c)(x
∗)
tk

k!
τ
∑k

0
ik(11)

It can be worked out that the Lie derivatives Lfc =
Lgc = LfLfc = LfLgc = LgLgc = 0 and LgLfc = σc.
So, the output evolution under constant input reads:

c(t) = c∗ +
σc
2
τ̄ t2 +O(t3). (12)

If σc �= 0, the second term in (12) dominates the other
ones, for a sufficiently small t. Then, by changing the
sign of τ̄ , both c(t) > c∗ and c(t) < c∗ can be reached in
small time. So, the system is STLOC.

From Theorem 13, it can be seen that a necessary con-
dition for the loss of STLOC is the absence of direct
transmitted torque from the actuator to the output of
interest (σc = 0), either due to the geometry of the axis
or due to the “bad” configuration. In intuitive terms,
only quadratic effects, i.e., centrifugal and Coriolis, are
present and they are most of the times insufficient to
steer the system in a whole neighbourhood around the
equilibrium.

Theorem 14 If σc(c∗, ξ∗) = 0 and ∂σc
∂ξ �= 2σξΥξ, sys-

tem (4) is not STLOC.

PROOF. As in the case of the previous theorem the
functional expansion (11) is used. With σc(c∗, ξ∗) = 0
the derivative LgLfc = σc goes to zero. Also, it can
be worked out that the Lie derivatives of order three,
i.e., Lρi0Lρi1Lρi2 c for ij = 0, 1, vanish at x∗. Among
the 16 Lie derivatives of order four, Lρi0Lρi1Lρi2Lρi3 c,
the only two derivatives that do not vanish at x∗ are
LgLgLfLfc = −2σ2

ξΥξ and LgLfLgLfc = σξ
∂σc
∂ξ . So,

the output evolution under constant input reads:

c(t) = c∗ +
σξ
24

(
∂σc
∂ξ
− 2σξΥξ

)
τ̄2t4 +O(t5). (13)
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Note that due to the positive definiteness of the iner-
tia matrix σξ �= 0, when σc = 0. When ∂σc

∂ξ �= 2σξΥξ,
the second term in (13) dominates the other ones, for
sufficiently small t. Then, depending on the sign of(
∂σc
∂ξ − 2σξΥξ

)
, either c(t) ≥ c∗ or c(t) ≤ c∗ can be

reached but never both. Thus, c∗ is not in the interior
of the reachable set for small enough t.

Remark 15 To illustrate the gap between the necessary
and sufficient conditions of STLOC, two cases with σc =
0 and ∂σ

∂ξ = 2σξΥξ will be given in the example section.
One of them will be shown to be STLOC while the other
is not.

6 Analysis of Minimum-phase Behavior

The analysis of minimum-phase behavior requires the
study of the dynamics induced by a constant output.
The structure of the internal dynamics will be given in
Lemma 16. The main result on minimum phase is based
on the instability of such generic dynamics.

Lemma 16 Consider the two-link exclusively-kinetic
underactuated nonlinear system (4) with configuration
output, c. If σc(c∗, ξ∗) �= 0, the internal dynamics has
the structure

ξ̈ = K(ξ)ξ̇2 (14)

PROOF. To calculate the internal dynamics, set c =
c∗. Substituting ċ = c̈ = 0 in (4) gives an expression
for the input, τ = Υξ ξ̇

2/σc, which is well defined in the
neighbourhood of the equilibirium under the hypothesis
that σc(c∗, ξ∗) �= 0. Then, the internal dynamics in the
neighbourhood of the equilibirium are given by:

ξ̈ =
(
−Ψξ + Υξ

σξ
σc

)
ξ̇2 (15)

Since Ψξ, Υξ, σξ, σc are functions of only c and ξ and
also since c = c∗, (15) has the structure K(ξ)ξ̇2.

Theorem 17 Consider the two-link exclusively-kinetic
underactuated nonlinear system (4) with the configura-
tion output, c. If the input-output pair and the configura-
tion of the system are such that σc(c∗, ξ∗) �= 0, then the
system is not minimum phase.

PROOF. σc(c∗, ξ∗) �= 0 means that the internal dy-
namics are well defined around the equilibirium point
x∗. Consider the function:

L(ξ, ξ̇) = ξ̇2e
−2

∫ ξ

ξ∗
K(η)dη

, (16)

and its derivative along solutions of (14)

L̇(ξ, ξ̇) = 2ξ̇ξ̈e
−2

∫ ξ

ξ∗
K(η)dη

+ ξ̇2e
−2

∫ ξ

ξ∗
K(η)dη

(−2K(ξ))ξ̇.

The following properties hold: (i) L(ξ∗, 0) = 0, and (ii)
L̇(ξ, ξ̇) = 0, ∀ξ, ∀ξ̇. This implies that L induces level
sets on which the trajectories stay. Hence, trajectories
starting from the initial conditions, corresponding to a
non-zero L, cannot reach the origin. However, the level
set corresponding to L = 0 is given by ξ̇ = 0 since the

other factor e
−2

∫ ξ

ξ∗
K(η)dη

never vanishes, Note that the
level set has thus dimension one. So, in the neighbour-
hood of x∗ there exist initial conditions with ξ̇ �= 0, for
which L(ξ, ξ̇) �= 0. For such points x∗ is not an attrac-
tor since, along the solutions of the system (14), L̇ = 0.
So, the equilibrium point is not asymptotically stable in
the Lyapunov sense and the system (4) is nonminimum
phase.

7 Examples

In this section, examples of 2-DOF underactuated me-
chanical systems illustrate the results obtained. Full
mathematical analysis will be presented for pendubot
and acrobot. Then, the notions of STLC and STLOC
will be analyzed on a non-exhaustive list of two-link
underactuated mechanical systems.

7.1 The pendubot

The pendubot is a planar 2R robot (an elbow manipu-
lator) with the first joint actuated (Row 1 of Table 1).
The inertia matrix corresponding to this system is,

D(q) =

[
J1 + 2J3 cos q2 J2 + J3 cos q2
J2 + J3 cos q2 J2

]

J1, J2, J3 are constant values depending on the origi-
nal inertia and geometric parameters. The correspond-
ing dynamics read,

q̈1 = f1 + σ1τ, q̈2 = f2 + σ2τ

f1 =−J3 sin q2
∆D

[
(J2 + J3 cos q2)q̇21 + 2J2q̇1q̇2 + J2q̇

2
2

]
f2 =−J3 sin q2

∆D
[
(J1 + 2J3 cos q2)q̇21+

2(J2 + J3 cos q2)q̇1q̇2 + (J2 + J3 cos q2)q̇22
]

σ1 =
J2

∆D
, σ2 = −J2 + J3 cos q2

∆D

7.1.1 Feedback linearization

The only brackets that contain g at most once and do not
vanish at the equilibrium point, q1 = q∗1 , q2 = q∗2 , q̇1 = 0
and q̇2 = 0 are g(x∗) and fg(x∗). The Lie brackets are:

g(x∗) =
1

∆D

[
0 0 J2 −(J2 + J3 cos q∗2)

]T
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fg(x∗) =
1

∆D

[
J2 −(J2 + J3 cos q∗2) 0 0

]T
Since dim span{g, fg, · · · , fn−1g} = 2 �= 4, the system
is not full state feeback linearizable.

7.1.2 STLC

gfg = J2J
2
3 sin(2q2)
(∆D)3

[
0 0 J2 + J3 cos q2 −(J1 + 2J3 cos q2)

]T
gfg(x∗) �∈ S1(x∗), ∀ q∗2 �= nπ/2, and the pendubot is
not STLC at all equilibrium points where q∗2 �= nπ/2.
However, when q∗2 = (n/2)π, gfg(q∗2) = 0, and the vector
which completes the space is gfgfg(q∗2). Then, the space
is completed by brackets with an odd number of g and
it can be shown from [13] that the system is STLC at
these points. However, these points where the system
is STLC form at most a 1-dimensional subspace of the
equilibrium manifold.

7.1.3 STLOC

Only the natural choice c = q2 and ξ = q1 is considered
(σc = σ2 = −J2+J3 cos q2

∆D and σξ = σ1 = J2
∆D ). The

analysis of the other cases are left to the reader.

Sufficient condition: When σc �= 0, q∗2 �= arccos (−J2/J3),
Theorem 13 shows that the system is STLOC.

Necessary condition: The necessary condition supposes
σc = 0 and ∂σc

∂ξ �= 2σξΥξ, i.e., q∗2 = arccos (−J2/J3)
and sin q∗2 �= 0. These two conditions are met when J2 �=
J3. In such cases, the system is not STLOC at q∗2 =
arccos (−J2/J3).

Gap between Necessary and sufficient conditions: When
J2 = J3, the conditions σc = 0 and ∂σc

∂ξ = 2σξΥξ are
satisfied at q∗2 = π. Now, examining the dynamics of q2
at q∗2 = π gives q̈2 = 0, as long as q∗2 = π. So, the system
can never be pulled out of this configuration which con-
cludes that the system is not STLOC in such a scenario.

7.1.4 Nonminimum-phase property

Case with σc �= 0: Let c = q2 and ξ = q1. With the as-
sumption σc �= 0, the point q2 = arccos (−J2/J3) is elim-
inated. The internal dynamics of the pendubot (which
are well-defined due to the assumption of σc �= 0) can
be computed by imposing the conditions q̇2 = q̈2 = 0:

q̈1 = − J3 sin q2
J2 + J3 cos q2

q̇21 (17)

The solution of (17) is

q1(t) = q1(0) +
J2 + J3 cos q2
J3 sin q2

log
(

1 +
q̇1(0)J3 sin q2
J2 + J3 cos q2

t

)

On the one hand, if q̇1(0)J3 sin q2
J2+J3 cos q2

> 0, then q1(t) con-
stantly increases towards infinity as t→∞. On the other
hand, if q̇1(0)J3 sin q2

J2+J3 cos q2
< 0, the dynamics escapes in finite

time t = − J2+J3 cos q2
q̇1(0)J3 sin q2

. So, the internal dynamics is not
asymptotically stable.

Case with σc = 0: Interestingly, the system can be
shown to be minimum phase when σc = 0, i.e. at
q2 = arccos (−J2/J3). It can be seen from q̈2 = f2 +σ2τ ,
that q̈2 = 0 implies q̇1 = 0. Next, q(3)2 is proportional
to τ q̇1 = 0, and τ remains undetermined as q̇1 = 0.
Considering an extra derivative, q(4)2 is proportional to
τ2 = 0 which forces τ = 0. Since all states and inputs
are determined by the output and their derivatives, zero
dynamics are absent.

7.2 The acrobot

The acrobot is a planar 2R robot (an elbow manipula-
tor) with the second joint actuated. It has the same in-
ertia matrix as the pendubot. The dynamics are, q̈1 =
f1 + σ̄1τ and q̈2 = f2 + σ̄2τ . The difference lies in
σ̄1 = −J2−J3 cos q2

∆D and σ̄2 = J1+2J3 cos q2
∆D , instead of σ1

and σ2.

7.2.1 Feedback linearization

The only brackets that contain g at most once and do not
vanish at the equilibrium point, q1 = q∗1 , q2 = q∗2 , q̇1 = 0
and q̇2 = 0 are g(x∗) and fg(x∗). The Lie brackets are
given by:

g(x∗) =
1

∆D

[
0 0 −(J2 + J3 cos q∗2) (J1 + 2J3 cos q∗2)

]T
fg(x∗) =

1
∆D

[
−(J2 + J3 cos q∗2) (J1 + 2J3 cos q∗2) 0 0

]T
Since dim span{g, fg, · · · , fn−1g} = 2 �= 4, the system
is not full state feeback linearizable.

7.2.2 STLC

gfg = 2J3 sin q2(J2+J3 cos q2)(J1−J2+J3 cos q2)
(∆D)2 g

It can be seen that gfg ∝ g. Thus, the system is not
accessible at any equilibrium point and thus not STLC.
This behaviour is in fact generic to the systems where
the second link is actuated. It is interesting to note that
though the system is not accessible at any equilibrium
point, once the velocities are non-zero, the system be-
comes accessible.

7.2.3 STLOC

Consider the case c = q1, ξ = q2. Then, σc = σ̄1 =
− d12

∆D = −J2+J3 cos(q2)
∆D .
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Sufficient condition and Necessary condition: As in
the case of pendubot, the system is STLOC when
q∗2 �= arccos (−J2/J3) and not STLOC when q∗2 =
arccos (−J2/J3) and J2 �= J3.

Gap between Necessary and sufficient conditions: When
J2 = J3, the conditions σc = 0 and ∂σc

∂ξ = 2σξΥξ

are satisfied at q∗2 = π. For such a case, the fifth
order Lie derivatives (with an odd number of g)
come to rescue in the functional expansion (11), i.e.,
Lgfggfc(q∗2) = − 2

d322d11

∂2d12
∂q22

�= 0 at q∗2 = π with J2 = J3.

Since this factor multiplies τ̄3t5 in the expansion, the
system is STLOC although σc = 0.

Note that in the gap between necessary and sufficient
conditions, pendubot loses STLOC while acrobot does
not.

7.2.4 Nonminimum-phase property

If the configuration output is chosen as c = q1, the in-
ternal dynamics computed by imposing the conditions
q̇1 = q̈1 = 0, reads

q̈2 = −J2J
2
3 sin2(q2)

J1 + 2J3 cos(q2)
J2 + J3 cos(q2)

q̇22 ,

which does not have a closed form solution. How-
ever, the dynamics has the structure presented in
(14) which has been proven to be unstable except at
q∗2 = arccos (−J2/J3). As in the case of pendubot, at
q∗2 = arccos (−J2/J3) the system can be proven to be
minimum phase.

7.3 STLC vs STLOC for a set of two-link underactuated
mechanical systems

The concepts of STLC and STLOC will be illustrated
on several examples falling into the category of systems
for which this paper is devoted. The list of examples
(Table 1) is non-exaustive and is chosen to illustrate
some fundamental differences that can be present within
the class of system considered. Also, a brief sketch of
the topographic property of the systems together with
inertia matrices are presented in Table 1.

7.3.1 STLC

When the first link is actuated, at almost every equi-
librium point x∗, g(x∗), fg(x∗), gfg(x∗) and fgfg(x∗)
span a 4 dimensional vector space. Outside the points
x∗ where gfg(x∗) is zero, the system loses STLC. At
the points where gfg(x∗) = 0, vectors stemming from
Lie brackets of higher order need to be considered. Two
cases have been noticed: (i) gfgfg(x∗) adds the neces-
sary dimension, in which case, the system is STLC at

this point, and (ii) no higher order brackets can add the
neecessary dimension, in which case, the system loses
accessibility and thus, is not STLC.

In the first two examples presented in Table 1, at all
points x∗ where gfg(x∗) = 0, gfgfg(x∗) adds the nec-
essary dimension. In the next two cases, gfg(x∗) = 0, at
q∗2 = kπ

2 , k ∈ Z. For q∗2 = (k+1)π
2 , gfgfg(x∗) adds the

necessary dimension leading to STLC. However, when
q∗2 = kπ, no higher order brackets can add the dimen-
sion and the system loses accessibility. Intuitively, the
second link is parallel to the force provided in the first
actuator and hence cannot move. The last case is inter-
esting in the sense that, all higher order Lie brackets are
identically zero and so the system looses accessibility for
all points.

Actuation of the second link is not tabulated since ac-
cessibility at equilibirium is lost in all cases, as is the
case with acrobot. This inturn implies that the system
is not STLC everywhere.

7.3.2 STLOC

The problem of loss of STLOC does not arise in the fol-
lowing cases: (i) τ = τ1, c = q1, since σc = 0 implies that
the (1,1) element of the inertia matrix is zero, and (ii)
τ = τ2, c = q2, since σc = 0 implies that the (2,2) ele-
ment of the inertia matrix is zero. Due to the symmetry
of the inertia matrix, the combinations τ = τ2, c = q1,
and τ = τ1, c = q2 lose STLOC at the same points and
the results are presented in Table 1.

Four out of five systems considered exhibit the STLOC
property for almost all configurations and STLOC is lost
at isolated points. However, in the rotary prismatic con-
figuration, STLOC is never lost, while in the perpen-
dicular rotary inverted pendulum, STLOC is lost for all
configurations.

It is interesting to compare the two concepts: STLC and
STLOC. STLOC is a concept less restrictive than STLC.
STLOC is satisfied almost everywhere (except the last
example), while STLC is satisfied almost nowhere. At
those points where the system is STLC, the system is
automatically STLOC.

8 Conclusions

The analysis of two-link exclusively-kinetic underactu-
ated mechanical systems has been undertaken. The re-
sults can be summarized as follows:

• The systems of this class are not feedback linearizable.
• STLC is not verified except for a few configurations.
• STLOC is verified in most configurations.
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System Illustration D(q) STLC at Not STLOC at

Pendubot

[
J1+2J3 cos q2 J2+J3 cos q2

J2+J3 cos q2 J2

]
q2 = kπ

2
q2 = arccos(−J2

J3
)

Rotary-Prismatic

[
J1+J3q

2
2 −J4

−J4 J2

]
q2 = 0 −

Inverted Pendulum

[
J1 −J3 sin q2

−J3 sin q2 J2

]
q2 = (k+1)π

2
q2 = kπ

Rotational Inv. Pend.

[
J1+J3 cos(2q2) −J4 sin q2

−J4 sin q2 J2

]
q2 = (k+1)π

2
q2 = kπ

⊥-Rot. Inv. Pend.

[
J1+J3 cos q2+J4cos(2q2) 0

0 J2

]
− ∀q2

Table 1
STLC and minimum phase analysis of two-link under-actuated mechanical systems. The first link is actuated τ = τ1 and the
angle of the second link is chosen as the output c = q2. k ∈ Z.

• The system is NMP in most configurations.

The examples of pendubot and acrobot are discussed
in detail and a table of different two-link underactuated
systems is presented to illustrate the difference between
STLC and STLOC.

Generalization of these results to more than two links
and single input is envisaged. Also, the influence of grav-
ity and friction needs to be considered.
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