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Abstract

In this paper, we address the problem of minimum variance estimation for discrete-time time-varying
stochastic systems with unknown inputs. The objective is to construct an optimal filter in the general
case where the unknown inputs affect both the stochastic model and the outputs. It extends the
results of Darouach and Zasadzinski (1997) where the unknown inputs are only present in the model.
The main difficulty in treating this problem lies in the fact that the estimation error is correlated with
the systems noises, this fact leads generally to suboptimal filters. Necessary and sufficient conditions
for the unbiasedness of this filter are established. Then conditions under which the estimation error
and the system noises are uncorrelated are presented, and an optimal estimator and a predictor filters
are derived. Sufficient conditions for the existence of these filters are given and sufficient conditions
for their stability are obtained for the time-invariant case. A numerical example is given in order to
illustrate the proposed method.

Keywords : Minimum variance filter; Unknown inputs; Stability; Convergence; Linear time-varying
systems.

1 Introduction
State estimation for linear systems in the presence of unknown inputs has received considerable attention
in the last two decades. In the deterministic context this problem has been extensively studied and the
conditions for the stability of the obtained observers were developed (see e.g. (Hou and Müller, 1992; Hou
and Müller, 1994; Darouach et al., 1994)). On the other hand, stochastic models constitute a large class of
models which can represent systems with noises, disturbances and uncertainties. For this set of systems,
it is well known that the state estimation can be obtained from the Kalman filter (see e.g. (Anderson
and Moore, 1979; Middleton and Goodwin, 1990; Kailath et al., 2000).
However few results were obtained for stochastic systems with unknown inputs. The most common one is
to treat the unknown input as a stochastic process with known wide-sense description (known mean and
covariance for example, see the recent reference (Park et al., 2000) and references therein). Generally,
there may not be any knowledge concerning the model of these inputs. As shown by Kitanidis (1987),
the problem is of great importance in geophysical and environmental applications. Other applications
of the state estimation of systems with unknown inputs are in the fault detection and isolation (FDI)
problems (Patton et al., 1989; Basseville and Nikiforov, 1994).
A new method for constructing an innovation filter has been developed by Nikoukhah (1994) for stochas-
tic systems with unknown inputs. This filter (or residual) generates from the observed quantities (known
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inputs and outputs) an output decoupled from the unknown inputs. This output is a zero-mean and white
process in the absence of failure (normal behavior of the system) and a non-zero-mean when a failure
has occurred. This work considers only the time-invariant continuous case, which can be easily extended
to the discrete-time case. It uses a frequency domain approach and polynomial matrix factorizations.
The optimal and unbiased state estimation problem is not considered. In our paper, minimum variance
unbiased state estimators are considered and the solutions are given in the time domain.
This paper deals with optimal unbiased filtering for stochastic discrete time-varying systems with un-
known inputs. We extend the results obtained by Kitanidis (1987), Darouach and Zasadzinski (1997),
and Hsieh (2000) to the general case where the unknown inputs affect both the model and the outputs.
Therefore in that case, the major problem to deal with is that the state estimation error is correlated
with the model and the measurement noises. The unbiasedness of this error leads to the minimization of
the variance of the estimation error under algebraic constraints. As in Darouach and Zasadzinski (1997),
we parametrize all solutions of the algebraic constraints by two parameter matrices Z and α. The first
one plays a role of a gain matrix and can be chosen such that the estimation error variance is minimum.
The second parameter matrix is used to guarantee the rank conditions of some used matrices.
As shown in Anderson and Moore (1979), pages 296-300, in the general case where the estimation error is
correlated with the model and measurement noises, only a suboptimal filter can be obtained. Necessary
and sufficient conditions for the existence of this filter are given.
The conditions for the estimation error to be uncorrelated with the system noises are presented, these
conditions lead to two filters. The first one is an estimator and has as inputs the known inputs of the
systems at time instant t and the outputs at time instant t+1. The second one is a predictor and has as
inputs the known inputs of the systems and the outputs at time instant t. All the obtained results are
expressed in terms of the initial system matrices.
In the time-invariant case, the conditions for the stability of the obtained filters are derived. When
the measurements are free of unknown inputs, these conditions become necessary and sufficient and
correspond to those given by Darouach and Zasadzinski (1997).

2 Optimal filter design
Let us consider the linear discrete-time stochastic time-varying system

x(t + 1) = Φ(t)x(t) + Γ(t)u(t) + F (t)d(t) + w(t) (1a)
y(t) = H(t)x(t) + G(t)d(t) + v(t) (1b)

where x(t) ∈ IRn is the state, u(t) ∈ IRr is the known input, d(t) ∈ IRq is the unknown input, y(t) ∈ IRp is
the output. w(t) and v(t) are uncorrelated white noises sequences of zero-mean and covariance matrices
Q(t) ! 0 and R(t) ! 0 respectively. The initial state x0 is of mean x0 and covariance P0 and is independent
of w(t) and v(t). We assume that p ! q and, without loss of generality, that rank [ H(t) G(t) ] = p.
The problem is to design an unbiased minimum variance linear estimator of x(t) given measurements
up to time instant t (with t ∈ IN) and the known input u(t) without any information concerning the
disturbance d(t).
Let x̂(t) denote the estimate of the state x(t) at time instant t. The estimation error is defined as

e(t) = x(t)− x̂(t).

Definition 1. An estimator x̂(t) is unbiased if its expected value satisfies E {x̂(t)} = E {x(t)} , ∀t ! 0,
i.e.

E {e(t)} = 0, ∀t ! 0 (2)

where E {"} denotes the expectation operator.

The estimation error covariance P (t) is defined by
P (t) = E

{
e(t)eT (t)

}
. (3)

Consider the following filter

ξ(t + 1) = N(t)ξ(t) + J(t)y(t) + E(t)u(t) (4a)
x̂(t) = ξ(t) + L(t)y(t) (4b)



where the matrices N(t) ∈ IRn×n, J(t) ∈ IRn×p, E(t) ∈ IRn×r and L(t) ∈ IRn×p must be determined such
that

J = tr (P (t)) (5)

is minimized under the constraint (2).
From equations (1b) and (4b), the estimation error can be written as

e(t) = Ψ(t)x(t)− ξ(t)− L(t)G(t)d(t)− L(t)v(t) (6)

where Ψ(t) = I − L(t)H(t). The dynamics of this error is given by

e(t+1)=N(t)e(t)+(Ψ(t+1)Φ(t)−N(t)Ψ(t)−J(t)H(t))x(t)
+(Ψ(t+1)Γ(t)−E(t))u(t)+(Ψ(t + 1)F (t)+N(t)L(t)G(t)−J(t)G(t)) d(t)

+Ψ(t + 1)w(t)−L(t+1)G(t+1)d(t+1)+(N(t)L(t)−J(t)) v(t)−L(t+1)v(t+1) (7)

where we have used (1), (4) and (6). By using (7), the constraint (2) yields to the following equations

0 = Ψ(t + 1)Φ(t)−N(t)Ψ(t)− J(t)H(t) (8a)
0 = Ψ(t + 1)F (t) + N(t)L(t)G(t)− J(t)G(t) (8b)
0 = L(t + 1)G(t + 1) (8c)
0 = Ψ(t + 1)Γ(t)− E(t). (8d)

Now from the definition of Ψ(t + 1), equation (8a) can be rewritten as
N(t) = Ψ(t + 1)Φ(t)−K(t)H(t) (9)

where
K(t) = J(t)−N(t)L(t). (10)

Define the following matrices L(t + 1) = [ L(t+1) K(t) ], Σ(t + 1) =
[

H(t+1)F (t) G(t+1)
G(t) 0

]
and F(t) =

[ F (t) 0 ] where the unknown matrices are L(t + 1) and K(t).
With these notations, the constraints (8b) and (8c) can be written as

L(t + 1)Σ(t + 1) = F(t). (11)

The unbiasedness of the estimate (4) is guaranteed when a solution to (11) exists, and we have the
following lemma.
Lemma 1. A necessary and sufficient condition for the estimate (4b) to be unbiased is

rank Σ(t + 1) = rank
[
F (t)
G(t)

]
+ rank G(t + 1). (12)

Proof. From Lancaster and Tismenetsky (1985), a necessary and sufficient condition for the existence of
the solution to (11) is

F(t)
(
Σ†(t + 1)Σ(t + 1)− I

)
= 0 (13)

where A† denotes any generalized inverse of matrix A. Condition (13) can be also written as

rank




F (t) 0

H(t+1)F (t) G(t+1)
G(t) 0



=rank
[
H(t+1)F (t) G(t+1)

G(t) 0

]

which yields to

rank Σ(t+1)=rank




H(t+1) I 0

I 0 0
0 0 I








−F (t) 0

H(t+1)F (t) G(t+1)
G(t) 0



 = rank
[
F (t)
G(t)

]
+ rank G(t + 1).



Under (12), the general solution to (11) is given by

L(t + 1) = F (t + 1) + Z(t)G(t + 1) (14)

where F (t + 1) = F(t)Σ†(t + 1),
G(t + 1) = α(t)

(
I − Σ(t + 1)Σ†(t + 1)

)
, and Z(t) is an arbitrary matrix. The choice of the matrix

parameter α(t) will be made in remark 1. Now, from the definitions of Ψ(t), L(t + 1) and using (14), (9)
can be written as

N(t) = A(t)− Z(t)B(t) (15)

where A(t)= Φ(t)−F (t+1)H(t+1), B(t) = G(t+1)H(t+1) and H(t + 1) =
[

H(t+1)Φ(t)
H(t)

]
.

At this stage, filter (4) has been parametrized as a function of matrix parameter Z(t). Thus the problem
of designing an unbiased minimum variance filter (4) is reduced to the determination of the gain matrix
Z(t) such that (5) is minimized. From the above results and under assumption (12), the filter (4) can be
written as

x̂(t + 1) = (A(t)− Z(t)B(t)) x̂(t) + E(t)u(t) +
(
F (t + 1) + Z(t)G(t + 1)

)
y(t + 1) (16)

where y(t + 1) =
[

y(t+1)
y(t)

]
and the dynamic error (7) as

e(t + 1) = (A(t)− Z(t)B(t)) e(t) + H(t + 1)η(t + 1) (17)

where H(t + 1) =
[
I − L(t + 1)

[
H(t+1)

0

]
−L(t + 1)

]
and η(t + 1) =

[
w(t)

v(t+1)
v(t)

]

2.1 Suboptimal filter design
In this section, we propose a suboptimal solution to the design of the filter (4).
From equation (17) it is easy to see that η(t + 1) and e(t) are correlated, and η(t + 1) is a colored noise
of covariance

Π(t + 1) =




Q(t) 0 0

0 R(t + 1) 0
0 0 R(t)



 .

On the other hand, following Anderson and Moore (1979), pages 296-300, we have

η(t + 2) = Mη(t + 1) + η(t + 1) (18)

where M =
[

0 0 0
0 0 0
0 I 0

]
and η(t + 1) =

[
w(t+1)
v(t+2)

0

]
. Here η(t + 1) is a zero-mean white sequence of covariance

Ξ(t + 1) =
[

Q(t+1) 0 0
0 R(t+2) 0
0 0 0

]
.

From (17) and (18), we obtain
[
e(t + 1)
η(t + 2)

]
=

[
A(t)− Z(t)B(t) H(t + 1)

0 M

] [
e(t)

η(t + 1)

]
+

[
0

η(t + 1)

]
. (19)

This is a linear system with a white noise excitation, and

E
{[

e(t + 1)
η(t + 2)

] [
e(t + 1)T η(t + 2)T

]}
=

[
P (t + 1) ∆(t + 1)
∆T (t + 1) Π(t + 2)

]

=
[
0 0
0 Ξ(t+1)

]
+

[
A(t)−Z(t)B(t) H(t+1)

0 M

] [
P (t) ∆(t)
∆T(t) Π(t+1)

] [
A(t)−Z(t)B(t) H(t+1)

0 M

]T

. (20)

The determination of Z(t) can be obtained by the minimization of (5).
We notice (see Anderson and Moore (1979), page 300) that only a suboptimal solution can be obtained.
It is the presence of non zero ∆(t + 1) which causes this suboptimality. This suboptimal solution which
minimizes the trace of P (t+1) can be obtained along the line of the work of Anderson and Moore (1979),
pages 296-300.



2.2 Optimal filter design
This section is devoted to the optimal filter design. Let us come back to equation (17), by using the
definition of H(t) and L(t), one can see that a necessary and sufficient condition for N(t)e(t) and H(t +
1)η(t + 1) to be uncorrelated is

E
{

N(t)e(t)ηT (t + 1)HT (t + 1)
}

= N(t)H(t)




0 0 0
0 0 R(t)
0 0 0



H
T (t + 1) = N(t)L(t)R(t)KT (t) = 0. (21)

Sufficient conditions for this equation to be satisfied for all N(t) and R(t) are

K(t) = 0 or L(t) = 0.

Then the decorrelation constraint (21) leads to two filters. In the case where K(t) = 0, the filter (4) is an
estimator one since the estimate x̂(t+1) uses the known inputs of the system u at time instant t and the
outputs y at time instant t + 1 (see section 2.2.1). In the case where L(t) = 0, the filter (4) is a predictor
one since the estimate x̂(t + 1) is a function of the known inputs u and the outputs y at time instant t
(see section 2.2.2).

2.2.1 Optimal estimator filter design
This section considers the case where K(t) = 0, we show that the optimal filter is an estimator one.
If K(t) = 0, then from equations (9), (10) and (11), it is easy to see that the filter (4) can be written as
the following estimator

x̂(t + 1) = N(t)x̂(t) + E(t)u(t) + L(t + 1)y(t + 1) (22)

with
N(t) = Ψ(t + 1)Φ(t) and J(t) = N(t)L(t) (23a)
F(t) = L(t + 1)Σ(t + 1) (23b)

where Σ(t + 1) =
[
H(t + 1)F (t) G(t + 1)

]
. Then the condition of lemma 1 becomes.

Lemma 2. A sufficient condition for the unbiasedness of the estimator (22) is

rank Σ(t + 1) = rankF (t) + rank G(t + 1). (24)
Proof. The proof is similar to that of lemma 1 and is omitted.
Under condition K(t) = 0, equation (17) becomes

e(t + 1) = N(t)e(t) +
[
(I − L(t + 1)H(t + 1)) −L(t + 1)

] [
w(t)

v(t + 1)

]
. (25)

The problem is reduced to determine matrix L(t) such that the criterion (5) is minimum. Assume that
(24) is satisfied, then as in (14) the solution of (23b) is given by

L(t + 1) = F̂ (t + 1) + Z(t)Ĝ(t + 1) (26)

where Z(t) is an arbitrary matrix, F̂ (t + 1) = F(t)Σ†(t + 1) and Ĝ(t + 1) = α(t)(I −Σ(t + 1)Σ†(t + 1)).
The choice of the matrix parameter α(t) is given in remark 1.
From (26), the matrix N(t) in (23a) can be written as

N(t) = A(t)− Z(t)B(t) (27)

where A(t) = Φ(t) − F̂ (t + 1)H(t + 1)Φ(t) and B(t) = Ĝ(t + 1)H(t + 1)Φ(t). Then filter (22) can be
written as

x̂(t + 1) = A(t)x̂(t) + E(t)u(t) + F̂ (t + 1)y(t + 1) + Z(t)
(
Ĝ(t + 1)y(t + 1)−B(t)x̂(t)

)
(28)

and equation (25) becomes

e(t + 1) =
(
A(t)− Z(t)B(t)

)
e(t) +

(
I − F̂ (t + 1)H(t + 1)− Z(t)Ĝ(t + 1)H(t + 1)

)
w(t)

−
(
F̂ (t + 1) + Z(t)Ĝ(t + 1)

)
v(t + 1). (29)



Then the propagation of the error covariance is given by

P (t + 1) =
(
A(t)− Z(t)B(t)

)
P (t)

(
A(t)− Z(t)B(t)

)T

+ Q(t)− Z(t)ST(t)− S(t)ZT(t) + Z(t)θ(t)ZT(t) (30)

where

Q(t) =
(
I−F̂ (t + 1)H(t + 1)

)
Q(t)

(
I−F̂ (t + 1)H(t + 1)

)T
+ F̂ (t + 1)R(t + 1)F̂ T(t + 1) (31a)

S(t) =
(
I−F̂ (t + 1)H(t + 1)

)
Q(t)HT(t + 1)ĜT(t + 1)− F̂ (t + 1)R(t + 1)ĜT(t + 1) (31b)

θ(t) = Ĝ(t+1)
(
R(t+1)+H(t+1)Q(t)HT(t+1)

)
ĜT(t+1) (31c)

The minimum variance estimation problem in the presence of the unknown input d(t) is reduced to find
the matrix Z(t) which minimizes the trace of P (t). The result is given by (see for example (Kailath et
al., 2000))

Z(t)=
(
A(t)P (t)BT(t)+S(t)

)(
B(t)P (t)BT(t)+θ(t)

)−1
. (32)

The condition for the existence of Z(t) is that (B(t)P (t)BT(t) + θ(t)) > 0.

Assumption 1. In the sequel, we assume that θ(t) > 0.

Remark 1. From (31c), a necessary condition for θ(t) to be nonsingular is that Ĝ(t + 1) must be of
full row rank, therefore the matrix parameter α(t) must be chosen such that this constraint is satisfied.

Another constraint on the choice of α(t) is that the matrix
[

Σ(t+1)Σ
†
(t+1)

bG(t+1)

]
is of full column rank. This

condition is required for the main results of the paper (see the proof of lemma 4). One choice of this
matrix parameter is the following. Let

Σ(t + 1) = UT(t + 1)
[
Υ(t + 1) 0

0 0

]
V (t + 1)

be the singular value decomposition of matrix Σ(t+1), where Υ(t+1) ∈ IRrΣ×rΣ is a nonsingular matrix
and rΣ is the rank of matrix Σ(t + 1), then

[
Σ(t + 1)Σ†(t + 1)

Ĝ(t + 1)

]
=




UT(t + 1)

[
Ir

Σ
0

0 0

]
U(t + 1)

α(t)UT(t + 1)
[

0 0
0 Ip−r

Σ

]
U(t + 1)



.

We can see that one choice of α(t) is
α(t) =

[
0 Ip−rΣ

]
U(t + 1). (33)

In this case Ĝ(t + 1) = α(t) and
[
Σ(t+1)Σ†(t+1)

Ĝ(t+1)

]
=

[
UT(t+1) 0

0 Ip−rΣ

]


IrΣ

0
0 0
0 Ip−rΣ



U(t+1)

#
Remark 2. If matrix Σ(t+1) is of full row rank, then Σ(t+1)Σ†(t+1) = Ip (and rΣ = p), and we have
Ĝ(t + 1) = 0, B(t) = 0, S(t) = 0 and θ(t) = 0. In this case, the optimal estimator filter (28) becomes

x̂(t + 1) = A(t)x̂(t) + E(t)u(t) + F̂ (t + 1)y(t + 1)

and the propagation of the error covariance is given by the following discrete-time Lyapunov equation

P (t + 1) = A(t)P (t)AT(t) + F̂ (t + 1)R(t + 1)F̂ T(t + 1)

+
(
I−F̂ (t + 1)H(t + 1)

)
Q(t)

(
I−F̂ (t + 1)H(t + 1)

)T
.

#



2.2.2 Optimal predictor filter design
This section considers the case where L(t) = 0, we show that the optimal filter is a predictor one. If
L(t) = 0, then from equations (9), (10) and (11), it is easy to see that the filter (4) can be written as the
following predictor

x̂(t + 1) = N(t)x̂(t) + E(t)u(t) + K(t)y(t) (34)

with
N(t) = Ψ(t + 1)Φ(t)−K(t)H(t) (35a)
K(t)G(t) = F (t). (35b)

The matrix K(t) exists if and only if Im(F T(t)) ⊂ Im(GT(t)) and lemma 1 becomes.
Lemma 3. A sufficient condition for the unbiasedness of the predictor (34) is

rank
[
F (t)
G(t)

]
= rankG(t). (36)

Under condition (36), as in section 2.2.1, the solution of (35b) is parametrized by a matrix Y (t) as follows

K(t) = J(t) = F̃ (t) + Y (t)G̃(t) (37)

where F̃ (t) = F (t)G†(t), G̃(t) = β(t)
(
I −G(t)G†(t)

)
and Y (t) is an arbitrary matrix. The choice of the

matrix parameter β(t) is similar to that of α(t) (see remark 1). From relations (9) and (37), we have
N(t) = Ã(t)− Y (t)B̃(t) (38)

where Ã(t) = Φ(t)− F̃ (t)H(t) and B̃(t) = G̃(t)H(t). Then filter (34) becomes
x̂(t + 1) = Ã(t)x̂(t) + Γ(t)u(t) + F̃ (t)y(t) + Y (t)

(
G̃(t)y(t)− B̃(t)x̂(t)

)
(39)

and equation (7) can be rewritten as
e(t + 1) =

(
Ã(t)− Y (t)B̃(t)

)
e(t) + w(t)−

(
F̃ (t) + Y (t)G̃(t)

)
v(t). (40)

Then the propagation of the error covariance is given by

P (t + 1) =
(
Ã(t)− Y (t)B̃(t)

)
P (t)

(
Ã(t)− Y (t)B̃(t)

)T

+ Q̃(t)− Y (t)S̃T(t)− S̃(t)Y T(t) + Y (t)θ̃(t)Y (t) (41)

where Q̃(t) = Q(t) + F̃ (t)R(t)F̃ T(t), S̃(t) = −F̃ (t)R(t)G̃T(t) and θ̃(t) = G̃(t)R(t)G̃T(t).
The minimization of tr (P (t + 1)) yields the following gain matrix Y (t)

Y (t)=
(
Ã(t)P (t)B̃T(t)+S̃(t)

)(
B̃(t)P (t)B̃T(t)+θ̃(t)

)−1
. (42)

Assumption 2. In the sequel, we assume that θ̃(t) > 0.
Remark 3. As in remark 2, if matrix G(t) is of full row rank, then G(t)G†(t) = I and we have G̃(t) = 0,
B̃(t) = 0, S̃(t) = 0 and θ̃(t) = 0. In this case, the optimal predictor filter (39) becomes

x̂(t + 1) = Ã(t)x̂(t) + Γ(t)u(t) + F̃ (t + 1)y(t + 1)

and the propagation of the error covariance is given by the following discrete-time Lyapunov equation
P (t+1) = Ã(t)P (t)ÃT(t) + F̃ (t+1)R(t+1)F̃ T(t+1) + Q(t).

#
Remark 4.

(i) For F (t) = 0 and G(t) = 0, conditions (24) and (36) are verified. Then the obtained filter (22) is
the Kalman estimator one, while the obtained filter (34) is the Kalman predictor one (Anderson
and Moore, 1979). In this case we obtain

• F̂ (t) = 0 and Ĝ(t + 1) = α(t) with det(α(t)) %= 0,
• F̃ (t) = 0 and G̃(t) = β(t) with det(β(t)) %= 0.

(ii) Condition (24) generalizes the one obtained by (Kitanidis, 1987; Darouach and Zasadzinski, 1997)
in the case where G(t) = 0. In this case, these conditions become necessary and sufficient.

(iii) It is easy to see that the obtained estimator and predictor filters are independent from the matrix
parameters α(t) and β(t). #



3 Time-invariant case
In this section, we study the asymptotic properties of the optimal filters of section 2. We consider the
following time-invariant system

x(t + 1) = Φx(t) + Γu(t) + Fd(t) + w(t) (43a)
y(t) = Hx(t) + Gd(t) + v(t) (43b)

where w(t) and v(t) are uncorrelated white noises sequences of zero-mean and covariance matrices Q ! 0
and R ! 0 respectively. The initial state x0 is of mean x0 and covariance P0, and is independent of w(t)
and v(t).
As in section 2.2, we shall consider the optimal estimator filter and the extension to the optimal predictor
filter is treated in remark 7.
Assume that (24) is satisfied, i.e. that the following assumption holds.
Assumption 3. We assume that θ > 0 and, with Σ = [HF G],

rank Σ = rankF + rank G (44)

In this case, from the results of section 2.2.1, the minimum variance estimator filter becomes

x̂(t+1)=
(
A−Z(t)B

)
x̂(t)+E(t)u(t)+

(
F̂ +Z(t)Ĝ

)
y(t+1) (45)

with A = Φ− F̂HΦ, B = ĜHΦ, Ĝ = α(I −Σ Σ†), E(t) = (I − (F̂ + Z(t)Ĝ)H)Γ, F̂ = FΣ†, F = [F 0],
Z(t) = (AP (t)BT + S)(BP (t)BT + θ)−1, Q = (I − F̂H)Q(I − F̂H)T + F̂RF̂ T , θ = Ĝ

(
R + HQHT

)
ĜT ,

S = (I − F̂H)QHT ĜT − F̂RĜT and

P (t + 1) =
(
A− Z(t)B

)
P (t)

(
A− Z(t)B

)T + Q− Z(t)ST − SZ
T (t) + Z(t)θZT (t) (46)

where the matrix parameter α is chosen as in remark 1.
Now define the following matrices As = A − Sθ−1B, Qs = Q − Sθ−1ST and G = [0 G]. Before giving
the asymptotic properties of the filter (45), we need to prove the following lemmas.

Lemma 4. Under assumption 3, the pair (As, B) is detectable if and only if

rank
[
zI − Φ −F

H G

]
=n+rank

[
F
G

]
=n+rankF +rankG, ∀z ∈ C, |z| ! 1. (47)

Proof. First, it is easy to see that the pair (As, B) is detectable if and only if the pair (A, B) is detectable.
On the other hand, since matrix

[
Σ Σ †

bG

]
is of full column rank, we have,

rank
[
zI − Φ −F

H G

]
= rank

[
I 0

z−1H z−1I

] [
zI − Φ −F 0

HΦ HF G

]


I 0 0
0 I 0
0 0 zI





= rank




I F̂

0 Ĝ

0 Σ Σ†




[
zI − Φ −F 0

HΦ HF G

][
I 0

−Σ†
HΦ I

]

= rank
[
zI −A

B

]
+ rank Σ, ∀z ∈ C, |z| ! 1.

Using lemma 2, lemma 4 is proved.

Lemma 5. Under assumption 3, the existence of an unreacheable mode λ of (As, Q
1/2
s ) on the stability

boundary is equivalent to the existence of a row vector µ %= 0 such that

µ

[
Φ− λI −F Q1/2 0
−λH G 0 R1/2

]
= 0. (48)



Proof. Let λ be an unreachable mode of (As, Q
1/2
s ), then there exists a row vector ' %= 0 such that

'As = λ' (49a)
'Q

1/2
s = 0 (49b)

where Q
1/2
s =

[
I −Sθ−1

]
[
I − F̂H −F̂

ĜH Ĝ

] [
Q1/2 0

0 R1/2

]
.

From (44) in assumption 3 and by using (13) and the definitions of As, F̂ , Ĝ, equations (49a) and (49b)
can be written as

µ

[
Φ− λI −F Q1/2 0
−λH G 0 R1/2

]
= 0

where µ = '
[
I −Sθ−1

]
[
I − F̂H −F̂

ĜH Ĝ

]
, which is the desired result.

The above Riccati difference equation (RDE) (46) can be written as

P (t+1)=
(
A−Ẑ(t)B

)
P (t)

(
A−Ẑ(t)B

)T
+Ẑ(t)θẐT(t)+Qs (50)

where Ẑ(t) = Z(t)− Sθ−1, and its associated algebraic Riccati equation (ARE) is

P =
(
A− Ẑ B

)
P

(
A− Ẑ B

)T
+ ẐθẐT + Qs (51)

where Ẑ = Z − Sθ−1.
Then, from the above results and from the well-known results on the stability and convergence of the
standard Kalman filter (Anderson and Moore, 1979; de Souza et al., 1986), we can give the convergence
and the stability for the unknown input estimator filter (45) for the time-invariant system (43).
Theorem 1. Under assumption 3, with P0 > 0, the sequence P (t) generated by (50) converges exponen-
tially to the stabilizing solution P of the algebraic Riccati equation (51) if and only if

rank
[
zI−Φ −F 0

H 0 G

]
= n + rank F + rank G, ∀z ∈ C, |z| ! 1, (52)

rank
[
Φ−ejωI −F Q1/2 0
−ejωH G 0 R1/2

]
= n + p, ∀ω ∈ [0, 2π]. (53)

Remark 5. Conditions (52) and (53) generalize those given by Darouach and Zasadzinski (1997). Indeed,
for G = 0, condition (52) becomes

rank
[
zI − Φ −F

H 0

]
= n + rank F, ∀z ∈ C, |z| ! 1,

and condition (53) can be written as

rank
[
Φ− ejωI F Q1/2 0

ejωH 0 0 R1/2

]
= n + p, ∀ω ∈ [0, 2π].

#
Remark 6. As shown in remark 2, if matrix Σ is of full row rank, then Σ Σ† = I and we have Ĝ = 0,
B = 0, S = 0 and θ = 0. In this case, the optimal estimator filter (45) becomes

x̂(t + 1) = Ax̂(t) + Eu(t) + F̂ y(t + 1)

and the propagation of the error covariance is given by the following discrete-time Lyapunov equation

P (t + 1) = AP (t)AT + F̂RF̂ T +
(
I − F̂H

)
Q

(
I − F̂H

)T
.

From lemma 4, A is a stability matrix. #



Remark 7 (Optimal predictor). Assume that θ̃ > 0 and rank
[

F
G

]
= rank G. Then, from the results of

section 2.2.2, the optimal predictor filter for system (43) is given by
x̂(t + 1)=Ãx̂(t)+Γu(t)+F̃ y(t)+Y (t)

(
G̃y(t)−B̃x̂(t)

)
(54)

with Ã = Φ − F̃H, B̃ = G̃H, F̃ = FG†, G̃ = β(I − GG†), Y (t) = (ÃP (t)B̃T + S̃)(B̃P (t)B̃T + θ̃)−1,
Q̃ = Q + F̃RF̃ T , S̃ = −F̃RG̃T , θ̃ = G̃RG̃T ,

P (t + 1) =
(
Ã− Y (t)B̃

)
P (t)

(
Ã− Y (t)B̃

)T
+ Q̃− Y (t)S̃T − S̃Y T(t) + Y (t)θ̃Y T(t) (55)

where the matrix parameter β is chosen as in remark 1.
Define the algebraic Riccati equation (ARE)

P =
(
Ã− Y B̃

)
P

(
Ã−Y B̃

)T
+Q̃−Y S̃T−S̃Y T +Y θ̃Y T (56)

associated with the Riccati difference equation (55), where Y = (ÃP B̃T + S̃)(B̃P B̃T + θ̃)−1.
The stability and the convergence of the optimal predictor filter are guaranteed if and only if

rank
[
zI − Φ −F

H G

]
= n + rank

[
F
G

]
, ∀z ∈ C, |z| ! 1,

rank
[
Φ− ejωI −F Q1/2 0
−H G 0 R1/2

]
= n + p, ∀ω ∈ [0, 2π].

#
4 Numerical example
In this section, we present a numerical example in order to illustrate the effectiveness of the obtained
results. Consider the estimation problem of the discretized DC motor system given in (Park et al., 2000).
This system is described by the linear discrete-time stochastic time-invariant system (43) where

Φ=
[
−0.0005 −0.0084
0.0517 0.8069

]
,Γ=

[
0.1815
1.7902

]
, F =

[
0.0129 0
−1.2504 0

]
,

Q=
[
0.0036 0.0342
0.0342 0.3249

]
,H =

[
1 0
0 1

]
, G=

[
0 0
0 1

]
and R=

[
0.01 0
0 0.16

]
.

Assumption 3 and theorem 1 hold since
rank Σ = rankF + rank G = 2

rank
[
zI − Φ −F 0

H 0 G

]
= 2 + rankF + rank G, ∀z ∈ C, where z %= 0 and z %= −0.0073

rank
[
Φ− ejωI −F Q1/2 0
−ejωH G 0 R1/2

]
= 4, ∀ω ∈ [0, 2π].

Since matrix Σ is of full row rank, we can choose the parameter matrix α as α = [ 1 0
0 1 ] and we have

N = A and B = 0 as shown in remark 6.
We have taken as initial condition P0 = [ 10 0

0 200 ] for the discrete-time Lyapunov equation given in remark 6
and the discrete-time Lyapunov equation converges to the solution P of the algebraic Lyapunov equation
given by

P =
[

0.01 −0.9693
−0.9693 134.7406

]
.

The results of section 3 applied to this problem give the following filter matrices

N =
[

0 0
0.0032 −0.0073

]
, J =

[
0 0

0.7122 0

]
, E =

[
0

19.3890

]
and L =

[
1 0

−96.9302 0

]
.

In accordance with lemma 4, the filter matrix N has two fixed modes given by z1 = 0 and z2 = −0.0073
which satisfy the following equality

rank
[
zI − Φ −F 0

H 0 G

]
= 1 + rank F + rank G, for z = z1 = 0 and z = z2 = −0.0073.

Figure 1 presents the known input u(t) and the unknown input d(t). In figures 2 and 3, we have plotted
the actual state x(t) and the estimated state x̂(t). Convergence of the trace of P (t) is shown in figure 4.



5 Conclusion
In this paper, we have extended the minimum variance estimation for linear stochastic discrete time-
varying systems with unknown inputs to the general case where the unknown inputs affect both the
model and the measurements. The necessary and sufficient conditions for the existence of the filter are
derived. Unlike existing approaches where the unknown inputs are assumed to be stochastic processes
with known wide-sense description, the optimal filtering presented does not assume any knowledge con-
cerning the model of these inputs. Based on the independence of the estimation error and the system
and measurement noises, optimal estimator and predictor filters are proposed. Sufficient conditions for
their stability are derived for the time-invariant case.
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Figure 1: Known input u(t) and unknown input d(t).

 

Figure 2: Actual state x1(t) and estimated state x̂1(t).

 

Figure 3: Actual state x2(t) and estimated state x̂2(t).
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Figure 4: Trace of the estimation covariance P (t).


