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Abstract

We are interested in a new class of optimal control problems for discrete event systems. We adopt the formalism of supervisory control
theory (Proc. IEEE 77(1) (1989) 81) and model the system as a 4nite state machine (FSM). Our control problem is characterized by
the presence of uncontrollable as well as unobservable events, the notion of occurrence and control costs for events and a worst-case
objective function. We 4rst derive an observer for the partially unobservable FSM, which allows us to construct an approximation of the
unobservable trajectory costs. We then de4ne the performance measure on this observer rather than on the original FSM itself. We then
use the algorithm presented in Sengupta and Lafortune (SIAM J. Control Optim. 36(2) (1998)) to synthesize an optimal submachine of
the C-observer. This submachine leads to the desired supervisor for the system. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction and motivation

In general, the purpose of optimal control is to study
the behavioral properties of a system (also called plant),
modeled as a discrete event systems (DES), to take advan-
tage of a particular structure, and to generate a supervisor
which constrains the system to a desired behavior accord-
ing to quantitative and qualitative requirements. In the basic
setup of supervisory control theory, optimality is with re-
spect to set inclusion and thus all legal behaviors are equally
good (zero cost) and illegal behaviors are equally bad (in-
4nite cost). The work by Sengupta and Lafortune (1998)
enriches this setup by the addition of quantitative measures
in the form of occurrence and control cost functions and a
worst-case objective function, to capture the fact that some
legal behaviors are better than others. We are here inter-
ested in a new class of optimal control problems for DES.
Compared to the work by Sengupta and Lafortune (1998),
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Brave and Heymann (1993) and Passino and Antsaklis
(1989), we wish to take into account partial observability.
Several concepts and properties of the supervisory control
problem under partial observation were studied by Brandt
et al. (1990) and Lin and Wonham (1988) among others.
However, they only proposed a qualitative theory for the
control of DESs. In Kumar and Garg (1995), based on
a notion of (un)desirable states, and a penalty cost when
(un)desirable states can(not) be reached in the controlled
system, the optimal control under partial observation prob-
lem is solved by reducing it to a particular class of optimal
control with full observation. In this paper, we adopt a dif-
ferent strategy of optimization (i.e., cost formulation and
computation) based on the work by Sengupta and Lafor-
tune (1998). The starting point of our solution is a 4nite
state machine (FSM) which represents the global behavior
of a given system, including its unobservable dynamics.
The 4rst step is the derivation of an observer for the par-
tially unobservable FSM, called a C-observer. This step is
necessary since unobservable events alone cannot trigger a
speci4c behavior of a controller. We de4ne the performance
measure on the C-observer rather than on the original FSM
itself. However, we will make the necessary eEorts to
keep track of the information that has disappeared with the
initial structure. This observer allows us to remember an
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approximation of the unobservable costs between two ob-
servable events. This approximation corresponds to the
worst, i.e., the highest, cost of the diEerent unobserv-
able trajectories than can occur between two observable
events. In the second step, we use the theory by Sengupta
and Lafortune (1998) to synthesize an optimal controller
corresponding to the optimal restricted behavior, insofar
as it is achievable by an admissible (i.e., physically con-
structible) supervisor. We use back-propagation from the
goal state to generate the supervisor, based on event cost
functions. The supervisor is synthesized in a manner that
gives them optimal substructure, consistent with the notion
of DP-optimality by Sengupta and Lafortune (1998). Due
to space limitations, proofs and examples of the results pre-
sented in this paper had to be omitted; they are available in
Marchand, Boivineau, and Lafortune (2000).

2. Preliminaries

The system to be controlled is a FSM (Cassandras &
Lafortune, 1999) de4ned by a 5-tuple G= 〈�;Q; q0; Qm ; �〉,
where � is the 4nite set of events, Q is the 4nite set of states,
q0 is the initial state, Qm is the set of marked states, and �
is the partial transition function de4ned over � × Q → Q.
The notation �(�; q)! means that �(�; q) is de4ned, i.e., there
is a transition labeled by event � out of state q in machine
G. Likewise, �(s; q) denotes the state reached by taking the
sequence of events de4ned by trace s from state q in machine
G: �(q) denotes the active event set of x. The behavior of
the system is described by the pre4x-closed languageL(G)
(Cassandras & Lafortune, 1999), generated by G. Similarly,
the languageLm(G) corresponds to the marked behavior of
the FSMG, i.e., the set of trajectories of the system ending in
qm ∈Qm. An FSM is said to be blocking ifL(G) �=Lm(G)
and non-blocking ifL(G) =Lm(G), where JK denotes the
pre4x closure of the language K . If G is blocking, it can
reach a state q, where �(q) = ∅ but q �∈ Qm. This is called a
deadlock because no event can be triggered. Another issue
is when there is a set of unmarked states in G that forms a
strongly connected component, but with no transition going
out of the set. If the plant enters this set of states, then
we get what is called a livelock. It is assumed that G is
trim with respect to q0 and Qm (i.e. all the states of G
are accessible from the initial state q0 and co-accessible to
one of the marked state qm ∈Qm), which entails that G is
non-blocking. We say that an FSM A=〈�A; QA; q0A; �A〉 is a
submachine of G, denoted by A ⊆ G, if �A ⊆ �; QA ⊆ Q,
and ∀�∈�A; q∈QA �A(�; q)!⇒ (�A(�; q) = �(�; q)). It is
clear that “⊆” is a partial order on the set of FSMs. We also
say that A is a submachine of G at q whenever q0A = q∈Q
and A ⊆ G. Moreover, we will useM(G; q; qm) = {A ⊆ G:
A is trim w:r:t: qm ∈Qm and q0A = q} to represent the set
of trim submachines of G at q with respect to qm. This
set has a maximal element (in the sense that all others are
submachines of it). It is denoted byM (G; q; qm). Later on in
the paper, we will omit qm in this notation (see Assumption

3). Moreover, ∃�∈ �A(qA) will mean that the event � can
be triggered in qA and that �A(�; qA)∈QA.
Following Ramadge and Wonham (1989), we have to

take into account the possibility that certain events cannot
be disabled by the supervisor or that certain events may not
be observed by the supervisor. Therefore, some of the events
in � are said to be uncontrollable, i.e., their occurrence can-
not be prevented by a controller, while the others are con-
trollable. Likewise, control will be applied on a plant that is
partially observable, i.e., the supervisor will observe only a
subset of the events generated by plant G. Hence, some of
the events in � are observable whereas the others will be
unobservable. An unobservable event could model a failure
event, an internal event, etc. In this regard, � can be parti-
tioned as �=�c∪�uc with �c∩�uc =∅ and as �=�o∪�uo
with �o ∩ �uo = ∅, where �c; �uc; �o and �uo represent
the set of controllable, uncontrollable, observable and unob-
servable events, respectively. Moreover, we make the fol-
lowing assumption: Unobservable events are assumed to be
uncontrollable: �uo ⊆ �uc (this implies �c ⊆ �o). This as-
sumption allows us to directly abstract away the unobserv-
able trajectories of the system and to work on the resulting
system (due to this assumption, all these trajectories are un-
controllable). It also simpli4es the cost trajectory computa-
tion (see Section 4.2). Moreover, in order to consider the
control problem under partial observation, we need to make
sure that it can have a solution. If the initial FSM G has an
unobservable cycle, even if it may be possible to determine
its existence, it would be impossible to alleviate the fact that
it could make the system run inde4nitely in that cycle, with-
out the supervisor noticing. Hence Assumption 2. G has no
unobservable cycles. Under this assumption we can show
that ∀q∈Q; {s∈�o�∗

uo=�(s; q)!} has 4nite cardinality.
We now include the last ingredient to be able to discuss

optimality, namely a cost (or objective) function. As stated
by Sengupta and Lafortune (1998), two cost values are as-
sociated to each event of �. We 4rst introduce an occurrence
cost function ce :� → R+. Occurrence cost functions are
used to model the cost incurred in executing an event (en-
ergy, time, etc.). This function can be easily extended to a
trace s=�1 : : : �n as follows : ce(s)=

∑n
i=1 ce(�i). To repre-

sent the fact that disabling a transition possibly incurs a cost,
we introduce a control cost function cc :�→R+ ∪ {0;∞}.
The control cost function is in4nity for events in �uc. These
cost functions are used to introduce a cost on the trajectories
of A ⊆ G.
Finally, based on remarks by Sengupta and Lafortune

(1998), and because we want to have an algorithm that
solves the optimal controller synthesis problem, with a poly-
nomial complexity in the number of states of the system, we
reduce the model to a unique marked state 1 in G. Hence,

1 Note that from a theoretical point of view, this assumption is not
necessary, but simpli4es the presentation. Moreover, from a computational
point of view, in the case of acyclic FSMs, this assumption can be relaxed
(see Sengupta & Lafortune, 1998, Section 6.2).
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the assumption: The initial system has a unique marked state
qm, i.e., Qm = {qm}.

3. The C-observer

The framework in which we develop our control theory is
that of partially observable FSMs. The supervisor that will
be generated should be able to take decisions based on the
states and=or events that it observes. Consequently, we base
our model upon a partially observed system, seen through
an observer. However, in order to take into account unob-
servable events in the optimality under which we apply our
control, we must keep track of their costs. The idea is to col-
lect an approximation of the costs between two observable
events in the states of the observer we want to build. For
example, consider two states p and q of G, connected by (at
least) a trace of the form �s∈�o�∗

uo. As we only observe
the 4rst event, it is not possible to know which trajectory
has been taken between these two states. Hence, from an
optimal control point of view, we have to consider that the
plant evolves through the trajectory with the highest cost
(there is no way to control the system in such a way that
this trajectory is not taken). In order to collect these costs,
we build a deterministic observer, named C-observer (ob-
server with costs), and de4ne the notion of a macro-state,
allowing both to mask the underlying non-determinism
and to keep track of the unobservable event costs of tra-
jectories between two states. The C-observer constitutes
the basic model on which the optimal control will be
applied.
Before formally giving the de4nition of the C-observer,

denoted by GC, we need to check the original FSM G in
order to account for unobservable events that may lead to
qm in G. Indeed, if an unobservable event leads to qm in
G, it may be impossible to determine whether or not the
system has actually reached qm. There exists inG a self-loop
at qm, labeled ’ with �(’; qm) = qm. The ’ event is just
an (observable) indicator event (e.g., a sensor) that signals
that qm has been reached. Without loss of generality, we
can assume it is controllable and has zero occurrence and
control costs.

3.1. De7nition of the C-observer

The new structure that we de4ne is called a C-observer.
It is denoted by GC = 〈�o; X; x0; xm ; f〉, where �o is the
set of observable events, X is the set of macro-states, x0
is the initial macro-state, xm is the marked macro-state,
and f is the partial transition function de4ned over
�∗
o × X → X . Starting from G, the set X of macro-states
of GC will be constituted of pairs in Q × R+. More
speci4cally, the admissible states that are considered are
states that can be reached by a trace of events of the
form �o�∗

uo.

One way of looking at this choice of projection observa-
tion mask is that an observable action can lead to a sequence
of unobservable events. If one initial observable event is
taken, it is possible that several other events take place as
a direct consequence without the possibility of observing
them.
In order to formalize this idea, we introduce the set of

triples D de4ned by

D= {(p; q; �)∈Q × Q × �o=∃s∈�∗
uo; �(�s; p) = q}:

A triple (p; q; �) belongs to set D if there is a trace be-
tween p and q whose 4rst event is � and whose follow-
ing events are all unobservable. Note that more than one
trace s could verify this condition. We now de4ne the
set of traces that verify the above conditions, for a given
triple (p; q; �):

∀(p; q; �)∈D; S(p; q; �) = {s∈�∗
uo=�(�s; p) = q}:

Knowing that ∀q∈Q; {s∈�o�∗
uo=�(s; q)!}¡∞ (as

pointed out in Section 2), we can easily prove that:

Proposition 1. ∀(p; q; �)∈D; |S(p; q; �)|¡∞.

We do not want to lose the cost of the unobservable
events that have been projected. To this eEect we introduce
the notion of locally computed cost associated with a triple
(p; q; �) of D. Formally, it is given by a function, denoted
by co, over D → R+, and de4ned by

∀(p; q; �)∈D; co(p; q; �) = max
s∈S(p;q;�)

ce(s): (1)

This way, we keep track of the worst unobservable trace that
could lead from p to q. Using the previous notations, GC is
an FSM de4ned as follows:

De�nition 2. Given an FSM G; the associated C-observer
GC is given by a tuple 〈�o; X; x0; xm ; f〉. It is an FSM whose
elements are de4ned as follows:

(1) A micro-state is a pair of (q; c)∈Q×R+. A macro-state
x is a set of micro-states; and X is the set of macro-states
consisting of all (reachable) macro-states.

(2) The 4nal macro-state is de4ned by xm =(qm ; 0) and the
initial macro-state x0 as:

x0 = {(q; cq); ∃s∈�∗
uo; �(s; q0) = q and

cq = max
t∈�∗

uo ;�(t;q0)=q
ce(t)}:

(3) ∀x∈X ; we de4ne for any (p; cp)∈ x and �∈�o; the
set of next micro-states Nx

� (p)
2 as

Nx
� (p) = {(q; co(p; q; �))=(p; q; �)∈D}:

2 Nx
� (p) basically constitutes the set of states of G that can be reached

via a trace ��∗
uo (from a micro-state of x), together with the associated

approximation of the unobservable trace cost.
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(4) The transition function f is recursively de4ned by:

∀x∈X∀�∈�o; f(�; x) =


(q; cq)∈

⋃
(p;cp)∈x

N x
� (p);

cq = max
s∈S(p;q;�)

ce(s)




(if two micro-states of the form (q; :) in f(�; x), then
we only consider the pair with the maximal cost)

(5) We only build the accessible part of GC (i.e., the states
x∈X that are reachable from x0 by f).

The way GC is built masks the non-deterministic nature
of the projected FSM. The initial macro-state x0 is computed
from the unobservable reach of (q0; 0). The 4nal macro-state
xm contains the single micro-state, namely, {(qm ; 0)}. Fi-
nally, f can be constructed recursively from the initial state.
Indeed, we can construct the set of states of GC using item
(2) and then items (3) and (4) of De4nition 2 recursively.
Note that due to Proposition 1, the recursion terminates. The
structure that we obtain is another deterministic FSM, whose
events are in �o. The states of GC are macro-states w.r.t.
G. What the above means is that the C-observer knows the
system model G but only observes the events in �o. It will
start with x0 as its estimate of the state of G. Upon observ-
ing �∈�o, the C-observer will update its state estimate to
f(�; x0), as this set represents all the states where G could
be after executing the event � followed by an unobservable
trace; and so on after each observation. Moreover, we have
computed and kept a local cost to avoid losing track of the
costs of the unobservable events that have disappeared from
the structure.
There exist standard algorithms for building observers,

without cost memorization (see, e.g., Hopcroft & Ullman,
1979). Such algorithms are in general exponential in the
number of states of the initial system. In our case, the cost
memorization required in C-observers can be done on-the-Oy
when building GC without changing the complexity.
We now give a few lemmas and properties that hold for

GC, in order to use them in subsequent results.

Lemma 3. Let x∈X \ {xm} be a state of GC; and let
(q; cq)∈ x be a micro-state of x. We can state that

(1) either ∃�∈�o; ∃q′ ∈Q; �(�; q) = q′ and; in this case;
∃x′ ∈X ; s.t. f(�; x) = x′; and (q′; :)∈ x′

(2) or ∃�∈�uo and ∃q′ ∈Q s.t. �(�; q) = q′ and; in this
case; ∃(q′; :)∈ x.

Moreover, ∀(q; cq)∈ x; ∃s∈�∗
uo�o; �(s; q)!.

What the above lemma states is that whatever the state x
that can be reached during the execution of the plant, there
eventually exists a way out of this state (either directly via
an observable event or via an unobservable trajectory which

reaches a micro-state of x having the previous property).
Next, we state that the C-observer realized from G inherits
properties of G.

Proposition 4. GC is non-blocking.

3.2. Extended notion of controllability

In this section, we formalize the method used (by a su-
pervisor) to generate a submachine from a C-observer.
Submachines of a C-observer: The machine GC that we

obtain is an FSM that simply reOects what an observer sees
in system G. We wish to apply some control to the original
system in order to optimize a certain performance criterion.
In other words, we wish to reduce the system GC, and there-
fore G, to a particular behavior. This leads us to de4ne the
notion of a submachine of GC. In fact, even if the domains
in which G and GC are de4ned are diEerent, the notion of
submachine is the same as the one given in Section 2 (i.e.,
a submachine of GC is any structure that has its states in
those of GC, the same initial state and 4nal state, and its
events and transitions in those of GC). Moreover, we are
only interested in complete behaviors, i.e., we wish to ob-
tain a controlled system that reaches the state xm in GC and
therefore the state qm in G. Hence, we wish to consider the
submachines of GC that have this property. This leads us to
the notion of G-live submachines.

De�nition 5. Let GC = 〈�o; X; x0; xm ; f〉 be the C-observer
associated with G = 〈�;Q; q0; qm ; �〉. A submachine H =
〈�o; XH ; x0;H ; xm ; fH 〉 of GC is said to be G-live if the fol-
lowing condition holds:

∀xH ∈XH \ {xm}; ∀(q; cq)∈ xH ; ∃(q′; cq′)∈ xH s:t:
{[∃s∈�∗

uo; �(s; q) = q′] ∧ [∃�∈fH (xH ); �(�; q′)!]}:

A submachine H of GC is G-live whenever any
micro-state of xH has a transition that is either an observ-
able transition for the initial FSM G, or an unobservable
transition that leads to another micro-state of xH from which
there is a possibility of exiting the macro-state (except for
the marked state). Quite naturally, using Lemma 3, we can
state that GC is G-live (Marchand et al., 2000).
Controllability in this framework: The structure on which

control will be applied is FSM GC. We 4rst have to adapt
the classical de4nition of controllability introduced by Ra-
madge and Wonham (1989). Indeed, even if the control
policy remains the same (we do not want to disable uncon-
trollable events), we have to take care of the fact that, by
removing controllable transitions, the obtained submachine
of G inherits some properties of the initial FSM GC.

De�nition 6. Let GC = 〈�o; X; x0; xm ; f〉 be the C-observer
associated withG=〈�;Q; q0; qm ; �〉: H=〈�o; XH ; x0;H ; xm ; fH〉
is said to be a controllable submachine ofGC if the following
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conditions hold:

(1) ∀xH ∈XH that can be reached via a trace of L(H);
∀e∈�uc ∩ �o; f(e; xH )!⇒ fH (e; xH )!;

(2) H is G-live.

Condition (1) imposes that any transition that needs to
be disabled in GC to generate H needs to be controllable.
Condition (2) imposes that no submachine of a C-observer
presents any deadlocks or livelocks. This condition imposes
that any micro-state of a state xH must have an active outgo-
ing trace (in the original FSM from which GC was derived)
that is either unobservable (leading to another micro-state
of xH and eventually leading to a state from which there
is an observable outgoing event) or observable (leading to
another macro-state).
The supervisor: Now that we have the de4nition of a

controllable submachine of a C-observer, it is interesting to
determine how such a submachine can be obtained via a
supervisor acting upon GC. Control cannot be blindly per-
formed. Disabling a controllable event that was admissible
in a state x of GC can induce a deadlock in the initial FSM
G, even if there seems to be a transition out of the state.
Hence, we introduce the notion of admissible control actions
(ACA).

De�nition 7. Let GC be the C-observer associated with G.
We de4ne the set of ACA at state x∈X as a function:

�x = {� ⊆ �c; ∀(q; cq)∈ x; ∃(q′; cq′)∈ x s:t:
{[∃s∈�∗

uo; �(s; q) = q′] ∧ [∃e∈f(x) \ �; �(e; q′)!]}:
More precisely, �x gives, for a state x of GC all the possi-

ble sets of controllable events that can be disabled without
risk of deadlock. In other words, given a state x of GC and
given a � in �x, if � belongs to �, it means that � can be
disabled because there actually exists at least one trajectory
s∈�∗

uo that leads the system in another micro-state of x
′ for

which there exists an observable event �′ that makes the
system leave the macro-state x and eventually reach a state
x′ = f(x; �′) of GC. Using De4nition 7, a supervisor of GC
is de4ned by:

De�nition 8. Let GC be the C-observer associated with G
and � = (�x)x∈X be the set of admissible control actions;
then a supervisor S is a function from X into 2�c such that
S(x) = �∈�x.

Hence, a supervisor of GC is obtained by choosing a par-
ticular � in a state x. By de4nition, the control action will
always act on events in �c, which ensures that S never dis-
ables an uncontrollable event. Conceptually, the supervisor
controlling the plant G is placed in feedback with G and
GC. Only the observable events can be seen by S. Therefore
GC plays the role of an observer that will somehow rebuild
a part of the state in which the system has evolved. At the
level of G, if GC evolves into x, then the eEect of S will

be to disable in G all the events �∈ S(x) that are admissi-
ble in the states q∈Q, such that (q; :)∈ x (without creating
deadlock in the controlled system). Let us now remark that
De4nition 8 is consistent with the de4nition of a control-
lable submachine of the C-observer GC. This is summarized
by the following proposition:

Proposition 9. H = 〈�o; XH ; x0;H ; xm;H ; fH 〉 ⊆ GC is a con-
trollable submachine of GC if and only if there exists a
supervisor S; such that ∀xH ∈XH ; fH (xH )=f(xH )\S(xH ).

Let us now de4ne the behavior of the controlled system:

De�nition 10. Given a supervisor S of GC and H ⊆ G the
associated controllable submachine ofGC; then the language
generated by G under the control of S is given byL(S=G)=
P−1
o [L(H)] ∩ L(G); while the marked language is given
by Lm(S=G) =L(S=G) ∩ Lm(G); where Po (resp. P−1

o )
corresponds to the natural projection over the observable
events (resp. the inverse projection of Po over the alphabet).

With this de4nition, we can state the following property,
making the link between G and S=G:

Proposition 11. With the preceding notations; K=L(S=G)
is controllable with respect to L(G) and �c and ob-
servable 3 with respect to L(G); �o, and Po. Moreover,
Lm(S=G) is Lm(G)-closed (i.e. Lm(S=G) = Lm(G) ∩
Lm(S=G)).

4. Optimal supervisory control problem

The aim of optimal control is to study the behavioral prop-
erties of a system, to take advantage of a particular structure,
and to generate a controller which constrains the system to
a desired behavior according to quantitative and qualitative
aspects (Kumar & Garg, 1995; Passino & Antsaklis, 1989;
Sengupta & Lafortune, 1998). This is performed by the ad-
dition of quantitative measures in the form of occurrence
and control cost functions, to capture the fact that some
legal behaviors are better than others.

4.1. Transformation of GC

We need to transform the C-observer, in order to exactly
4t within the framework developed by Sengupta and Lafor-
tune (1998). Indeed, unlike in the case of total observability
where costs are de4ned on events only, we have incorpo-
rated cost information in the macro-states ofGC. These costs
were attached to the states in order to keep track of the un-
observable cost of the trajectory between two macro-states
(see Section 3.1). Basically, the transformation we will per-

3 See the formal de4nition in Cassandras and Lafortune (1999), Section
3.7 or in Passino and Antsaklis (1989).
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form onGC, consists in “shifting” the cost of the macro-state
to the events that can be executed in this macro-state. How-
ever, we do not blindly take the worst cost of the micro-states
contained in the macro-state. For a given x, and a given
� admissible in x, we consider the worst cost of the pairs
(q; cq)∈ x such that � belongs to the active event set of q
in G. The transformation is performed as follows. Let x∈X
and let f(x) be the set of events that GC can execute in x.
For each �∈f(x), we rename � as �x and we attach to this
new event the cost c(�x):

c(�x) = max
(q;cq)∈x;�(�;q)!

{cq}+ ce(�): (2)

The controllability status of the event as well as the control
cost of the events do not change (namely, we have cc(�x)=
cc(�)). Call �′

o the new set of event. The transition function
f remains the same (i.e., f(x; �x) is de4ned and equal to x′

whenever x′ = f(x; �)).
The new C-observer G′

C we obtain is still an FSM. It
is de4ned by 〈�′; X; x0; xm ; f〉. Compared to GC, the global
structure of G′

C does not change. The only diEerence is that
we changed the original set of events of GC in such a way
that costs are now de4ned on events only, as carried out
by Sengupta and Lafortune (1998). From now on, G′

C is
a deterministic and trim FSM. To each event is attached
two values, which respectively correspond to its event and
control costs. The only diEerence with Sengupta and Lafor-
tune (1998) lies in the notion of controllability that, in our
framework, takes into account the notion of liveness of the
underlying system G. However, this does not aEect the use
of the theory of Sengupta and Lafortune (1998) to compute
the optimal supervisor of GC, and therefore the optimal su-
pervisor of G. Indeed, as in our case, the theory is based
on the notion of acceptable control actions that have to be
computed at 4rst. In Sengupta and Lafortune (1998), a con-
trol action in a state x is admissible whenever it does not
disable uncontrollable events and it does not produce local
deadlock (i.e., no output event.)

Remark 12. Note that givenGC; the way we are shifting the
costs of the unobservable trajectories in order to obtain G′

C
constitutes the best approximation that we can do without
memory. A better one could be obtained by unfolding the
C-observer GC in order to take into account the history of
the plant (e.g.; the last n observable events that occurred in
the system). However; even if the approximation would be
better (at each step; the number of admissible pairs (q; cq)
in a macro-state would have been lower leading to a possi-
bly lower unobservable cost); the counterpart would be the
complexity of G′

C.

4.2. Trajectory costs of a submachine of G′
C

In order to be able to discuss optimality, we now explain
how to compute the cost of a trajectory of G′

C.

Control cost function over the states: In order to model
this particular aspect, let us de4ne the control cost of an event
according to a state. We 4rst introduce �d(x; H)=fG′

C
(x) \

fH (x) as the set of disabled events at state x for the system
to remain in submachine H of G′

C. Whereas in Sengupta and
Lafortune (1998) the control cost function was de4ned on
an event, in the case of partial observation, it is de4ned on
a state as follows: considering a submachine H of G′

C, we
have

Cc(x; H) =




∞ if �d(H; x) �∈ �x;∑
�′∈�d(H;x)

cc(�′) otherwise: (3)

The control cost of a state x is equal to ∞ whenever there
does not exist a particular control policy �∈�x that restricts
the behavior of G′

C to H (i.e. when an uncontrollable event
has been removed or when a removal of a controllable event
induces a deadlock).
The global cost of a submachine of G′

C: We are now
ready to de4ne the cost of a trajectory s of a submachine H
and the objective cost function of H ⊆ G′

C.

De�nition 13. Let H = 〈�′
o; XH ; x0;H ; xm;H ; fH 〉 be a sub-

machine of G′
C derived from G andLm(H) be the marked

language generated by H; then

(1) for all y in H and trajectory s=�′1 : : : �
′
n; ∀i; 16 i6 n;

�′i ∈�′
o such that fH (y; s) exists; the cost of s is

given by:

CO(y;H; s) =
n∑
i=1

c(�′i)

+
n∑
i=0

Cc(fH (y; ‖s‖i); H); (4)

where ‖s‖i denotes the pre4x of s of length i;
(2) the objective cost function denoted by Csup(H) is given

by:

Csup(H) = sup
s∈Lm(H)

(CO(x0; H; s)): (5)

The cost of a trajectory is the sum of the occurrence costs
of the events composing it, to which is added the cost of
controlling events on the way to remain in machine H . If
an uncontrollable event is disabled, the cost of a trajectory
becomes in4nite because of the second term of (4). Finally,
Csup(H) represents the worst-case behavior that is possi-
ble in submachine H . Note that the purpose of “contract-
ing a submachine” is to remove trajectories with high event
costs. However, this process is accompanied by rising con-
trol costs, hence the tradeoE in the optimization problem we
now de4ne.
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4.3. The optimization problem

We are only interested in machines that achieve a task (we
only consider plants having a behavior which terminates at a
marked state). We want to extract the submachines that have
a minimal cost function among all the trim and controllable
submachines of G′

C.

De�nition 14. ∀x∈X; Ho ∈M(G′
C; x) is an optimal subma-

chine of FSM G′
C if Csup(Ho) = min

H∈M(G′
C ;x)

Csup(H)¡∞.

The cost Csup(Ho) of Ho represents the minimum
worst-case cost incurred to reach xm from x0 when the be-
havior of G′

C is restricted to a submachine of it. As some
events in some states are not controllable (which induces an
in4nite cost), optimality is met when there is no other con-
trol policy with lower worst-case cost that allows to reach
the marked state xm with certainty. At a lower level (in the
world of G), the control policy induced by submachine Ho
corresponds to the one with lowest worst-case cost, know-
ing that G could evolve through unobservable trajectories
with the worst possible cost. However the way we compute
the cost of trajectories by taking into account an upper ap-
proximation of the unobservable trajectories (see Section
4.1 and De4nition 13) reduces the uncertainty; we do not
consider all the unobservable trajectories but only the ones
that are admissible knowing that a particular event is exe-
cuted. The following theorem gives necessary and suScient
conditions for the existence of optimal submachines:

Theorem 15. An optimal submachine of G′
C exists if and

only if there exists a submachine H of G′
C such that H is

trim; controllable; with no cycles.

Intuitively, this theorem states that an optimal solution
exists when there are acyclic controllable submachines of
G′
C. The controllability assumption ensures that the cycles
can be broken using controllable events alone. The optimal
submachine that includes all the other optimal submachines
will be denoted by H↑

o (see Sengupta & Lafortune, 1998).
Usually, the solution to the optimal supervisory control

problem is not unique.Moreover, all the optimal solutions do
not structurally have optimal subsolutions, which means that
they do not satisfy the principle of dynamic programming
(see e.g., Bellman, 1957). In fact, in the previous paragraph,
optimality is obtained only regarding the paths between the
initial and the 4nal state, and never the post4x paths between
any state of the corresponding FSM and the 4nal state. In
this section, we will show that whenever an optimal solution
exists, a solution having optimal substructure also exists.
We call this latter type a DP-optimal solution (DP stands
for dynamical programming) and de4ne it as follows:

De�nition 16. A submachine HDO of G′
C is DP-optimal if

it is optimal and ∀x′ ∈XHDO ; M (HDO; x′) is an optimal sub-
machine inM(G′

C; x
′).

DP-optimality is then obtained when any terminal path
from any state of a submachine to the goal state xm is opti-
mal in the previous sense. If a particular DP-optimal FSM
includes all other DP-optimal FSMs as submachines of it-
self, then we call it the maximal DP-optimal submachine.
The maximal DP-optimal submachine of a machine G′

C at
q w.r.t. xm will be denoted by M o

D(G
′
C; x). The existence of

a DP-optimal submachine of G′
C is given by the following

theorem.

Theorem 17 (Sengupta & Lafortune, 1998). If an opti-
mal submachine of G′

C exists; then the unique maximal
DP-optimal submachine M o

D(G
′
C; x0) of G w.r.t. xm also

exists.

The DP-optimal algorithm: Consider an FSM G =
〈�;Q; q0; qm ; �〉 and its corresponding transformed C-
observer G′

C = 〈�′
o; X; x0; xm ; f〉. Then there exists an algo-

rithm (Sengupta & Lafortune, 1998), named DP-opt, with
a worst-case complexity O(|X |2|�o|log(|�o|) + |X |3|�o|)
(Theorem 6.10 of Sengupta and Lafortune (1998)), 4 that
constructs the desired maximal DP-optimal submachine
of the FSM G′

C w.r.t. x0 and xm. We refer the reader to
Sengupta and Lafortune (1998) for a complete description
of DP-opt. Since the number of states of GC is in the
worst-case exponential in the number of states of G, the
real complexity of the DP-opt algorithm that gives access
to an optimal supervisor under partial observation is indeed
exponential in the number of states of the initial system
(but polynomial if we only consider the C-observer).

4.4. The supervisor

The supervisor computation consists of diEerent steps.
Once the C-observer GC derived from the initial FSM G
is computed, we 4rst have to transform it into G′

C by at-
taching the cost induced by the unobservable trajectories to
the events in order to 4t within the framework of Sengupta
and Lafortune (1998) (see Section 4.1). From this machine,
using the algorithm of Sengupta and Lafortune (1998), we
compute (if it exists) the DP-optimal solution M o

D(G
′
C; x0)

of G′
C. At this point, we disable in GC the corresponding sets

of events in �′
o and for all x∈X , we retrieve �d(GC; x), the

set of disabled events at state x for the system to remain in
submachine M o

D(GC; x0) of GC. Call fc the new transition
function, given by:

fc :X × �o → X

(x; �) �→
{
f(x; �) if it is de4ned and if � �∈ �d(GC; x);

unde4ned otherwise:

4 Note that we have |�o| and not |�′
o| in this expression, because we

only have to account for the number of admissible events in a state x,
which is bounded by |�o|.
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Now, a supervisor S of GC can be derived from M o
D(GC; x0)

by attaching to this FSM an output function O, that for a
given state x delivers the set of disabled events �d(GC; x).
The supervisor S = 〈�o; X; xo; xm ; fc; O〉 will in fact be
used for two purposes. It 4rst plays the role of an observer
that is able to partly rebuild the state in which the system
has evolved. Based on this information, S sends back to
the system the set of events that have to be disabled in
order to force the closed-loop system to eventually reach the
marked state qm by minimizing the global cost of the
trajectory.
Optimality of S: Proposition 11 tells us that the

closed-loop language L(S=G) lies in the class of control-
lable, and observable sublanguage of L(G). Note also
that Assumption 2 implies that L(S=G) is also normal
(c.f. Cassandras & Lafortune, 1999). We cannot however
compare L(S=G) with the optimal language L(Sfull obs=G)
that would have been computed by the DP-opt algorithm
under the assumption that �o = �. Such comparisons are
meaningless when �o �=�, since a partial observation su-
pervisor can only react upon the occurrence of observable
events. To characterize the optimality properties of S we
must look at observer-based supervisors and projected lan-
guages. The results by Sengupta and Lafortune (1998) tells
us that M o

D(G
′
C; x0) is the maximal DP-optimal of G

′
C, and

consequently M o
D(GC; x0) de4ned above is the maximal

DP-optimal submachine of GC. Moreover, Po[L(S=G)]
is the maximal optimal sublanguage of Po[L(G)] in the
context of the language formulation of the optimal control
problem (see Sengupta & Lafortune (1998) for further de-
tails). By formulating the optimization problem over the
submachines of GC, we are eEectively requiring that the
corresponding supervisors (that implement the solutions)
be “memoryless”, i.e., that they be based on the states of
the observer of G. Therefore, S is an optimal supervisor in
the class of observer-based supervisors. In other words, any
other supervisor S ′ as de4ned by (5) would correspond to
a submachine H of GC and therefore it would necessarily
induce a worst case cost higher or equal to that induced
by M o

D(GC; x0). It remains an open question to determine
if by allowing supervisors with memory, i.e., based on
a 4ner state space than that of GC. c.f. Remark 3), we
could obtain controllable and observable sublanguages of
L(G) with a lower worst-case cost than that of the above
L(S=G).

5. Conclusion

In this paper, we have introduced a new type of optimal
control for discrete event systems. Previous works in op-
timal control dealt with numerical performances in super-
visory control theory when the system to be controlled is
under full observation. In contrast, our aim was to account
for partial observability, while controlling the system. The

system to be controlled is represented by an FSM G with
a unique marked state representing the state of interest (the
achievement of a task for example) and some unobservable
events. The 4rst step is the derivation of an observer for the
partially unobservable FSM, called a C-observer GC, which
allows us to remember an approximation of the unobserv-
able trajectory costs. We then presented a new de4nition of
controllability derived from the classical one introduced by
Ramadge and Wonham (1989), that allows us to avoid the
unobservable blocking of G. We then de4ned the perfor-
mance measure on this observer rather than on the FSM it-
self. In the second step, we 4rst transformed GC into G′

C by
shifting the cost of each macro-state to the events that can
be executed in this macro-state. We then used the algorithm
presented in Sengupta and Lafortune (1998) to synthesize
an optimal submachine of the C-observer, which led to the
desired supervisor for the system. The behavior of the ob-
tained controlled system is optimal with respect to �o, in the
sense that GC carries on the best approximation of the unob-
servable trajectories between two observable events (with-
out observing the whole system, it is not possible to have
more information about these trajectories). Moreover it is
optimal for GC and therefore for G as explained in Section
4.4. This optimality notion is due to Sengupta and Lafortune
(1998).
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