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1 Introduction

Given a finite set of matrices A := {Ap : p ∈ P}, consider the linear time-
varying system

ẋ = Aσx, (1)

where σ denotes a piecewise constant “switching signal” taking values on
P. The following question has often been posed: “Under what conditions is
the system (1) uniformly asymptotically stable for every piecewise constant
switching signal σ?” [1–11]. In [5] it is shown that uniform asymptotic stability
of (1) for every switching signal σ is equivalent to the existence of an induced
norm ‖ · ‖∗ and a positive constant α such that

‖eAt‖∗ ≤ e−αt, ∀t ≥ 0, ∀A ∈ A.

In [9] it is shown that uniform asymptotic stability of (1) for every switching
signal σ is also equivalent to the existence of a common Lyapunov function
(not necessarily quadratic) for the family of linear time-invariant systems {ż =
Apz : p ∈ P}. However, the proofs in [5,9] are not constructive and not
amenable to test the stability of general switched system. In [2,7,10] are given
simple algebraic conditions on the elements of A, which are sufficient for the
existence of a common quadratic Lyapunov function for the family of linear
time-invariant systems {ż = Apz : p ∈ P}, and therefore for the uniform
asymptotic stability of (1) for every switching signal σ. However, it is known
that none of these conditions are necessary for the stability of the switched
system. For more on this topic see [3,4,11] and references therein.

A simple and general test to check the uniform asymptotic stability of (1), for
every switching signal σ, has eluded researchers for more than a decade. How-
ever, when systems like (1) arise in control problems, in general, the matrices
in A have specific structures. In fact, these matrices are often obtained from
the feedback connection of a fixed process with one of several controllers, and
the switching signal σ determines which controller is in the feedback loop at
each instant of time. One can then pose the question if, by appropriate choice
of the realizations for the controllers, it is possible to make the system (1)
uniformly asymptotically stable for every switching signal σ. This is precisely
the question addressed in this paper. The motivation for this problem is the
control of complex systems where conflicting requirements make a single lin-
ear time-invariant controller unsuitable. The reader is referred to [12] for a
detailed discussion on the tradeoffs that arise when a single linear controller is
used to meet multiple performance specifications (e.g., involving bandwidth,
time-response, robustness with respect to modeling errors, etc.). Controller
switching to improve the tradeoff in design objectives has been proposed in a
few papers. In [13] a logic was devised to orchestrate the switching between sev-
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eral controllers, some with high-performance/low-robustness and others with
low-performance/high-robustness. In [14], switching among PID controllers
was used to achieve fast step-response without overshoot. In Section 5, we
illustrate the use of switching in the control of the roll angle of an aircraft.
We design two controllers: the first is slow but has good noise rejection prop-
erties, whereas the second is fast but very sensitive to measurement noise.
By switching between the controllers, we are able to achieve good noise rejec-
tion when the noise is large and yet obtain a fast response when the noise is
small (cf. Figure 6). The method used to implement the switching controller
guarantees stability regardless of the algorithm used to command the switching
between the controllers. This means that one can use simpleminded algorithms
to switch between the two controllers, without fear of causing instability.

In this paper we assume that the process P to be controlled is modeled by a
linear, time-invariant, stabilizable and detectable system of the form

ẋP = AxP + Bu, y = CxP. (2)

We take as given a family of controller transfer matrices K := {Kp : p ∈
P} with the property that, for each p ∈ P, the feedback interconnection of
(2) with any stabilizable and detectable realization of Kp is asymptotically
stable. Let then ẋp = Apxp denote the system that results from the pth such
interconnection. The main result of this paper is to prove that if the controller
realizations are chosen properly, then for any piecewise constant signal σ :
[0,∞) → P, the switched system

ẋ = Aσx, (3)

will be uniformly exponentially stable. That the stability of (3) should be
controller realization dependent is not surprising, but the fact that there is
actually a way to realize the controllers that is guaranteed to achieve stability
for every σ perhaps is. The approach we use to establish this result relies on
the fact that all the controller transfer matrices can be expressed using the
Youla parameterization with a distinct value of the Youla parameter for each
controller [15]. Switching between controllers can thus be reduced to switching
between the corresponding values of the parameter. The same idea has been
independently discovered by A. Packard [16] but was not published.

The Youla parameters used to represent the controller transfer matrices in K
are stable transfer matrices. An important step in the overall controller real-
ization procedure is to select realizations for the individual Youla parameters
so that switching between them results in a stable time-varying system S(σ).
There are two ways to accomplish this: The first is to develop realizations for
the Youla parameters for which there is a common Lyapunov function. In the
second, the state of S(σ) is reset at switching times resulting in a what is
often called a “system with impulse effects.” We show that both approaches
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are possible. The idea of reseting part of the controller state dates as far back
as the 50s with the Clegg Integrator [17] and later with Horowitz and Rosen-
baum’s first-order reset elements (FORE) [18]. The reader is referred to [19]
for more recent references on this form of “reset control,” whose goal is to
improve transient performance.

The problem addressed in this paper is precisely formulated in Section 2.
In Section 3 we derive some basic results to study the stability of systems
with impulse effects. These results are used in Section 4 to construct the
desired realizations for the controller transfer functions: in 4.1 we motivate the
construction by considering the simpler case of a single-input/single-output
stable process and in 4.2 we address the general case. A simple illustrative
example is presented in Section 5. Section 6 contains some concluding remarks
and directions for future research. A preliminary version of the results in this
paper was presented at the 12th Int. Symposium on the Mathematical Theory
of Networks and Syst., St. Louis, MO, June 1996. These were subsequently
improved in the PhD thesis [20].

2 Stable controller switching

The feedback configuration used in this paper is shown in Figure 1. In this

controller
{F,G,H, J}

process
{A,B,C} yueT uC

d n

r

+
+ ++

+

−

Fig. 1. Feedback configuration

figure u denotes the control input, y the process output, r a bounded refer-
ence signal, d an unknown but bounded input disturbance, and n unknown
but bounded measurement noise. The process will be denoted by P and is as-
sumed to be a multivariable linear time-invariant system with strictly proper
transfer matrix HP. We say that a given controller transfer matrix K sta-
bilizes HP if, for any stabilizable and detectable realizations {A, B, C} and
{F, G, H, J} of HP and K, respectively, the feedback connection shown in
Figure 1 is asymptotically stable, i.e., all the poles of the matrix







A − BJC BH

−GC F





 (4)
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have negative real part. We recall that a quadruple of matrices {A, B, C, D}
is called a realization for a transfer matrix H if H(s) = C(sI −A)−1B + D for
every s ∈ C. When the matrix D is equal to zero one often writes simply that
{A, B, C} is a realization for H.

Consider now a finite set of controller transfer matrices K = {Kp : p ∈ P}
each stabilizing the process transfer matrix HP. The general problem under
consideration is to build a “multi-controller” that effectively switches among
the transfer functions in K. In this context, a multi-controller is a dynamical
system C(σ) with two inputs σ, eT and one output uC. The input σ : [0,∞) →
P is piecewise constant and is called a switching signal. While σ remains
constant and equal to some p ∈ P, C(σ) is required to behave as a linear
time-invariant system with transfer function Kp from its input eT to its output
uC. The multi-controller design problem is nontrivial because we also require
that all the closed-loop signals remain bounded for every possible switching
signal in the set S of all piecewise constant switching signals. The times at
which a signal σ ∈ S is discontinuous are called the switching times of σ. For
simplicity of notation we take all signals in S to be continuous from above at
switching times, i.e., if t1 and t2 are two consecutive switching times of σ ∈ S
then σ is constant on [t1, t2).

C(σ) P
yueT uC

d n

r

σ

+
+ ++

+

−

Fig. 2. Feedback connection between P and C(σ).

To build a multi-controller we start by selecting nC-dimensional stabilizable
and detectable realizations {Fp, Gp, Hp, Jp} for each Kp in K. Over any open
interval on which a switching signal σ ∈ S is constant, the multi-controller
C(σ) is then defined by the following dynamical system

ẋC = FσxC + GσeT , uC = HσxC + JσeT, (5)

which possesses the desired transfer function from eT to uC. By itself, (5)
does not determine what happens to xC at the switching times of σ. A rule
must therefore be specified to determine the value of xC immediately after a
switching time. Such a rule takes the general form 4

xC(t) = r
(

xC(t−); σ(t), σ(t−)
)

,

4 Here and in the sequel, given a signal z we denote by z(t−) the limit of z(τ) as
τ → t from below, i.e., z(t−) := limτ↑t z(τ). Without loss of generality we take xC

to be continuous from above at every point, i.e., xC(t) = limτ↓t xC(τ).
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where r : RnC ×P ×P → RnC is called a reset map. In this paper we restrict
reset maps to be linear functions of xC, i.e.,

xC(t) = RC

(

σ(t), σ(t−)
)

xC(t−), (6)

where the RC(p, q) ∈ RnC×nC, p, q ∈ P, are called reset matrices. Systems like
the one defined by (5)–(6) are often called systems with impulse effects (c.f.,
[21,22] and references therein).

Consider now the feedback connection between C(σ) and P in Figure 2 and
let {A, B, C} denote a nP-dimensional stabilizable and detectable realization
for the process transfer function HP. Over any open interval on which σ ∈ S
is constant, the feedback connection in Figure 2 corresponds to the dynamical
system

ẋ = Aσx + Bσw y = Cx, (7)

with x :=
[

x′
P

x′
C

]′

, w :=
[

d′ r′ − n′

]′

, C :=
[

C 0

]

, and

Ap :=







A − B Jp C B Hp

−Gp C Fp






, Bp :=







B B Jp

0 Gp






, p ∈ P; (8)

whereas, at a switching time t,

x(t) = R
(

σ(t), σ(t−)
)

x(t−), (9)

with

R(p, q) :=







InP
0

0 RC(p, q)





 , p, q ∈ P. (10)

Since each transfer matrix in K stabilizes HP, (7) is asymptotically stable
for any constant σ(t) = p ∈ P, t ≥ 0. But, in general, this is not enough to
guarantee that the state of (7)–(9) remains bounded for every σ ∈ S. Examples
of unstable behavior resulting from the switching amount stable systems are
well known and can be found, e.g., in [23] or the recent survey [11].

The problem under consideration can then be summarized as follows: Given
the family K of controller transfer functions, compute reset matrices and re-
alizations for the transfer functions in K so that the state x of the closed-loop
switched system (7)–(9) remains bounded for every switching signal σ ∈ S
and every bounded piecewise continuous exogenous inputs r, n, and d. We
shall also require x to decay to zero, when r = d = n = 0.
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In this paper we assume that the set of controllers is finite just for simplic-
ity. The finiteness assumption could be replaced by appropriate uniformity
assumptions. For example, one could require compactness of P and continu-
ity of the coefficients of the controller transfer matrices with respect to the
parameter p.

3 Stability of systems with impulse effects

Consider the n-dimensional homogeneous linear system with impulse effects
defined by

ż = Aσz, (11)

on intervals where the switching signal σ ∈ S remains constant, and by

z(t) = R
(

σ(t), σ(t−)
)

z(t−) (12)

at each switching time t of σ. The solution to (11)–(12) can be written as

z(t) = Φ(t, t0; σ)z(t0), t, t0 ∈ R, (13)

where Φ(t, t0; σ) denotes the state-transition matrix of (11)–(12) and is defined
by

Φ(t, t0; σ) := e(t−tm)Aσ(tm)

m−1
∏

k=0

R
(

σ(tk+1), σ(tk)
)

e(tk+1−tk)Aσ(tk).

Here {t1, t2, ..., tm} denote the switching times of σ in the interval (t0, t]. The
system (11)–(12) is called exponentially stable, uniformly over S, if there exist
positive constants c, λ such that 5 , for every σ ∈ S,

‖Φ(t, t0; σ)‖ ≤ c e−λ(t−t0), ∀t, t0 ≥ 0. (14)

State-transition matrices of systems with impulse effects share many of the
properties of the usual state transition matrices for linear systems 6 . In par-
ticular, for any σ ∈ S and τ ∈ R, (i) Φ(τ, τ ; σ) = In, (ii)

d

dt
Φ(t, τ ; σ) = Aσ(t)Φ(t, τ ; σ),

5 Given a vector v and a matrix A we denote by ‖v‖ and ‖A‖ the Euclidean norm
of v and the largest singular value of A, respectively.
6 However, one should keep in mind that Φ does not share all properties of the
usual state transition matrices, e.g., it may become singular.
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for t in the interior of an interval on which σ ∈ S is constant, and (iii)

Φ(t, τ ; σ) = R
(

σ(t), σ(t−)
)

Φ(t−, τ ; σ),

for each switching time t. From the previous properties it is also straight-
forward to conclude that the variation of constants formula holds for non-
homogeneous systems with impulse effects. In fact, the solution to the system
defined by

ẋ = Aσx + Bσw (15)

on intervals where σ ∈ S remains constant and by

x(t) = R
(

σ(t), σ(t−)
)

x(t−) (16)

at each switching time t of σ, can be written as

x(t) = Φ(t, t0; σ)x(t0) +
∫ t

t0

Φ(t, τ ; σ)Bσ(τ)w(τ)dτ, t, t0 ∈ R. (17)

It is then straightforward to show that x will remain bounded for every σ ∈ S
and bounded piecewise continuous w, as long as (11)–(12) is exponentially
stable, uniformly over S.

Suppose now that there exist symmetric, positive definite matrices {Qp ∈
Rn×n : p ∈ P}, such that

QpAp + A′
pQp < 0, p ∈ P, (18)

and

R(p, q)′QpR(p, q) ≤ Qq, p, q ∈ P. (19)

Equation (18) guarantees that, on any interval where σ remains constant and
equal to p ∈ P, the positive definite Lyapunov-like function Vp(z) := z′Qpz,
decreases exponentially along solutions to (11). Indeed, on such an interval

d

dt
Vp(z(t)) = z(t)′(QpAp + A′

pQp)z(t) ≤ −2λVp(z(t)), (20)

for sufficiently small λ > 0. Moreover, because of (19), when σ switches from
q := σ(t−) to p := σ(t), we have

Vp(z(t)) := z(t)′Qpz(t) = z(t−)′R(p, q)′QpR(p, q)z(t−)

≤ z(t−)′Qqz(t−) =: Vq(z(t−)). (21)

From (20)–(21) we then conclude that

Vσ(t)(z(t)) ≤ e−2λ(t−t0)Vσ(t0)(z(t0)), t ≥ t0, (22)
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along solutions to (11)–(12). Note that Vσ(t)(z(t)) may be discontinuous at
switching times but its value will always decrease at these times because of
(21). Since Vσ(t)(z(t)) is quadratic and the Qp are positive definite, from (22)
we actually conclude that

‖z(t)‖ ≤ ce−λ(t−t0)‖z(t0)‖,

with c := maxp,q∈P

√

‖Qp‖‖Q−1
q ‖. This and (13) prove that (14) holds true for

every σ ∈ S and therefore (11)–(12) is exponentially stable, uniformly over
S. Similar analysis using multiple Lyapunov functions can be found, e.g., in
[22,23], in the context of hybrid systems. The following can then be stated:

Lemma 1 Assume that there exist symmetric matrices {Qp ∈ Rn×n : p ∈ P},
for which (18)–(19) hold. Then the homogeneous system (11)–(12) is expo-
nentially stable, uniformly over S. Moreover, for every switching signal σ ∈ S
and every bounded piecewise continuous signal w, the state x of the non-
homogeneous system (15)–(16) is bounded.

It is interesting to consider two special cases of the previous result. The first
corresponds to a complete state reset, i.e., R(p, q) = 0, for all p, q ∈ P. In
this case, (19) is trivially true and the only requirement for the stability of
the switched system is that each Ap be asymptotically stable. Note that this
is enough for the existence of the positive definite matrices {Qp : p ∈ P} for
which (18) holds.

Another important case is the absence of state reset, i.e., when all the R(p, q),
p, q ∈ P, are equal to the identity matrix. In this case, (19) actually requires
all the Qp to be the same because it demands both Qp ≤ Qq and Qq ≤ Qp,
for all p, q ∈ P. The inequalities (18)–(19) then demand the existence of
a common Lyapunov function for the family of linear time-invariant systems
{ż = Apz : p ∈ P}. This is a well known sufficient condition for the exponential
stability of the switched system (7). Later we will see that it is actually possible
to always choose realizations for the controller so that a common Lyapunov
function exists for the closed-loop systems. This avoids the need to reset the
state of the controllers.

In the remaining of this paper we address the question of computing reset
matrices and realizations for the transfer functions in K so that (18)–(19)
hold for the closed-loop matrices Ap in (8). Because of Lemma 1, this will
guarantee that, for every switching signal σ ∈ S and every bounded piecewise
continuous exogenous signals r, n, and d, the state x of (7)–(9) is bounded.
Moreover, when r = d = n = 0, x decays to zero exponentially fast with a
rate of decay that is independent of σ. Before proceeding two remarks should
be made about Lemma 1:

Remark 2 The exponential stability of (11)–(12) guarantees that the sys-
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tem (7)–(9) remains stable under small perturbations to the dynamics of the
system. A detailed discussion of this issue for systems without impulsive ef-
fects can be found, e.g., in [24, Section 4.5]. It is straightforward to extend
these results to the systems considered here.

Remark 3 In case the Lyapunov inequalities (18) were replaced by the Riccati
inequalities

QpAp + A′
pQp + C ′

pCp + γ−2QpBpB
′
pQp ≤ 0, p ∈ P,

then we would actually by able to conclude that the L2 induced norm from w

to

y := Cσx

is no larger than γ, along trajectories of the switched system (11)–(12). This
could be proved by showing that

Vσ(t)(z(t)) := z(t)′Qσ(t)z(t) +
∫ t

0
(‖y‖2 − γ2‖w‖2)dτ

is nonincreasing, and therefore that

∫ t

0
(‖y‖2 − γ2‖w‖2)dτ ≤ −z(t)′Qσ(t)z(t) ≤ 0,

for zero initial conditions. Analogous results could be derived to establish the
dissipativeness of (11)–(12), as well as more general Integral Quadratic Con-
strains [25] that can be expressed in terms of linear and bilinear matrix in-
equalities [3].

4 Realizations for controller transfer matrices

We now return to the problem formulated in Section 2. To motivate the ap-
proach we start by considering the case of a single-input/single-output asymp-
totically stable process.

4.1 Single-input/single-output stable process

Suppose we connect the process to a controller with transfer function Kp,
p ∈ P, as in Figure 1. The transfer function from r to uC is then given by

Sp :=
Kp

1 + KpHP

. (23)
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Sp

HP

e

eT
uC

++

Fig. 3. Block diagram corresponding to equation (25). The transfer function from
eT to uC is given by (24), which expresses Kp in terms of Sp (stable process case).

Since Kp stabilizes HP, Sp must be asymptotically stable. From (23) we also
conclude that

Kp =
Sp

1 − HPSp

, (24)

and therefore the transfer function Kp from eT to uC can be defined implicitly
by the following system of equations 7 (cf. Figure 3).

uC = Sp ◦ e, e := HP ◦ uC + eT. (25)

Since only Sp in (25) changes from controller to controller, this suggests a
mechanism for switching among the controller transfer functions in K:

(1) Pick stabilizable and detectable nS-dimensional realizations {Āp, B̄p, C̄p, D̄p}
for each Sp, p ∈ P, defined by (23).

(2) Define S(σ) to be the system with impulse effects defined by

ẋ = Āσx + B̄σe, uC = C̄σx + D̄σe,

on intervals where σ is constant and by

x(t) = R̄
(

σ(t), σ(t−)
)

x(t−),

at each switching time t of σ. For the time being we do not commit to a
particular choice for the reset matrices {R̄(p, q) : p, q ∈ P}.

(3) Inspired by the implicit definition of Kp given by (25) (and the corre-
sponding block diagram in Figure 3), we realize the switching controller
as in Figure 4. This corresponds to the multi-controller in (5)–(6) with

Fp :=







A + BD̄pC BC̄p

B̄pC Āp





 , Gp :=







BD̄p

B̄p





 ,

Hp :=
[

D̄pC C̄p

]

, Jp := D̄p,

7 Given a transfer matrix H : C → C
m×n and a piecewise constant signal u :

[0,∞) → R
n, H ◦ u denotes the signal defined by the convolution of the impulse

response of H with u.
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and

RC(p, q) :=







I 0

0 R̄(p, q)





 ,

where {A, B, C} is a stabilizable and detectable realization for HP.

S(σ)

P

e

eT

σ

uC
++

Fig. 4. Multicontroller C(σ) inspired by the implicit definition of Kp given by (25)
and the corresponding block diagram in Figure 3 (stable process case).

Suppose now that we connect this multi-controller to the process as in Figure 5.
Because the process is stable, no matter what uC turns out to be, we have

S(σ)

P

C(σ)

P yu

eT
uC

d

e

n

r

σ

+
++

+
+++

−

Fig. 5. Feedback connection between P and C(σ).

e = eT + HP ◦ uC + ǫ1, (26)

where ǫ1(t) is a signal that converges to zero exponentially fast and is due
to nonzero initial conditions in the “copy” of the process inside the multi-
controller. Also, for any uC,

eT = r − n − HP ◦ (uC + d) + ǫ2, (27)

where ǫ2(t) also converges to zero exponentially fast and is due to nonzero
initial conditions in the “real” process. From (26)–(27) we then conclude that

e = r − n− HP ◦ d + ǫ1 + ǫ2. (28)

This shows that e is independent of σ and will remain bounded, provided that
r, n, and d are bounded.
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Suppose now that we choose the reset matrices {R̄(p, q) : p, q ∈ P} so that
there exist symmetric, positive definite matrices {Q̄p ∈ RnS×nS : p ∈ P} for
which

Q̄pĀp + Ā′
pQ̄p < 0, R̄(p, q)′Q̄pR̄(p, q) ≤ Q̄q, p, q ∈ P. (29)

Then, because of Lemma 1, S(σ) is exponentially stable, uniformly over S and
its state x and output uC remain bounded for every σ ∈ S. Because of (27), eT

is then also bounded, as well as all other signals. Moreover, if r = d = n = 0
then e converges to zero exponentially fast, because of (28), and so does uC

and all the remaining signals.

It turns out that the overall closed-loop switched system (7)–(9), with the
multi-controller built as above, is exponentially stable, uniformly over S. This
means that the properties derived above (namely, the boundedness of its state
and convergence to zero in the absence of exogenous inputs) are robust with
respect to small perturbations to the dynamics of the system (cf. Remark 2).
In particular, these properties hold even if the “copy” of the process inside the
multi-controller does not match exactly the real process. The fact that (7)–(9)
is exponentially stable will be proved below for the general case.

Remark 4 The choice of reset maps for which (29) holds is always possible.
Either by enforcing complete reset, i.e., R̄(p, q) = 0, for all p, q ∈ P, or by
avoiding reset altogether through the choice of realizations for the {Sp : p ∈ P},
for which there is a common quadratic Lyapunov function. The latter is always
possible as seen in Lemma 7 in the Appendix.

4.2 General linear time-invariant process

The reader familiar with the Youla parameterization [15] probably recog-
nized (24) as the general form of any controller that stabilizes the stable
process HP. It is well known that this formula can be generalized to multiple-
input/multiple-output unstable linear time-invariant processes. We shall see
shortly that the general formula is still amenable to the construction of multi-
controllers adequate for stable switching.

Consider a multiple-input/multiple-output, possibly unstable, process trans-
fer function HP. To proceed we pick some controller transfer matrix K that
stabilizes HP. For example, one can take K to be one of the elements of K.
Because K stabilizes HP, it is known 8 that there exist matrices AE , BE, CE ,
DE , FE, and GE (with appropriate dimensions) such that AE is a stability

8 Cf. Lemma 8 in the Appendix, which is a reformulation of results that can be
found in [15,26,27].
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matrix, and {AE + DECE, BE, CE} and {AE − BEFE , DE − BEGE, FE , GE}
are stabilizable and detectable realizations of HP and K, respectively.

Suppose that, for each p ∈ P, we define

Sp :=
(

− YC + XCKp

)(

XP + YPKp

)−1
, (30)

where the four transfer matrices XC, YC, YP, and XP are defined by







XC −YC

YP XP





 :=







FE

CE





 (sI − AE)−1
[

BE −DE

]

+







I −GE

0 I





 . (31)

Using the fact that Kp stabilizes HP it is possible to establish that the poles
of Sp must have negative real part. A straightforward derivation of this, using
state-space methods, can be found in the appendix. This can also be proved
using transfer function methods (cf. Remark 10 in the Appendix).

Solving (30) for Kp, we obtain

Kp =
(

XC − SpYP

)−1(

YC + SpXP

)

. (32)

Therefore the transfer function Kp from eT to uC can be defined implicitly by
the following system of equations







ū

e





 =







XC − I −YC

YP XP





 ◦







uC

eT





 , v = Sp ◦ e, uC = v − ū. (33)

This is because we conclude from (33) that

uC = v − ū = Sp ◦
(

YP ◦ uC + XP ◦ eT) − (XC ◦ uC − uC − YC ◦ eT)

= −(XC − I − SpYP) ◦ uC + (YC + SpXP) ◦ eT,

and therefore

(XC − SpYP) ◦ uC = (YC + SpXP) ◦ eT.

The transfer function in (32) follows directly. Pick now a realization {Āp, B̄p, C̄p, D̄p}
for Sp, because of (31) the system of equations (33) can be realized as

ẋ = Āpx + B̄pe, v = C̄px + D̄pe, (34)

ẋE = AExE + BEuC − DEeT, e = CExE + eT, (35)

uC = −FExE + GEeT + v, (36)

which must then realize Kp. It is important to note that only (34) changes from
controller to controller. We shall use (33)—or more precisely, its state space
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version (34)–(36)—to guide us in constructing the multi-controller. Indeed,
(33) will replace the equation (25) used in Section 4.1 for the same effect. The
following steps are required:

(1) Pick stabilizable and detectable nS-dimensional realizations {Āp, B̄p, C̄p, D̄p}
for each Sp, p ∈ P, defined by (30).

(2) Define S(σ) to be the system with impulse effect defined by

ẋ = Āσx + B̄σe, v = C̄σx + D̄σe,

on intervals where σ is constant and by

x(t) = R̄
(

σ(t), σ(t−)
)

x(t−),

at each switching time t of σ. The reset matrices {R̄(p, q) : p, q ∈ P}
should be chosen so that there exist symmetric, positive definite matrices
{Q̄p ∈ R

nS×nS : p ∈ P}, such that

Q̄pĀp + Ā′
pQ̄p < 0, R̄(p, q)′Q̄pR̄(p, q) ≤ Q̄q, p, q ∈ P. (37)

Because of Lemma 1, S(σ) is exponentially stable, uniformly over S.
Also here, the choice of reset maps for which (37) holds is always possible
(cf. Remark 4).

(3) Realize the switching controller as

ẋE = AExE + BEuC − DEeT, e = CExE + eT,

uC = −FExE + GEeT + v,

where e and v are the input and output of S(σ), respectively. This cor-
responds to the multi-controller in (5)–(6) with

Fp :=
[

AE−BEFE+BED̄pCE BEC̄p

B̄pCE Āp

]

, Gp :=
[

−DE+BE(D̄p+GE)

B̄p

]

, (38)

Hp := [ −FE+D̄pCE C̄p ] , Jp := D̄p + GE , (39)

and

RC(p, q) :=
[

I 0
0 R̄(p,q)

]

. (40)

As in the case of single-input/single-output stable processes, it is possible to
show that the signal e is independent of σ and remains bounded. However,
instead of proceeding along this line of reasoning, we shall show directly that
the overall closed-loop switched system (7)–(9), with the multi-controller built
as above, is exponentially stable, uniformly over S.

Theorem 5 There exist symmetric matrices {Qp : p ∈ P} for which (18)–
(19) hold with {Ap, R(p, q) : p, q ∈ P} as in (8) and (10), where the process
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realization {A, B, C} is given by

A := AE + DECE, B := BE , C := CE , (41)

the controller realizations {Fp, Gp, Hp, Jp : p ∈ P} are given by (38)–(39),
and the controller reset matrices {RC(p, q) : p, q ∈ P} are given by (40).
The closed-loop system with impulse effects (7)–(9) is therefore exponentially
stable, uniformly over S.

Before proving Theorem 5, it should be noted that, in general, the realizations
given by (38)–(39) are not minimal. However, denoting by nK the McMillan
degree of K, by nH the McMillan degree of HP, and by nK the McMillan degree
of the transfer matrix in K with largest McMillan degree, the size of AE need
not be larger than nH + nK (cf. Lemma 8) and therefore the dimension of the
state of the realizations (38)–(39) need not be larger than 2(nH + nK) + nK

no matter what the number of controllers in K is. When K is chosen to have
the structure of an observer with state feedback , i.e., when HP and K have
realizations {A, B, C} and {A + HC − BF, H, F}, respectively, the size of
the matrix AE need not be larger than nH (cf. Remark 9) and therefore the
dimension of the state of the realizations (38)–(39) can be reduced to 2nH+nK.

Proof of Theorem 5. Replacing (38)–(39) and (41) in (8), one obtains for
the closed-loop system:

Ap =

[

AE+DECE−BE(D̄p+GE)CE −BEFE+BED̄pCE BEC̄p

DECE−BE(D̄p+GE)CE AE−BEFE+BED̄pCE BEC̄p

−B̄pCE B̄pCE Āp

]

, p ∈ P.

Defining T :=
[

I 0 0
0 0 I
−I I 0

]

, one further concludes that

TApT
−1 =

[

AE+DECE−BEFE−BEGECE BEC̄p −BEFE+BED̄pCE

0 Āp B̄pCE

0 0 AE

]

. (42)

Here, we used the fact that T−1 =
[

I 0 0
I 0 I
0 I 0

]

. Since K stabilizes HP and {AE +

DECE, BE, CE} and {AE − BEFE , DE − BEGE, FE , GE} are stabilizable and
detectable realizations of HP and K, respectively, the matrix

ĀE :=
[

AE+DECE−BEGECE BEFE

−(DE−BEGE)CE AE−BEFE

]

(43)

is asymptotically stable (cf. right-hand side of (43) against (4) ). Therefore,

TEĀET−1
E =

[

AE+DECE−BEFE−BEGECE BEFE

0 AE

]

,

with TE := [ I 0
I I ], T−1

E =
[

I 0
−I I

]

is also asymptotically stable. The matrices
AE + DECE −BEFE −BEGECE and AE must then be asymptotically stable
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and so there exist positive definite symmetric matrices Q1, Q2 such that

Q1(AE+DECE − BEFE − BEGECE)

+ (AE + DECE − BEFE − BEGECE)′Q1 = −I (44)

Q2AE+A′
EQ2 = −I. (45)

Moreover, because of (37), each

Pp := −Q̄pĀp − Ā′
pQ̄p, p ∈ P,

is positive definite. Therefore there must exist a positive constant ǫ, sufficiently
small, such that

Pp − ǫQ̄pB̄pCEC ′
EB̄′

pQ̄p > 0, ∀p ∈ P,

which guarantees that each

Rp := ǫ

[

Pp −Q̄pB̄pCE

−C′

E
B̄′

pQ̄p ǫ−1I

]

, p ∈ P, (46)

is also positive definite (cf. [3, Section 2.1]). Let now

Qp := T ′

[

ǫ1Q1 0 0
0 ǫQ̄p 0
0 0 Q2

]

T, (47)

with

ǫ1 :=
1

2

(

max
p∈P

‖Q1SpR
−1
p S ′

pQ1‖
)−1

, (48)

where, for each p ∈ P,

Sp := [ BEC̄p −BEFE+BED̄pCE ] . (49)

From (42), (44)–(45), (46), (47), and (49) one concludes that

QpAp + A′
p Qp = −ǫ1T

′
[

I −Q1Sp

−S′

pQ1 ǫ−1
1 Rp

]

T, p ∈ P. (50)

But, because of (48), I − ǫ1Q1SpR
−1
p S ′

pQ1 > 0 for each p ∈ P, thus

[

I −Q1Sp

−S′

pQ1 ǫ−1
1 Rp

]

> 0, p ∈ P

(cf. [3, Section 2.1]). From this and (50) one concludes that (18) holds.

The inequality (19) is a straightforward consequence of the definitions of the
Qp in (47) and the R(p, q) in (10), (40). Indeed, from these definitions one
concludes that

R(p, q)′QpR(p, q) − Qq =

[ 0 0 0
0 0 0

0 0 ǫ

(

R̄(p,q)′Q̄pR̄(p,q)−Q̄q

)

]

, p, q ∈ P.
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The matrix on the right-hand side is negative semi-definite because of (37).
2

Remark 6 In Theorem 5, we prove the existence of the matrices {Qp : p ∈ P}
needed to apply Lemma 1 for a specific realization (41) of the process transfer
matrix HP. This may not be the “actual” realization of the process and not
even similar to it (as (41) may not minimal). However, this is irrelevant as
far as the exponential stability of the switched system is concerned because (i)
asymptotically stable modes of the process that are not observable do not affect
the switched controller and (ii) only the controllable modes of the process can
be excited by the multi-controller.

5 Example

In this section we briefly illustrate how to utilize the results presented above in
a design problem. We consider here the control of the roll angle of an aircraft.
The following process model was taken from [28, p. 381]:

HP(s) =
−1000

s(s + .875)(s + 50)
.

Ideally, one would like to design a controller that is both fast and has good
measurement noise rejection properties. Clearly this is not possible, as increas-
ing the bandwidth of the closed-loop system will also make the system more
sensitive to measurement noise. We opt then to design two distinct controllers:
Controller K1 has low closed-loop bandwidth and is therefore not very sensi-
tive to noise but exhibits a slow response. Controller K2 has high bandwidth
and is therefore fast but very sensitive to noise. Both controllers were designed
using LQG/LQR. We computed the regulator gains by minimizing the cost

Jreg :=
∫ ∞

0
y2(τ) + ẏ2(τ) + ρu2(τ)dτ

where ρ was chosen equal to 100 and .1 for K1 and K2, respectively. These
choices of ρ resulted in K2 exhibiting a much fast response than K1. The design
of the optimal LQG gain was done assuming that the input disturbance d and
the measurement noise n were uncorrelated white noise processes with

E[d(t)d(τ)] = δ(t − τ), E[n(t)n(τ)] = µδ(t − τ),

where µ was chosen equal to 10−1 and 10−10 for K1 and K2, respectively. These
choices of µ resulted in K1 exhibiting much better noise rejection properties
than K2. The controller transfer functions obtained were:

K1 ≈
−6.694(s+.9446)(s+50.01)

(s2+13.23s+9.4532)(s+50.05)
, K2 ≈

−21872(s+.9977)(s+66.28)
(s2+467.2s+486.22)(s+507)

.
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The two left plots in Figure 6 show the closed-loop response of controllers K1

and K2 to a square reference. Large measurement noise was injected into the
system for t ∈ [18, 40]. By design, controller K1 exhibits a faster response but
is more sensitive to measurement noise.
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Controller K1 Controller K2 Switched controller

Fig. 6. Closed-loop response of controllers K1, K2, and the switched multi-controller
to a square reference r. Large measurement noise n was injected into the system
in the interval t ∈ [18, 40]. The top plots show the output y and the bottom plots
the tracking error eT := r− y − n. For the switched controller, K1 was used in the
interval t ∈ [22, 42] and K2 in the remaining time.

To design the multi-controller for K := {K1, K2} we followed the procedure
given in Section 4.2: We started by selecting matrices AE , BE , CE , DE , FE ,
and GE such that AE is a stability matrix, and {AE + DECE , BE, CE} and
{AE−BEFE , DE−BEGE , FE, GE} are stabilizable and detectable realizations
of HP and K := K1, respectively. Since K has the structure of an observer
with state feedback, we used the formulas in Remark 9 for these matrices.
The corresponding transfer matrices {S1, S2} were then computed using (30):

S1 = 0, S2 = 21872(s+.9995)(s2+13.26s+9.3192)(s+50.05)(s+66.24)
(s+1)(s2+93.94s+56.232)(s2+465.1s+463.72)(s+465.1)

.

The fact that S1 = 0 is a consequence of having used K := K1 (cf. Remark 10).
We then picked a minimal realization {Ā2, B̄2, C̄2} for S2 and the trivial re-
alization {Ā2, 0, C̄2} for S1. Since both realization share the same stable Ā2

matrix, (37) holds with Q̄1 = Q̄2 and R̄(1, 2) = R̄(2, 1) = I. As mentioned be-
fore, it would have been possible to choose realization for S1 and S2 with this
property even if S1 was nontrivial. The desired controller realizations are then
given by (38)–(39), and the controller reset matrices are simply the identity
(i.e., no reset is used). These guarantee that the switched closed-loop system
is exponentially stable, uniformly over S.
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The rightmost plot in Figure 6 shows the closed-loop response of the switched
controller. In this figure, controller K2 was used until time t = 22 (shortly after
the measurement noise increased). At that point there was a switch to con-
troller K1, resulting in significant noise rejection. Controller K1 was used until
time t = 42 (shortly after the measurement noise decreased back to the origi-
nal level). The construction of a logic that actually commands the switching
between controllers is beyond the scope of this paper. The contribution here
is the implementation of the multi-controller so that we have stability regard-
less of the switching signal σ. Once stability is guaranteed, one can use very
simpleminded algorithms to decide how to switch between the controllers. For
example, one could use controller K2 only when there is low high-frequency
content in the tracking error eT.

6 Conclusions

In the control of complex systems, conflicting requirements often make a sin-
gle linear time-invariant controller unsuitable. One can then be tempted to
design several controllers, each suitable for a specific operating condition, and
switch among them to achieve the best possible performance. Unfortunately,
it is well known that the transients caused by switching may cause instabil-
ity. We showed here that instability can be avoided by suitable choice of the
realizations for the controllers.

An important question for future research is the design of logics that or-
chestrate the switching among controllers to improve performance. The re-
sults in this paper greatly simplify the design of such logics since stability
of the switched system is no longer an issue. Another question that needs
to be investigated is the simultaneous switching of process and controller.
In particular, suppose that the process to be controlled switches in an un-
predictable fashion and that we would like to switch controllers to keep the
closed-loop system stable. Can we choose realizations for the controllers so
that the process/controller switched system is stable? An affirmative answer
to this question would have a profound impact both in gain-scheduling and in
multiple-model supervisory control (cf. [29–31]).

20



A Appendix

A.1 Realizations for stable transfer matrices

This section addresses a simpler problem than the one formulated before.
Consider a finite family of asymptotically stable transfer matrices A = {Sp :
p ∈ P}. It is shown below how to compute stabilizable and detectable n-
dimensional realizations {Āp, B̄p, C̄p, D̄p} for each Sp ∈ A such that

QĀp + Ā′
pQ < 0, p ∈ P, (A.1)

for some symmetric positive definite matrix Q ∈ Rn×n. With such a matrix it
is then possible to construct a common Lyapunov function V (z) = z′Qz for
the family of linear time-invariant systems {ż = Āpz : p ∈ P}.

Let n be the McMillan degree of the transfer matrix in A with largest McMil-
lan degree and, for each p ∈ P, let {Ãp, B̃p, C̃p, D̃p} be any n-dimensional
realization of Sp, with Ãp asymptotically stable. Because of the asymptotic
stability of each Ãp, p ∈ P the family of Lyapunov equations

QpÃp + Ã′
pQp = −I, p ∈ P (A.2)

must have symmetric positive definite solutions Qp, which can be written as
Qp = S ′

pSp with Sp nonsingular. For a given positive definite matrix Q =
S ′S ∈ Rn×n with S nonsingular, let

Āp := S−1SpÃpS
−1
p S, B̄p := S−1SpB̃p, C̄p := C̃pS

−1
p S, D̄p := D̃p, (A.3)

Since {Āp, B̄p, C̄p, D̄p} is obtained from {Ãp, B̃p, C̃p, D̃p} by a similarity trans-
formation, {Āp, B̄p, C̄p, D̄p} is also a realization of Sp. Moreover, from (A.2)
and (A.3) we conclude that

(S−1Sp)
′
(

QĀp + Ā′
pQ

)

S−1Sp = −I.

Left and right multiplication of the above equality by (S−1
p S)′ and S−1

p S,
respectively, yields

QĀp + Ā′
pQ = −(S−1

p S)′S−1
p S < 0

and therefore one concludes that (A.1) holds. The following was proved:

Lemma 7 Given any finite family of asymptotically stable transfer matrices
A = {Sp : p ∈ P} with McMillan degree no larger than n and any sym-
metric positive definite n × n matrix Q, there exist stabilizable and detectable
n-dimensional realizations {Āp, B̄p, C̄p, D̄p} for each Sp ∈ A such that (A.1)
holds.
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A.2 Technical lemmas

Lemma 8 Given two transfer matrices N and K, with N strictly proper,
such that K stabilizes N, there exist matrices AE, BE, CE, DE, FE, and
GE (with appropriate dimensions) such that AE is a stability matrix, and
{AE + DECE, BE, CE} and {AE − BEFE , DE − BEGE, FE , GE} are stabiliz-
able and detectable realizations of HP and K, respectively.

Proof of Lemma 8. Let {A, B, C} and {F, G, H, J} be minimal realizations
of HP and K, respectively, and X, Y matrices such that A+XC and F +Y H

are asymptotically stable. Defining

AE :=
[

A+XC 0
0 F+Y H

]

, BE :=
[

B
−Y

]

, DE :=
[

−X
−G−Y J

]

,

CE := [ C 0 ] , FE := [ 0 −H ] , GE := J,

the matrix AE is asymptotically stable and

CE(sI−AE − DECE)−1BE =

= [ C 0 ]
(

sI −
[

A 0
−GC−Y JC F+Y H

])−1 [

B
−Y

]

= HP(s),

FE(sI−AE + BEFE)−1(DE − BEGE) + GE =

= [ 0 −H ]
(

sI −
[

A+XC BH
0 F

])−1 [

−X−BJ
−G

]

+ J = K(s).

Detectability of {CE, AE + DECE} and {FE, AE − BEFE} is guaranteed by
the fact that both AE + DECE and AE −BEFE are an output injection away
from AE which is a stability matrix. Stabilizability of {AE + DECE , BE} and
{AE − BEFE , DE − BEGE} is guaranteed by the fact that both AE + DECE

and AE − BEFE are a state feedback away from

[

A−BJC BH
−GC F

]

,

which is a stability matrix since K stabilizes HP. 2

Remark 9 When K is chosen to have the structure of an observer with state
feedback, i.e., when HP and K have realizations {A, B, C} and {A + HC −
BF,−H, F}, respectively, one can simply pick AE = A + HC, BE = B,
CE = C, DE = −H, FE = F , and GE = 0.

Verification of the stability of the Sp, p ∈ P. Straightforward algebra
shows that the transfer function on the right-hand side of (30) is equal to the
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transfer function from e to v defined by the system of equations







v

ȳ





 =







XC −YC

YP XP − I





 ◦







ū

e − ȳ





 , ū = Kp ◦ (e − ȳ). (A.4)

Now, because of (31),











AE,

[

BE −DE

]

,







FE

CE





 ,







I −GE

0 0

















is a realization for
[

XC −YC

YP XP−I

]

. Thus, picking any minimal realization {Âp, B̂p, Ĉp, D̂p}

of Kp, the system (A.4) can be realized as

ẋE = AExE + BEū − DE(e − ȳ), ȳ = CExE ,

˙̂x = Âpx̂ + B̂p(e − ȳ), ū = Ĉpx̂ + D̂p(e − ȳ),

v = FExE + ū − GE(e − ȳ).

Therefore, the transfer function from e to v in (A.4) (and therefore Sp ) can
be realized by {Āp, B̄p, C̄p, D̄p}, with

Āp :=







AE + DECE − BED̂pCE BEĈp

−B̂pCE Âp





 , (A.5)

and B̄p, C̄p, D̄p appropriately defined. Since Kp stabilizes HP and {AE +
DECE, BE, CE} is a stabilizable and detectable realization of HP, Āp must be
asymptotically stable (cf. Āp in (A.5) against (4) ). Thus, for each p ∈ P, the
poles of Sp must also have negative real part.

Remark 10 Denoting by RH∞ the ring of transfer matrices whose entries
are proper, stable rational functions with real coefficients, the transfer matrices
XP, YP, YC, XC defined in (31) form a simultaneous right-coprime factoriza-

tion of HP and K in the sense that XP and XC have causal inverse,
[

XC −YC

YP XP

]

is a unit in RH∞, and HP = X−1
P

YP and K = X−1
C

YC. Thus, the existence of
the family of stable transfer matrices {Sp : p ∈ P} ⊂ RH∞ such that (32) holds
is not surprising in light of the Youla parameterization of all controllers that
stabilize HP, given by [15]. Note also that since K = X−1

C
YC, if one chooses

K = Kp0 for some p0 ∈ P, then the corresponding transfer matrix Sp0 given
by (30) with p = p0 is equal to 0.
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