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Abstract

A recent approach to the control of underactuated
systems is to look for control laws which will induce
some specified structure on the closed loop system. In
this paper, we describe one matching condition and
an approach for finding all control laws that fit the
condition. After an analysis of the resulting control
laws for linear systems, we present the results from
an experiment on a nonlinear ball and beam system.

1 Underactuated systems and

the matching condition

Over the past five years several researchers have pro-
posed nonlinear control laws for which the closed
loop system assumes some special form, see the con-
trolled Lagrangian method of [8, 9, 10] the general-
ized matching conditions of [11, 12, 13], the inter-
connection and damping assignment passivity based
control of [7], the λ-method of [6, 5], and the ref-
erences therein. In this paper we describe the im-
plementation of the λ-method of [6] on a ball and
beam system. For the readers convenience we start
with the statement of the main theorem on λ-method
matching control laws (Theorem 1). We also present
an indicial derivation of the main equations. We
then prove a new theorem showing that the family
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of matching control laws of any linear time invariant
system contains all linear state feedback control laws
(Theorem 2). We next present the general solution
of the matching equations for the Quanser ball and
beam system. (Note, that this system is different
from the system analyzed by Hamberg, [11].) As al-
ways, the general solution contains several free func-
tional parameters that may be used as tuning param-
eters. We chose these arbitrary functions in order to
have a fair comparison with the manifacturer’s linear
control law. Our laboratory tests confirm the pre-
dicted stabilization. This was our first experimental
test of the λ-method. We later tested this method on
an inverted pendulum cart, [3].

Consider a system of the form

grj ẍ
j + [j k, r] ẋj ẋk + Cr +

∂V

∂xr
= ur , (1)

r = 1, . . . , n, where gij denotes the mass-matrix, Cr

the dissipation, V the potential energy, [i j, k] the
Christoffel symbol of the first kind,

[jk, i] =
1

2

(
∂gij
∂qk

+
∂gki
∂qj

−
∂gjk
∂qi

)
, (2)

and ur is the applied actuation. To encode the fact
that some degrees of freedom are unactuated, the ap-
plied forces and/or torques are restricted to satisfy
P i
j g

jkuk = 0, where P i
j is a g-orthogonal projection.

The matching conditions come from this restriction
together with the requirement that the closed loop
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system takes the form

ĝrjẍ
j + ̂[j k, r]ẋj ẋk + Ĉr +

∂V̂

∂xr
= 0, r = 1, . . . , n,

for some choice of ĝ, Ĉ, and V̂ . The matching condi-
tions read

P r
k

(
Γk
ij − Γ̂k

ij

)
= 0, P r

k

(
gkiCi − ĝkiĈi

)
= 0,

P r
k

(
gki

∂V

∂qi
− ĝki

∂V̂

∂qi

)
= 0,

(3)

where Γk
ij is the Christoffel symbol of the second kind,

Γk
ij = gkℓ[ij, ℓ]. (4)

If the matching conditions (3) hold, the control law
will be given by

ur = grk(Γ
k
ij − Γ̂k

ij)q̇
iq̇ j +

(
Cr − Ĉr

)

+ grk

(
gki

∂V

∂qi
− ĝki

∂V̂

∂qi

)
.

(5)

The motivation for this method is that Ĥ =
1
2 ĝij q̇

iq̇ j + V̂ is a natural candidate for a Lyapunov

function because d
dt
Ĥ = −ĝij ĉ

iq̇ j . Following [6], in-
troduce new variables λki = gij ĝ

jk. We have

Theorem 1 The functions ĝij, V̂ , and Ĉ satisfy (3)
in a neighborhood of x0 if and only if

P r
k

(
gkiCi − ĝkiĈi

)
= 0,

P r
k

(
gki

∂V

∂qi
− ĝki

∂V̂

∂qi

)
= 0,

and the following conditions hold. First, there exists
a hypersurface containing x0 and transverse to each
of the vectorfields λℓiP

i
j∂/∂x

ℓ on which ĝij is invert-
ible and symmetric and satisfies

gkiP
k
ℓ = λjkP

k
ℓ ĝji.

Second, λijP
j
k and ĝij satisfy

P s
kP

r
t

(
gℓs

∂λℓr
∂qj

+ [ℓj, s]λℓr − [rj, i]λis

+gir
∂λis
∂qj

+ [ij, r]λis − [sj, ℓ]λℓr

)
= 0, (6)

λℓrP
r
t

∂ĝnm
∂qℓ

+ ĝℓn
∂(λℓrP

r
t )

∂qm
+ ĝℓm

∂(λℓrP
r
t )

∂qn

= P ℓ
t

partialgnm
∂qℓ

++gℓn
∂P ℓ

t

∂qm
gℓm

∂P ℓ
t

∂qn
. (7)

Although the proof of this proposition may be found
in [6], [4], and [5], for convenience, we include an
indicial notation derivation of equations (6) and (7).

Substitute equations (2), (4) for both Γk
ij and Γ̂k

ij into
the first of equations (3) and multiply the result by
the scalar 2 to obtain:

P r
k ĝ

kℓ ∂ĝij
∂qℓ

− P r
k ĝ

kℓ ∂ĝℓi
∂qj

− P r
k ĝ

kℓ ∂ĝjℓ
∂qi

= P r
k g

kℓ ∂gij
∂qℓ

− P r
k g

kℓ ∂gℓi
∂qj

− P r
k g

kℓ ∂gjℓ
∂qi

.

Multiply by grt and use that P is self-adjoint i.e.,
P k
i gkj = gikP

k
j , to get

P r
t λ

ℓ
r

∂ĝij
∂qℓ

− P r
t λ

ℓ
r

∂ĝℓi
∂qj

− P r
t λ

ℓ
r

∂ĝjℓ
∂qi

= P r
t

∂gij
∂qr

− P r
t

∂gri
∂qj

− P r
t

∂gjr
∂qi

.

(8)

Use P r
t λ

ℓ
r
∂ĝℓi
∂qj

=
∂(P r

t λℓ
r ĝℓi)

∂qj
− ĝℓi

(∂P r
t λℓ

r)
∂qj

and

λℓr ĝℓi = gri (9)

in (8) to obtain (7). To derive (6), first, differentiate
(9) with respect to qj to get

λℓr
∂ĝℓi
∂qj

=
∂gri
∂qj

− ĝℓi
∂λℓr
∂qj

. (10)

Substitute equation (10) into equation (8) and obtain

P r
t

(
ĝℓi
∂λℓr
∂qj

+ ĝℓj
∂λℓr
∂qi

+ λℓr
∂ĝij
∂qℓ

)

= P r
t

(
∂gri
∂qj

+
∂grj
∂qi

−
∂gri
∂qj

−
∂gjr
∂qi

+
∂gij
∂qr

)
.

(11)
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Multiply by −P s
kλ

i
s, use (9) and (10) to obtain

P s
kP

r
t

(
gℓs

∂λℓr
∂qj

+ λℓr
∂gjs
∂qℓ

− λis
∂gij
∂qr

)

= P s
kP

r
t

(
ĝijλ

ℓ
r

∂λis
∂qℓ

− λisĝℓj
∂λℓr
∂qi

)
.

(12)

Finally, to obtain (6), add to equation (12) an equa-
tion obtained from (12) by interchanging k and t, r
and s, ℓ and i.

2 Matching and constant coef-

ficient linear systems

In this section, we prove that for linear time invariant
systems any linear full state feedback control law is
a solution to the matching equations.

Theorem 2 When applied to linear, time-
independent systems, the family of matching
control laws contains all linear state feedback laws.

Choose coordinates qi so that the desired equi-
librium is at the origin, V = Vijq

iqj + vkq
k, and

Ci = Cij q̇
j , where gij , Vij , vk, Cij , and P

r
k are con-

stant, and P r
k has rank nu. Clearly, ĝij , V̂ = V̂ijq

iqj ,

and Ĉi = Ĉij q̇
j is a solution to the matching equa-

tions when ĝij , V̂ij , and Ĉij are constant provided

ĝij and V̂ij are symmetric, P r
k

(
gkiVij − ĝkiV̂ij

)
= 0,

and P r
k

(
gkiCij − ĝkiĈij

)
= 0. Let uk = vk + akiq

i+

bkiq̇
i be an arbitrary linear control law, satisfying

P r
k g

kℓuℓ = 0. Comparison with equation (3) gives

grk

(
gkiVij − ĝkiV̂ij

)
= arj ,

and
grk

(
gkiCij − ĝkiĈij

)
= brj .

Thus,
V̂ℓj = ĝℓpg

pr(Vrj − arj)

and
Ĉℓj = ĝℓpg

pr(Crj − brj).

It remains to check that we can find a symmetric,
nondegenerate matrix ĝki so that the resulting V̂ℓj is

also symmetric. The symmetry of V̂ℓj will follow if
we have

ĝℓpg
pr(Vrj − arj)− ĝjpg

pr(Vrℓ − arℓ) = 0,

and, therefore, we need to find a symmetric, nonde-
generate matrix ĝℓp satisfying this equation. The ex-
istence of such matrix is guaranteed by the following
simple observation.

Lemma 1 Given any real n × n matrix R, there is
a nondegenerate symmetric matrix X so that

RX −XTRT = 0.

Indeed, setting X = QYQT , results in the following
equation for Y :

Q−1RQY − Y T (Q−1RQ)T = 0.

Hence, without loss of generality we may assume that
Q−1RQ is a real Jordan block (see [14]),



λ 1 0 . . .
0 λ 1 . . .

. . .




or 


a −b
b a

1 0
0 1

0 0
0 0

. . .

0 0
0 0

a −b
b a

1 0
0 1

. . .

. . . . . . . . . . . .




.

In each case Y =




0 . . . 0 1
0 . . . 1 0

. . .
1 0 . . . 0


 solves the

equation.
Note that the result of Lemma 1 is true for matrices

with coefficients in any field. This is proved in [15].

3 Example: The Ball and

Beam

In order to demonstrate the approach described
above, we have implemented one of the control laws
from the family of control laws described in the first
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Table 1: The physical parameters of the system.

ℓb = length of the beam = 0.43m IB = 2
5mBr

2
B = ball inertia = 4.25× 10−6Kg m2

ℓl = length of the link = 0.11m Ib = inertia of the beam = .001Kg m2

rg = radius of the gear = 0.03m Is = effective servo inertia = 0.002Kg m2

rB = radius of the ball = 0.01m g = gravitational acceleration = 9.8m/s2

mB = mass of the ball = 0.07Kg s0 = desired equilibrium position = 0.22m

mb = mass of the beam = 0.15Kg c0 = inherent servo dissipation = 9.33× 10−10Kg m2/s

ml = mass of the link = 0.01Kg

θ

α

s

Figure 1: The ball and beam system

section on a ball and beam system, Figure 1 (this
system is commercially available from Quanser Con-
sulting, Ontario, Canada).
The s−coordinate is unactuated, the θ−coordinate

is actuated by the servo, and the objective is to bring
the ball to the center of the beam. The physical pa-
rameters of the system are given in Table 1.
One can express α as a concrete function of θ from
the kinematic relation

(ℓb(1− cos(α)) − rg(1 − cos(θ)))
2

+ (ℓb sin(α) + ℓl − rg sin(θ))
2
= ℓ2l .

The kinetic energy of the system is

T =
1

2
mbs

2α̇2 +
1

2
IB(α̇+

1

rB
ṡ)2 +

1

2
Ibα̇

2 +
1

2
Isθ̇

2.

The potential energy is

V =
1

2
ml g rg sin(θ) +

1

2
(mb +ml) g ℓb sin(α)

+mB g s sin(α) ,

and the dissipation is C1 = 0, C2 = c0θ̇. After rescal-
ing, we get

(1 − cos(α)− a2(1 − cos(θ)))2

+ (sin(α) + a1 − a2 sin(θ))
2 = a21 ,

T =
1

2
ṡ2+

1

2
(a4+(a3+5/2 s2)(α′(θ))2)θ̇2+α′(θ) ṡ θ̇ , C1 = 0 , C2 = a7 θ̇ ,

V = a5 sin(θ) + (s+ a6) sin(α(θ)),

C1 = 0, and C2 = a7θ̇, where the ak are the dimen-
sionless parameters,

a1 =
ℓl
ℓb
, a2 =

rg
ℓb
, a3 =

(Ib + IB)

IB
, a4 =

Is
IB
,

a5 =
mlrg

2mBrB
, a6 =

ℓb(mb +ml)

2mBrB
,

a7 =

(
5

2 r3B g

) 1

2 c0
mB

.

The notation ′ is used to denote a derivative of a
function of one variable. For general underactuated
systems, the use of the powerful λ-method to solve
the matching equations is discussed in [6, 5]. For
systems with two degrees of freedom, the λ-method
produces the general solution to the matching equa-
tions in an explicit form, [4]. When applied to the
ball and beam system, the explicit family of control
laws is given by equation (5) with the following ex-

pressions for ĝ, V̂ , and Ĉ, where

ĝ11 = ψ2(α)

(
h(y(s, θ)) + 10

∫ α

0

dϕ

µ′

1(ϕ)ψ
2(ϕ)

)
,

ĝ12 =
1

µ
(g11 − σĝ11), ĝ22 =

1

µ
(g12 − σĝ12),

4



V̂ (s, θ) =w(y) + 5(y + s0)

∫ α

0

sin(ϕ)

µ′

1(ϕ)ψ(ϕ)
dϕ

−5

∫ α

0

sin(ϕ)

µ′

1(ϕ)ψ(ϕ)

∫ ϕ

0

ψ(τ) dτ dϕ,

Ĉ1 = (g1iĝ
i1)−1

(
C1 − g1j ĝ

j2Ĉ2

)
,

where

µ(s, θ) =
µ′

1(α(θ))

5s g12
,

σ(s, θ) = µ1(α)−
1

5s
µ′

1(α),

y = ψ(α) s − s0 +

∫ α

0

ψ(τ) dτ,
µ1(κ)

µ′

1(κ)
dκ}.

Here h(y), w(y), µ1(α) are arbitrary functions of one

variable, and Ĉ2 is an arbitrary function which is odd
in velocities.

4 Experimental Results

Our experiments were conducted on the Quanser ball
and beam system. The control signal is a voltage sup-
plied to the servo and the sensed output of the system
is s and θ sampled at 300 Hz. A Quanser MULTIQr

data acquisition card is used for the analog signal
input and output. The velocities are computed via
numerical differentiation using the forward difference
algorithm. The control law produces a voltage signal
and is supplied through the D/A converter to the DC
servomotor via an amplifier. The relation between
the control voltage, vin, and the torque, u (= u2 in
equation (5)), is K2

mN
2
g θ̇, where Rm = armature re-

sistance = 2.6 Ω, Ng = gear ratio = 70.5, Km =
motor torque constant = 0.00767 Volt·sec.

Any stabilizing linear control law for this system
is specified by four constants. The nonlinear control
laws in our family are specified by the four arbitrary
functions : µ1(α), h(y), w(y), and Ĉ2(s, θ, ṡ, θ̇). We

chose

µ1(α) = 1.0849 exp(4.7845 sin(α))

h(y) = 1.1031, w(y) = 0.0023y2,

Ĉ2(s, θ, ṡ, θ̇) = −ĝ12 · (1 + ṡ2 + 10θ̇2)(−µṡ+ σθ̇).

These functions produce the control law, u, in
rescaled units. The values of the constants a1 through
a7 are as follows

a1 = 0.2547 a5 = 0.1889
a2 = 0.0588 a6 = 42
a3 = 236.294 a7 = 5× 10−6

a4 = 471.126

The final control signal is obtained by converting
back into MKS units and using the formula in the
preceding paragraph to get the input voltage. These
choices were made from the following considerations.
The form of the function µ1 was chosen to simplify
the integrals in the expressions for y, ψ, and ĝ11. The
form of Ĉ2 was chosen to ensure that Ĉ1ṡ+Ĉ2θ̇ would
be positive (for Ĥ to be a Lyapunov function). Fi-
nally, the coefficients in these functions were chosen
so that the linearization of the nonlinear control law
would agree with the linear control law provided by
the manufacturer.
Extensive numerical simulations done using

Matlabr confirm that the nonlinear control law sta-
bilizes the system. The linear control law appears to
stabilize the system for a wider range of initial condi-
tions than the nonlinear control law. This is an em-
pirical observation, not a mathematical fact. Find-
ing an adequate mathematical framework to compare
different control laws is a very interesting unresolved
problem, see [4]. Usually, given two locally stabilizing
control laws, there exist initial conditions stabilized
by one but not by the other. For example, one set of
physically unrealistic initial conditions with a large
angular velocity θ̇ = 3.6 (or 158 rad/sec in physical
units) is stabilized by our nonlinear control law but
not by the linear one.
We have implemented the nonlinear control law in

the laboratory. The laboratory tests confirm the pre-
dicted behavior of the nonlinear controller. Figures 2
and 3 show a comparison of the time histories of the
ball position (s) and angular displacement (θ) for the

5
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Figure 2: Ball position response

linear and nonlinear control laws. In both cases the
control signal reached the saturation limit for a short
duration during the initial rise of the response. The
difference in the steady-state values of the responses
is attributed to a lack of sensitivity of the resistive
strip used to measure the ball position.

5 Conclusions

The λ-method produces explicit infinite-dimensional
families of control laws and simultaneously provides
a natural candidate for a Lyapunov function. When
this method is applied to linear time-invariant sys-
tems, the resulting family contains all linear state
feedback control laws (Proposition 2). In this paper
we also present the results of the first implementation
of a λ-method matching control law on a concrete
physical device, the ball and beam system. The ex-
perimental results agree with theoretical predictions
and numerical simulations. In our experiments we
observe that the linear control law performs better
than our nonlinear control law for the ball and beam
system. However, in a later experiment with an in-
verted pendulum cart, [3], we found that a properly
tuned λ-method matching control law performed bet-
ter than the corresponding linear one. At the mo-
ment, it is not known for which systems matching

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure 3: Angular displacement response

control laws will perform better. This is an impor-
tant problem that must be resolved.
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