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Abstract

We present results on changing supply rates for input-output to state stable (IOSS) discrete-time nonlinear systems. Our
results can be used to combine two Lyapunov functions, none of which can be used to verify that the system has a certain
property, into a new composite Lyapunov function from which the property of interest can be concluded. The results are
stated for parameterized families of discrete-time systems that naturally arise when an approximate discrete-time model is
used to design a controller for a sampled-data system. We present several applications of our results: (i) a LaSalle criterion for
input to state stability (ISS) of discrete-time systems; (ii) constructing ISS Lyapunov functions for time-varying discrete-time
cascaded systems; (iii) testing ISS of discrete-time systems using positive semidefinite Lyapunov functions; (iv) observer-based
input to state stabilization of discrete-time systems. Our results are exploited in a case study of a two link manipulator and
some simulation results that illustrate advantages of our approach are presented.
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1 Introduction

The Lyapunov method is one of the most important
and useful methods in stability analysis and design of
nonlinear control systems (see [15,16,28]). A very useful
method for a partial construction of Lyapunov functions
was discussed in [31] where it was shown how it is possi-
ble to combine two Lyapunov functions, none of which
can be used to conclude a property of interest, into a new
composite Lyapunov function from which the desired
property follows. Results in [31] apply to the analysis
of input to state stability (ISS) property of continuous-
time cascade-connected systems. In [1] a similar proof
technique was used to combine a Lyapunov function
whose derivative is negative semidefinite and another
Lyapunov function that characterizes a detectability
property, which is called input-output to state stabil-
ity (I0OSS) (see [32]), into a new Lyapunov function
from which ISS of a continuous-time system follows. A
discrete-time counterpart of results in [31] was presented
in [26]. These results and proof techniques were used in
discrete-time backstepping [25], stability of continuous-
time cascades [3,31], stability of discrete-time cascades
[26], continuous-time stabilization of robot manipu-
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lators [1] and L, stability of time-varying nonlinear
sampled-data systems [37]. A related Lyapunov based
method for interconnected ISS continuous-time systems
satisfying a small-gain condition can be found in [11].

The main purpose of this paper is to extend the results
from [1,26,31] so that they apply to families of discrete-
time systems parameterized by a positive parameter
(sampling period). We consider a particular type of
semiglobal practical stability properties of the parame-
terized discrete-time systems that arise naturally when
approximate discrete-time models are used to design
controllers for sampled-data nonlinear systems. The
stability properties we consider depend in a very par-
ticular manner on the parameter and, in particular,
they are not uniform in the parameter. Motivation for
our approach is presented in the next section and more
information can be found in [22-25,27].

Another important contribution of our work is that we
present a unifying framework that allows us to con-
sider a range of seemingly unrelated results in a unified
manner. We are not aware of any similar unification for
continuous-time systems and in this sense our approach
may have important implications even in continuous-
time. Our main results immediately apply to: (i) a
LaSalle criterion for ISS of discrete-time systems (see
also [1]); (ii) constructing ISS Lyapunov functions for
time-varying discrete-time cascade-connected systems
(see also [10,12,26,31)); (iii) testing ISS of discrete-time
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systems using positive semidefinite Lyapunov functions
(see also [5,9]); (iv) observer-based input to state stabi-
lization of discrete-time systems (see also [13,14]). We
emphasize that our results have potential for further
important applications and the case study presented at
the end of the paper illustrates how some of our results
may be used for sampled-data controller design. Main
results of this paper, applications and case study are
respectively presented in Section 4, 5 and 6. The proofs
of main results are provided in the Appendix.

2 Background and motivation

Most control systems are nowadays sampled-data in
nature. Indeed, the controller is usually implemented
digitally using a computer and it is inter-connected
with a continuous-time plant via D/A and A/D con-
verters. Since it is in general impossible to compute the
exact discrete-time model of a continuous-time non-
linear plant, approximate discrete-time models such
as Euler, are often used for control design. This ap-
proach was taken, for instance, in [6,8,19,29] for several
special classes of systems. Recently, a general unified
framework for controller design based on approximate
discrete-time models was presented in [23,27] for the
stabilization problem and further generalized in [22] for
the input to state stabilization problem and in [21] for
integral input to state stabilization problem. Advan-
tages of this approach were illustrated in [25] where it
was shown that the Euler based backstepping controller
may outperform the emulated backstepping controller.

It is the main purpose of the current paper to further
contribute to the approach that was pursued in [21-
23,27]. In order to motivate stronger our contribution,
we present a result from [22] on input to state stabiliza-
tion via approximate discrete-time models that is also
needed in Section 6. Our interest in input to state sta-
bilization is motivated by numerous applications of this
robust stability property that have appeared in the lit-
erature [10,16,30,33].

Consider a continuous-time nonlinear plant >
o(t) = flz(t),u(t),w(?); y)=h(z(t), (1)

where z € R?=, u € R™, w € R? and y € R are respec-
tively the state, control input, exogenous disturbance
and output. We assume that for any given xg, u(-) and
w(-) the differential equation in (1) has a unique solu-
tion defined on its maximal interval of existence [0, tax)-
This may be guaranteed, for instance, by requiring f in
(1) to be locally Lipschitz. The control is taken to be a
piecewise constant signal u(t) = w(kT) =: u(k), Vt €

® For any unfamiliar notation, readers are referred to the
next section.

[kT,(k + 1)T), k € N, where T > 0 is the sampling
period. Suppose that the disturbance w(-) is constant
during sampling intervals, that is w(t) = w(k),Vt €
[kT,(k + 1)T) (a more general situation when w(-) is
an arbitrary measurable disturbance was considered in
[22]). Also, we assume that some combination (output)
or all of the states (z(k) := x(kT)) are available at sam-
pling instant k7", k € N. The exact discrete-time model
for the plant (1), which describes the plant behavior at
sampling instants k7', is obtained by integrating the ini-
tial value problem

&(t) = f(x(t), u(k), w(t)), (2)

with given w(k), u(k) and zg = x(k), over the sampling
interval [KT, (k + 1)T']. If we denote by z(t) the solution
of the initial value problem (2) at time ¢ with given zg =
z(k), u(k) and w(k), then the exact discrete-time model
of (1) can be written as:

(k+1)T

s+ )=o)+ [ Sl uk) o) g

=: Fr(z(k), u(k), w(k)).

We emphasize that Fj. is not known in most cases. In-
deed, in order to compute F;j: we have to solve the initial
value problem (2) analytically and this is usually impos-
sible since f in (1) is nonlinear. Hence, we will use an
approximate discrete-time model of the plant to design
a discrete-time controller for the original plant (1).

Different approximate discrete-time models can be ob-
tained using different methods, such as a classical Runge-
Kutta numerical integration scheme (such as Euler) for
the initial value problem (2) [20,34]. The approximate
discrete-time model can be written as

2(k +1) = Fp(e(k), u(k), w(k)). (4)

For instance, the Euler approximate model is z(k+1) =
x(k)+T f(x(k),u(k), w(k)). The sampling period T is as-
sumed to be a design parameter which can be arbitrarily
assigned. Since we are dealing with a family of approx-
imate discrete-time models Ff, parameterized by T, in
order to achieve a certain objective we need in general
to obtain a family of controllers, also parameterized by
T. We consider a family of dynamic feedback controllers

z(k+1) = Gr(z(k), z(k)); u(k) = ur(z(k), 2(k)), (5)
where z € R"=,

We emphasize that if the controller (5) input to state
stabilizes the approximate model (4) for all small T,
this does not guarantee that the same controller would
approximately input to state stabilize the exact model
(3) for all small T' (see [4,7,27]).



The following result provides a framework for controller
design via approximate discrete-time models:

Theorem 2.1 [22] Suppose that there exist a,a,a €
K and o € K, and for any strictly positive real num-
bers (A1, Ay, Az, v) there exist 9 € Koo, strictly positive
real numbers T*, L, M such that for all T € (0,T*) there
exists a function Vp : R"»*"= — Rsq such that for all
I(z,2)| < Ay, Ju] < As, lw| < Az, T € (0,T*) we have:
¢ SP-ISS Lyapunov conditions for closed-loop ap-
proximate:

a(|(z,2)]) < Vr(z, z) <a(|(z,2)]) (6)
Vo (Fr(z, ur (2, 2), w), Gr(z, 2)) = Vr(z, 2)

<7(-all@2))+olu)+v), (@

<
T

and, moreover, for all T € (0,T*) and all z1, x4,z with
max{|(z1,2)|, (22, 2)|} < A

\Vr(z1,2) — Vp(z2,2)| < Lz — ). (8)

e consistency between F} and Fj:
|ES (2, u, w) — Bf(z,u,w)| < To(T).
¢ uniform local boundedness of uy:
lur(z,2)] < M.

Then, there exists B € KL,y € G such that for any
strictly positive real numbers (&1, &2, V) there exists T >
0 such that for all |(z(0), 2(0))| < Ay, lw]| < A, and
T € (0,T) the solutions of (3), (5) satisfy:

e SP-ISS of closed-loop exact: |(z(k),z(k))| <
B(|(2(0),2(0))] . kT) + v ([[wll ) + v, ¥k > 0. u

We emphasize that the consistency condition in Theo-
rem 2.1is checkable although F} is not known in general.
This condition is commonly used in numerical analysis
literature [34]. The conditions (6),(7) of Theorem 2.1 are
hard to check in general and one of the main contribu-
tions of the current paper is in presenting technical re-
sults that can be used to verify that conditions equivalent
with (6),(7) hold for a family of parameterized discrete-
time systems. These technical conditions can be then
used in conjunction with Theorem 2.1 to design input to
state stabilizing controllers for sampled-data nonlinear
plants via their approximate discrete-time models. This
approach is illustrated in Section 6 where we consider
input to state stabilization of a two link manipulator via
its Euler approximate discrete-time model.

3 Preliminaries

The set of real and natural numbers (including 0) are
denoted respectively by R and N. SA denotes the class of
smooth nondecreasing functions ¢ : R>9 — R>¢, which
satisfy g(t) > 0 for all ¢ > 0. A function v : R>g — Rxg

is of class G if it is continuous, nondecreasing and zero
at zero. It is of class K if it is of class G and strictly
increasing; and it is of class K if it is of class K and
unbounded. Functions of class K, are invertible. Given
two functions «(+) and ¥(-), we denote their composition
and multiplication respectively as aov(-) and a(:) -v(+).
|z| denotes the 1-norm of a vector x € R™, that is |z| :=

i il

Motivated by the discussion on the previous section, we
consider a parameterized family of discrete-time nonlin-
ear systems of the following form:

z(k+1) = Fr(z(k),u(k)) (9)
y(k) = h(z(k))

where z € R", u € R™, y € R are respectively the
state, input and output of the system. It is assumed that
Fr is well defined for all z, u and sufficiently small T,
Fr(0,0) = 0 for all T for which Fr is defined, h(0) = 0
and Fr and h are continuous. 7' > 0 is the sampling
period, which parameterizes the system and can be ar-
bitrarily assigned. Non-parameterized discrete-time sys-
tems are a special case of (9) when T is constant (for
instance T' = 1). The following definition is a very com-
pact way of defining various different properties to which
our results apply.

Definition 3.1 The system (9) is (Vr,a,@,a, )\, 0)-
semiglobally practically input-output to state stable
((Vr,a,a,a,\,0)-SP-I0SS)  with measuring func-
tions, if there exist functions a, @, a € Ko, and A,
o € G, functions w, : R* = R, wy : R* — R,

ot R 5 R% wy : R* - R™, w, : R — R,
w, : R* = R, w, : R™ — R™, and for any triple
of strictly positive real numbers A,, A, v, there exists
T* > 0 and for all T € (0,T*) there exists a smooth
function Vr : R — R>q such that for all |w, ()] < A,
|wy (u)| < A, the following holds:

a(|wz(z)]) (10
(2)])
W)+ Tw.  (11)

a(jwa(z)|) < Vr(z) <
Vr(Fr(z,u)) — Vr(z) < —Ta(|lw,
+TA(Jwa(z)]) + To(|we (u

The functions wa , Wa, Wa, Wx, We, Wy and w, are called
measuring functions; a, @, a, A, o are called bounding
functions; a, X\, o are called supply functions; and Vr is
called a SP-I0SS Lyapunov function. If T* > 0 exists
such that (10) and (11), with v = 0, hold for all T €
(0,T%), x € R*, u € R™, the property holds globally and
the system (9) is (Vp,a, @, a, A, 0)-10SS with measuring
functions. [ |

Often, when all functions are clear from the context, we
refer to the property defined in Definition 3.1 as SP-
IOSS (or I0OSS if the property holds globally). More-
over, if the system is SP-IOSS (respectively I0SS) with



A = 0 then we say that the system is SP-ISS (respec-
tively ISS). SP-IOSS with measuring functions is quite
a general notion that covers a range of different prop-
erties of nonlinear discrete-time systems, such as sta-
bility, input to state stability, detectability, output to
state stability, etc. For example, by letting A = 0,0 =0
and w, () = wg(z) = wa(z) = z, we obtain the stan-
dard Lyapunov characterization for asymptotic stability
of (9). By letting A = 0, wy(z) = wg(z) = wa(x) = z,
and w, (u) = u, we obtain a Lyapunov characterization
for (semiglobal practical) ISS. The reason for introduc-
ing such a general property in Definition 3.1 is that we
will apply our results to a range of its different special
cases (see Section 4) for particular choices of A, ¢ and
the measuring functions.

When using the SP-IOSS property of Definition 3.1 to
check if a certain property (such as stability, input to
state stability or some other special cases of SP-IOSS
property) holds, one usually needs to have that all
bounding functions and the corresponding measuring
functions satisfy appropriate conditions. For example,
if we want to check global asymptotic stability of the
origin of the input-free system (9) then we need to have:

a(|wz(z)|)

Ta(wa(@)), 2

<
<

for all z € R® and T € (0,7*), for some T* > 0; a, & €
K~ and « is positive definite; ‘wg(a:)| is positive definite
and radially unbounded; and |w, ()| is positive definite.

4 Main results

In this section, we state our main results, which consist
of two main theorems (Theorems 4.1 and 4.2), where
we show two partial constructions of a SP-IOSS Lya-
punov function from two auxiliary Lyapunov functions.
Several special cases following from our main results are
presented as corollaries. We first present Lemma 4.1,
which is instrumental in proving our main results. The
lemma is a discrete-time version, as well as a general-
ization, of the lemma on changing supply rates for IOSS
continuous-time systems in [1]. Lemma 4.1 also general-
izes the result of [26] on changing supply rates for ISS
discrete-time systems. We use the following construc-
tion that has also been used in [1,31]. Given an arbitrary
q € SN, we define:

pls) = / g(rydr, (13)

where it is easy to see that p € K and p is smooth.
Suppose that we have a SP-IOSS Lyapunov function Vp
for a system, and consider a new function p(Vr). Lemma
4.1 states the conditions under which the new function
is also a SP-IOSS Lyapunov function for the system.

Lemma 4.1 Let the following conditions be satisfied:
1. System (9) is (Vr,a,a,a,\,0)-SP-I0SS with mea-
suring functions Wa, Wa, Wa, Wi, W, We GNA W,y.

2. There exist k, K € Koo such that k(Jwy (x)]) < |wg(a:)‘
and |wg(z)| < B(lwa(z)]), Vo € R™.

3. For any strictly positive real numbers A, A, there ex-
ist strictly positive real numbers M and T such that

o (2)] < A fwa ()] < Ay, T € (0,T) = (14)
max{ jwe(Fr (¢, u))], lwa(@)], [w ()], [w, ()]} < M.

Then for any q € SN and p € Ko defined by (13)
there exist o/, @', o', X', o' such that the system (9) is
(p(Vp), o, @, a', X', ¢')-SP-I0SS with the same measur-
ing functions, where o/(s) = poa(s), @'(s) = poa(s),
o(s) = gq0 5a0k(s) - als), N(s) = 2g 0 0x(s) - A(s),
o'(s) = 2qof,(s)-0(s),0,(s) := aokoa~todo(s)+20(s)
and 05 (s) ;=aokoa todA(s) + 2)(s). [ |

Lemma 4.1 provides us with some flexibility when con-
structing a SP-IOSS Lyapunov function Vp from two
Lyapunov functions as what we will do in Theorems
4.1 and 4.2. We prove the result for semiglobal practi-
cal TOSS since this is a property that naturally arises
when an approximate discrete-time model is used for
controller design of a sampled-data nonlinear systems
(see Example 6 in the next section). Some of the condi-
tions of Lemma 4.1 are rather technical but they were
considered in order to prove the result in a considerable
generality that allows us to unify presentation of several
different results.

Remark 4.1 It is instructive to discuss the third condi-
tion of Lemma 4.1 since it appears to be the least intuitive.
Let us first consider stability of the origin of the input-
free system (9). In this case, the conditions (12) need to
hold and we can assume without loss of generality that
we(x) = wg(r) = wa(z) = we(x) = x. In this case the
third condition of Lemma 4.1 holds if Fr(z,0) is bounded
on compact sets, uniformly in T € (0,T*). This holds if
Fr(0,0) =0 for all T € (0,T*) and Fr(z,0) is contin-
wous in x, uniformly in T € (0,T*). This condition is
rather natural to use and it is often assumed in the liter-
ature (see for instance [12]). Suppose now that (12) hold
with wy (7) = wg(z) = wa (z) = w,(z) = |x| 4, where A
is a non-empty closed set. In this case, the condition 3 of
Lemma 4.1 requires that for any A, there exists M and
T* such that
|x|_,4 S Am,T € (O,T*) = |FT(:E70)‘A S M.

This condition also appears to be natural and similar con-
ditions have been used in the literature [35]. ]

We can also state a similar result to Lemma 4.1, when the
TIOSS property holds globally, that is when the system
(9) is (Vp,a, @, a, A\, 0)-I0SS with measuring functions.
It is interesting that in this case the third condition of
Lemma 4.1 is not needed to prove the result.



Corollary 4.1 Let the following conditions be satisfied:
1. System (9) is (Vr,a, @, a, X, 0)-10SS with measuring
functions wa, Wx, Wa, W and We.

2. There exist K,k € Koo such that k(|ws (2)]) < |wg(z)|
and |wg(z)| < B(lwa(z)]), Vo € R™.

Then for any q € SN and p € Ko defined by (18)
there exist o', @', o', X', o' such that the system (9)
is (p(Vr), o, @, o', N, 0')-I0SS with the same measur-
ing functions, where o/, @', a', X', 0’ are the same as in
Lemma 4.1. [ ]

We present our main results below. Note that Theorem
4.1is a discrete-time version, as well as generalization, of
the continuous-time results in [1], whereas Theorem 4.2
has appeared in a simpler form in [26], which is a discrete-
time version of [31], when A = 0, wy(z) = wg(z) =
we () = 2, wy(u) = u and all properties hold globally.

Theorem 4.1 Suppose that:
1. system (9) is (Vir,aq, @1, a1,01)-SP-ISS with mea-
suring functions Wa ; Way, Way, Wy s Wy s Wy, ;

2. system (9) is (Var, s, @2, a2, A2, 02)-SP-I0SS with
measuring functions Wa,, Ways Way; Wrys Woy s Way, Way,
and there exist K,, ke € Koo, such that the second and
third conditions of Lemma 4.1 hold;

3. there exist y1,72,73 € Koo such that |w,(z)]
(W (@))), [0y @] < 20 (@), 0y ()

v3(Jwy, (u)]) for allz € R*, u € R™;

4. limsup,_, 2?8 < H4oc.

Then there exists p € Ko such that the system (9) is
(Vr,a, @, a,0)-SP-ISS with new measuring functions
wg; Wg;, Wa, Wo, Wy, Wy, where

<
<

Ve = Vir + p(Var), (15)

and the new measuring functions are

wa(z) = |wa, ()] + |wa, (2)] ; wa (@) = |wa, (z)],
wg(r) = |wg, ()] + |wa, (2)], wa(2) = ws, (), (16)
Wy (u) 1= |[Wo, (U)| + |We, (w)] , Wy (u) 1= Wy, (u).

Remark 4.2 In order to carry out the construc-
tion given in Theorem 4.1, the measuring func-
tions for Vit and Vor have to satisfy condition 3
of the theorem. Indeed, some measuring functions
of Vir have to “match” certain measuring functions
of Vor. To better understand these conditions, we
consider a system with the output y = h(z). For
simplicity, let \y = o1 = o3 = 0. Suppose that
wo, (z) = wg, (v) = wa, () = wa, () = way(2) ==
andwy, () = wq, (x) = y. Inthis case, condition 3 holds.
This is a familiar situation where the first difference of
Vir is negative semidefinite, that is AVip < —Tay(|yl).
Moreover, Var satisfies AVar < —Tas(|z]) + TAa(|y]),
which is a particular detectability property of the system
w.r.t the output y. More examples and important special
cases are presented in Section 5. [ |

In the next result, we consider a stronger condition for
the Lyapunov function Vi, so that we can relax the
condition 4 of Theorem 4.1.

Theorem 4.2 Suppose that:

1. system (9) is (Vir,a,, @1, a1,01)-SP-ISS with mea-
suring functions Wy , Wz, , Wa,, Wey, Way, Wy, and there
exist ki, k1 € Ko, such that the second and third condi-
tions of Lemma 4.1 hold;

2. system (9) is (Var, s, @, s, A2, 09)-SP-I0SS with
measuring functions Wa,, Way, Ways Wrys Ways Ways Way
and there exist k,,R2 € Koo, such that the second and
third condition of Lemma 4.1 hold;

3. the item 8 of Theorem 4.1 holds;

Then there exist p1,p2 € Koo such that the system (9)
is (Vr,a,a, a,0)-SP-ISS with new measuring functions
Wq; Wqa; Wa; We, Wy, Wy, where

Vr = pr(Vir) + p2(Var), (17)

and the new measuring functions are w, , Wg, Wy, Wy and

wy are given in (16) and wy (x) := |wq, ()| +|wa, (x)]. W

Remark 4.3 We note that in Theorems 4.1 and 4.2 we
concentrate only on verifying conditions similar to (6),
(7). However, we note that if the functions Vip and Vap
satisfy the local Lipschitz condition (8), then the new
Lyapunov function constructed using either (15) or (17)
would also satisfy the local Lipschitz condition. Hence,
results of Theorem 4.1 and 4.2 can be used to verify the
first condition of Theorem 2.1. Additionally, since we
assume that q1(-) and q2(-) are smooth, then if Vir and
Vor are smooth functions, then so is V. Having smooth
Vi is important in some cases, such as in the design using
backstepping [25]. |

Note that the main difference between Theorems 4.1 and
4.2 is that in Theorem 4.1 we cannot apply Lemma 4.1 to
the Lyapunov function Vjp, since the second and third
conditions of the lemma do not hold. Consequently, we
need an extra condition on the bounding functions (con-
dition 4 in Theorem 4.1) and we use a less general con-
struction (15) than in Theorem 4.2 where we use (17).
As a consequence of Corollary 4.1, we can also state
global versions of Theorems 4.1 and 4.2, if both Vi and
Var characterize I0SS properties of the system (9) in a
global sense.

Corollary 4.2 Suppose that all conditions of Theorem
4.1 hold globally. Then, there exists p € Koo such that
the system (9) is (Vr,a, &, a, 0)-1SS where Vi is given
by (15) and the new measuring functions wy, wg, Wa,
Wy, Wy, Wy are given in Theorem 4.1. B [ |

Corollary 4.3 Suppose that all conditions of Theorem
4.2 hold globally. Then, there exist p1, pa € Ko such that
the system (9) is (Vr,a, &, a, 0)-1SS where Vi is given
by (17) and the new measuring functions wa, Wg, Wa,
Wy, Wy, Wy are given in Theorem 4.2. [ ]



5 Applications

In this section we show how our results can be special-
ized to deal with several important situations. We also
emphasize that our results are quite general and they
have potential for other applications. We only include
the proof of Corollary 5.1, since the proofs of other Corol-
laries in this section follow similar steps.

5.1 A LaSalle criterion for SP-1ISS

In this subsection, we present a novel result which is a
discrete-time version of the continuous-time result pre-
sented in [1]. This result is a direct consequence of The-
orem 4.1. We use this result for the case study in Section
6 to design a digital controller for a two link manipulator
via its Euler approximate model.

We recall the quasi input to state stability (qISS) prop-
erty and input output to state stability (IOSS) property
from [1], and recall the condition

lim sup Aa(5)
s—+oo Q1 ()

< +4oc, (18)

that has been used in the result of [1]. Using Theorem 4.1
we can state a semiglobal practical version of this result
for parameterized discrete-time systems (9). In particu-
lar, we show that semiglobal practical qISS, semiglobal
practical IOSS and the condition (18) imply semiglobal
practical ISS. We use the following assumption:

Assumption 5.1 For any strictly positive real numbers
A,, Ay there exist strictly positive real numbers M and
T* such that |z|] < A, |u] < A, T € (0,T*) implies
Pr(z,u)| < M. .

We state now a discrete-time version of the result in [1].

Corollary 5.1 Consider the system (9). Suppose that

Assumption 5.1 holds, and there exist a;, @1, a1, @y, @2, a2 €

Koo, and o1, X2, 09 € G such that:

1. for any triple of strictly positive real numbers
(Ag, Ay, v) there exists T* > 0 and for any T € (0,T%)
there exist Vir : R® — Rsq and Vor : R — Rsq such
that for all |z| < A, Ju| < Ay, T € (0,T*) we have the
following:

SP-qISS: a;(Jz|) < Vir(z) <@ (|=|)
Vir(Fr) — Vir(z) < T(—aq(ly)) + o1 (Jul) + v).
SP-I0SS: a,(|z]) < Var(z (|=])

< <@
Var(Fr) = Var(z) < T(—aa(|z]) + A (y]) + o2 (|ul) +v).

2. the condition (18) holds.
Then, there exist a, @, € Koo and o € G such that for

any triple of strictly positive real numbers (AI,AU, V)
there exists T > 0 and for any T € (0, T) there ezist
Vr : R* = Rsq such that for all 2| < A,, Jul < Ay,
T € (0,T) we have:
SP-1SS:  a(|z]) < VT( ) < a(|xl)

Vr(Fr) = Vr(z) <T(=a(jz]) + o(|ul) + 7). m

Proof of Corollary 5.1: It can be seen immediately
that all conditions of Theorem 4.1 hold, by noting that:
(i) the system (9) is (Vir,qq, a1, as,o1)-SP-ISS with
measuring functions w, (7) = wg, (z) = ws, () = z,
Way (2) = h@) = y, wp, (1) = W, () = u; (i) the
system (9) is (Var,ay, @, s, A2,02)-SP-I0SS  with
measuring functions wy, (z) = wg,(z) = wa,(v) =
e, (2) = 2, w5, (@) = h(z) = y and wg, (1) = wy, (u) =
uw; the second condition of Lemma 4.1 holds since
Wy, (¥) = wa,(T) = wa,(z); from Assumption 5.1 and
Remark 4.1 we have that the third condition of Lemma
4.1 holds; hence, the second condition of Theorem 4.1
holds; (iii) the third condition of Theorem 4.1 holds since
Wy (2) = Wy (7) = h(2) = g, Wy, (7) = way(z) = 7
and wy, (u) = wy,(u) = u for all z € R*, u € R™;
(iv) the fourth condition of Theorem 4.1 follows triv-
ially from the second condition of the corollary. There-
fore, applying Theorem 4.1 and defining the new SP-
ISS Lyapunov function Vi as in (15), we obtain that
the system (9) is SP-ISS with measuring functions
wa(z) = wa(z) = wa(z) = |2|, we(2) = 2, wo (u) = |ul,
and wy (1) = u. It is obvious that 72 = 3 = Id. Since h
is continuous and h(0) = 0, there exists 73 € Ko such
that |y| < v1(]z|), and this completes the proof. ]

5.2 SP-ISS of time-varying cascade-connected systems

A novel result on SP-ISS for time-varying discrete-time
cascade-connected system is presented in this subsec-
tion. This result is a direct consequence of Theorem 4.2
and it generalizes the main result of [26] in two direc-
tions: (i) the result is stated for semiglobal practical
ISS (only global stability was considered in [26]); (ii)
the result is stated for time-varying cascade-connected
systems (only time-invariant cascade-connected systems
were considered in [26]). We note that similar non Lya-
punov based proof of the same result can be found in
[12] for non parameterized discrete-time systems.

Consider the time-varying discrete-time system:
(19)

where z € R", z € R?* and u € R™. The state of the
overall system is denoted as & := (z7 27)T, & € R",
where n := n, + n.. We will assume the following;:

Assumption 5.2 For any strictly positive real numbers
Az, Ay there exist strictly positive real numbers M and
T* such that

k>0
:>max{|FT(k,$aZaU)‘ |G (k.

W<M  m
The family of systems (19) is not in the form (9) which is

time invariant. However, we can still apply results of our
paper in the following way. We introduce an augmented



time-invariant system in the following way:

z(k +1) = Fr(p(k), z(k), z(k), u(k))
z(k +1) = Gr(p(k), z(k), u(k)) (20)
p(k+1) =p(k) +1,

where p € R is a new state variable. Then it is standard
to show that SP-ISS uniform of the time-varying sys-
tem (19) w.r.t. the origin (z,2) = (0,0) can be deduced
from semiglobal practical ISS of the time-invariant sys-
tem (20) w.r.t. a non-compact set A := {(Z,p) : & = 0}.
Note also that we can write |Z| = |(Z,p)| 4

In the next result we show that SP-ISS Lyapunov func-
tion for the overall system (20) can be constructed from
Lyapunov functions for individual subsystems in (20).
In particular, we can state the following;:

Corollary 5.2 Consider the system (19). Suppose
that Assumption 5.2 holds and there exist a;, @1, a1,
Q,, 02,02 € Ko, and o1,A1,02 € G such that for any
triple of strictly positive real numbers (Az, A,,v) there
exists T* > 0 and for any T € (0,T*) there exist
Vir : R x R — ]R>0 and Vor : R x R?= — ]R>(] such
that for all |Z| < Az, |u| < Ay, p>0,T € (0,T*) we
have the following:
o, (|z]) < Vir(p, ) < @i (|z])

VlT(p + laFT) - VlT(pax

< T(=aa(|z]) + A(lz]) + o1 (|ul) +v),

ay([2]) < Var(p, 2) < @a(|2])
Vor(p+1,Gr) = Var(p, 2) < T(—aa(|2]) + o2 (Jul) +v).

Then, there exist a, @, @ € Ko and o € G such that for
any triple of strictly positive real numbers (&i,ﬁu,ﬁ)
there exists T > 0 and for any T € (O,T) there exist
Vr : RxR™ = Rsq such that for all || < Az, lul <A,
p>0,T € (0,T) we have:
SP-ISS: Q(|j‘) < VT(p,QT,Z) < a(|§?|)
VT(p + 1, Fp, GT) — VT(p, x, Z)
<T(-a(lz]) +o(lu)) +7). =
5.8 SP-ISS via positive semidefinite Lyapunov func-
tions

The problem of checking stability using positive semidef-
inite Lyapunov functions has been considered in [5] for
continuous-time systems and in [9] for discrete-time sys-
tems. The idea is to use a Lyapunov function V(z),
which is positive semidefinite, to check stability of a sys-
tem. An approach taken in [5,9] was to use a trajectory-
based technique to prove stability of the origin of the
system. In particular, besides appropriate conditions on
the Lyapunov function, it was required in [5,9] that all
trajectories in the maximal invariant subset of the set
Z = {x : V(z) = 0} satisfy the e—¢ definition of asymp-
totic stability (this property was referred to as condi-
tional stability to the set Z).

We note that the results on stability of cascade-
connected systems in [26,31] and in the previous subsec-
tion can be interpreted as a special case of testing ISS
using positive semidefinite Lyapunov functions. How-
ever, this approach is different from the one in [5,9] since
an ISS Lyapunov function is constructed explicitly from
ISS and IOSS Lyapunov functions of each subsystem.
The advantage of the approach of [26,31] is that it leads
to a construction of a Lyapunov function for the over-
all system, whereas the disadvantage is that it requires
usually stronger conditions and it appears to apply only
to a special class of cascade-connected systems. How-
ever, we show here that the same approach can be used
with few modifications to test semiglobal practical ISS
of general parameterized discrete-time systems (9) that
are not in the cascade form. In particular, we can state:

Corollary 5.3 Consider the family of systems (9). Sup-
pose that Assumption 5.1 holds and there exist a;, @y, a1,
Qy, 02,02 € Ko, 01,A1,02 € G and positive semidefi-
nite functions Wy : R® — Rsq and Ws : R* — Ry,
with Wi (x) + Wa(z) is positive definite and radially un-
bounded, such that for any triple of strictly positive real
numbers (Ay, Ay, v) there exists T* > 0 and for any T €
(0,T*) there exist Vit : R® = R>g and Vor : R” = Rxg
such that for all |z] < Ay, Ju| < Ay, T € (0,T*) we have
the following:
o (Wi (z)) < Vir(z) < ay(Wi(z))
Vir(Fr) = Vir(z) < T(—a1 (Wi (2))
T (Wa(2)) + o (Jul) +v),

ay(Wa(z)) < Vor(z) <@ (Wa(z))
Vor (Fr) = Vor(z) < T(—ax(Wa(z)) + o2(|ul) +v).

Then, there exist a,a,a € Ko and o € G such that for
any triple of strictly positive real numbers (AI,AU, V)
there exists T > 0 and for any T € (0, T) there ezist
VT : R — Rso such that for all |z| < Aa, lu] < A,
€ (0,T) we have:
SP-ISS: a(lz]) < Vp(z) <a(|z))
Vi(Pr) = Ve(z) < T(=a(je)) +o(ju)) +7). =

5.4 Observer-based input to state stabilization of
discrete-time systems

Observer-based stabilization of discrete-time nonlinear
systems that was considered in [13,14] uses a very sim-
ilar construction to the ones considered in this paper.
It was shown in [13,14] that if a discrete-time plant can
be robustly stabilized with full state feedback (in an ISS
sense) and there exists an observer for the system satisfy-
ing appropriate Lyapunov conditions (that is, the system
is weakly detectable), then the plant is also stabilized
using the controller/observer pair where the controller
uses the state estimate obtained from the observer. Both
local and global results were considered in [13,14].

In this subsection, we show that our results, particu-
larly Theorem 4.2, can be used to generalize results of



[13,14] in two directions: (i) we present results on ob-
server based input to state stabilization of discrete-time
systems (in [13,14] only stabilization was considered);
(ii) results on semiglobal practical ISS of parameterized
systems (9) are presented (in [13,14] only global and lo-
cal stabilization of non-parameterized discrete-time sys-
tems were considered).

We consider the parameterized family of plants:

z(k +1) = Fr(z(k), u(k), v(k))
y(k) = h(z(k)),
where v and v are respectively the control and exoge-

nous inputs, with the following observer and controller
respectively

(21)

that are defined for sufficiently small 7. Let & :=
(zT7 2T)T, and we assume the following:

Assumption 5.3 For any strictly positive real numbers
Az, Ay, A, there exist strictly positive real numbers M
and T* such that

‘i‘ < A.ia ‘u| < Aua "U‘ < AUaT € (O’T*)

= max{|Fr(z,u,v)|,|Gr(z,z,u,v)|,|or(z)|} < M.1

Then, we can state the following result:

Corollary 5.4 Consider the family of systems (21),
(22) and (23). Suppose that Assumption 5.3 holds and
there exist a;, a1, a1, ay, 0,00 € Ko, 01,A1,02 € G,
such that for any triple of strictly positive real numbers
(Az,A,,v) there exists T* > 0 and for any T € (0,T%)
there exist Vit : R* — Rsq and Vaor : B2 — Ry such
that for all |Z| < Az, [v] < Ay, T € (0,T*) we have the
following:

. &alleh < Virta) < (o)
Vir(Fr(z, ;

Then, there exist a,a,a € Ko and o € G such that for

any triple of strictly positive real numbers (Am,AU,ﬁ)

there exists T > 0 and for any T € (0, T) there exist

Vr : R*™ — Rsq such that for all || < Az, v < A,
€ (0,T) we have:

SP-ISS:  a(|#]) < Vr(z,z) < a(|z])
Vr(Fr(z, ¢7r(2),v), GT(z h( 2 ¢r(2),v)) — Vr(z,z)
T(-a(|z]) + o(lv]) + ). u

Remark 5.1 There are many variations of conditions
in Corollary 5.4 that could be used to state similar results
(see [13,14]). Also, there is a small discrepancy between

the way we write conditions in the corollary and condi-
tions used in [13,14]. However, it is not hard to show that
these conditions are equivalent. For example, instead of
the second inequality in Corollary 5.4 we could use:
Vir(Fr(z, ¢r(z + d),v)) — Vir(z)
<T(=a([2]) + At (Jd]) + o1 (fo]) + v),

where d is a “new disturbance” (similar conditions were
used in [13,14]). This condition states that the full state
feedback controller u = ¢ (x) robustly stabilizes the plant
(21) in an ISS sense. Since for the controller that uses
the state estimates we can write ¢7(z) = ¢r(z+ (2 — 1))
and let d = x — z, we can see that this is the same con-
dition as the one we used in the corollary. [ |

6 Case study: two link manipulator

We now revisit the problem of controlling a two link ma-
nipulator considered in [1] (see also [2]). In particular,
we illustrate how Theorem 2.1 and Corollary 5.1 may
be used to obtain a controller based on the Euler ap-
proximate discrete-time model of the manipulator. We
emphasize that our results provide a rigorous framework
for achieving ISS via approximate discrete-time models.
To illustrate advantages of our approach, we compare
the performance of this controller with the discretized
continuous-time controller obtained in [1].

Consider a two link manipulator shown in Fig. 1, with
mass of the arm M and length L, and the gripper with
mass m. We denote the angle of the link and the position
of the gripper respectively as # and r. The continuous

Figure 1. A two link manipulator

time model of the manipulator is:

(mr? + ML?/3)8 + 2mrif = 7

. 24
mi —mrf? = F 24

We denote the state vector (6 r 6 #)T as z :=
(q1 g2 21 22)T and then write the state space model:

2maqszy 2o T
mq3 + ML?/3  mg3+ ML?/3’
quf + F/m, (25)

G =21, Z21 =

Go = 22, %



and the output equations y; = 21, y2 = 2. The physi-
cal parameters of the manipulator and controller are as
follows: m = 1kg, ML? = 3kgm?, ky, = 2, kaq, = 2,
kp, =1, kg, = 1 and k,; = 1. A continuous-time con-
troller was designed for the system (25) in [1]:

Tc(il?,w) = _kd1 21— kpl (ql - qld) (26)

Fo(z,w) = —kay 20 — kp, (G2 — q2a) — knit(@5 — @34),

where we denoted w := (q14 g24)”. This controller ren-
ders ISS for the closed-loop system (25), (26) with re-
spect to the external inputs ¢14 and ¢24. Suppose now
that the manipulator is controlled digitally using sam-
ple and zero order hold devices. One may simply use
the controller (26) with 7.(t) = 7.(z(k), w(k)), F.(t) =
F.(z(k),w(k)),t € [kT, (k+ 1)T) and implement it dig-
itally. That is, F' and T are constant during sampling in-
tervals and the state z is measured at sampling instants
kT, where £k € N and T is the sampling period. We
refer to this controller as the emulated controller (26).
It was proved in [17,36] that the sampled-data closed-
loop system with the emulated controller (26) would be
semiglobally practically ISS.

However, as will be shown below, it may be better if one
takes the sampling into account when designing a con-
troller by using a discrete-time model of the plant. Since
it is very hard to obtain the exact discrete-time model
of the manipulator, we use instead the Euler approxi-
mate discrete-time model for the controller design. The
Euler approximate model of the manipulator with sam-
pling period T', when we substitute values of the physical
parameters is:

=q1 k +T21( )
= q2(k) + Tz (k) (27)

o
)
= a4+ 7 |- 22
)

zo(k+1)=22(k)+T [qg(k)zl(k)2 +F(k)]

denoted by F&(xz(k),7(k), F(k)). In order to guarantee
that the controller that achieves ISS for system (27)
would also achieve SP-ISS of the sampled-data system,
we need to use the results Theorem 2.1. In particular, it is
directly true that consistency condition of Theorem 2.1
holds since we are using the Euler approximate model.

Controllers for sampled-data nonlinear systems often
take the following form ur(z) = Y T'u;(z) (see, for
instance, [18] where the problem of feedback lineariza-
tion was considered and [25] where backstepping based
on the Euler approximate model was considered). For
simplicity, we have assumed that the controller has the
following form

TJEU‘ZET = T¢ -+ T’u,l(.’lf), Fﬁulerl - Fc + TUQ(Z'), (28)

where u; and us are functions that need to be designed.
In particular we would choose 11 and us so that we make
the first difference of Vi more negative. Although other
controller structures and designs are possible, our choice
is guided by the fact that we want to have that the con-
tinuous time and the Euler-based controllers coincide for
T = 0, so that it makes sense to compare their perfor-
mance. On the other hand, we can use the freedom in
choosing w1 and us in order to improve the behavior of
the system. Finding a systematic controller design pro-
cedure based on these ideas is an interesting topic for
further research.

We formally let the control input to be u := (u; u2)? and
using (26), (27) and (28) we can write the approximate
model as follows:
w(k+1) = Fp(a(k), 7((k), w(k)) + Tu (k),
F(a(k), w(k)) + Tus(k)) (29)
)

=: Fp(a(k), u(k),w(k)),

which has the desirable form given by (4). If u;,us are
bounded on compact sets we can conclude that the con-
troller (28) is locally uniformly bounded and hence the
third condition of Theorem 2.1 holds.

It remains to design u; and us so that the ISS Lyapunov
conditions for approximate model in Theorem 2.1 hold.
In order to do this we apply Corollary 5.1 and Remark
4.3. Let K and P be 2Fhe2 kinetic and potential energy of
the system K = % +323, P=q¢ +3¢3+1¢}. In
the same way as in [1], we let the Lyapunov functions
Vit and Vo1 be defined as: ,

Vir = K+ P, Vor = Vir + iz,
where ¢ > 0 is a sufficiently small constant (to guarantee
that Vop positive definite). We next consider the first
difference for V7 to compute u; and us, and we write

AVir = T(=2zf — 23 + 221q14 + 22G2a + 2245,)
+ 72 (1 ( 2)

+ 20 + 1.522q§)

(30)

2
2227
0.5
+ 22 (u2 + )

+ £(0,2,00) + O(T%),
where z := (21 22)7, ¢ := (q1 ¢2)7. w1 and us are de-

signed to reduce the positivity of the O(T?) term on the
right-hand side of (30) and we choose the following:

21
q% 1 + 0.5zfq§> ,
(31)

2% 2
P + 2o + 1.522q2> ,



where the values of k., = 2, k., = 2. Substitution of
(31) to (30) results in the dissipation inequality:
AVir <T(-% 12> + ay |qual® + as |g2a]®)
2 2,2
+T2(—3q§i1 —0.521¢3 — 0.5;5?1 — 22

—-1.523¢3) + T*f (¢, 2,q4) + O(T?),

where a; and as are sufficiently large positive numbers.
The system is SP-qISS and hence the first part of con-
dition 1 of Corollary 5.1 holds.

We now show that V57 is a SP-IOSS Lyapunov function
for the closed-loop approximate model

AVor = T'| — 227 — 27 + 221q14 + 22G24 + 2202d°
22 +2¢322 + 22 + qo(F. + Tua) + q1(7e + Tuy)
(1+q5 +q7)3/4

3 4¢3z + 212 2 2
- 1 o(T

48(1+q§+q%)7/4 (QQ22+Q1( +q2)21) + ( )

< T|Mi(gdy + Bg + a5q) — M2 |2 + M3 |2
q2FC + qch

(1+q5 +q7)3/4

+e

(32)

+0(T?),

for sufficiently small T', € and M> and sufficiently large
M, and Ms. Substituting the controller Tf“l” and
FEuler  we can write the dissipation inequality as

AVor < T{]\Nﬁ(fﬁd + a3, + a5, + M; |Z|2

~ 4 2
—Ms |2 ~ 5%} +0(17),

1+q5+437

for sufficiently small T, & and M, and sufficiently large
M,y and Mj3. The system is SP-IOSS and hence the sec-
ond part of condition 1 of Corollary 5.1 holds. Finally,
since ay(s) = % and \2(s) = M3s?, it is obvious that
condition 2 of Corollary 5.1 holds. From Corollary 5.1
and Remark 4.3 we have that the closed-loop approxi-
mate model (27), (28) is SP-ISS, and from the choice of
Vir and Var the first condition of Theorem 2.1 holds.
Hence, we have that all conditions of Theorem 2.1 are
satisfied. Then, it follows from the conclusion of the the-
orem that the exact discrete-time closed-loop system is
SP-ISS. Finally, using results of [24] we conclude that the
closed-loop sampled-data system (25), (28) is SP-ISS.

We present simulation results to illustrate performance
of the system when we apply the Euler-based controller
(28) and the emulated controller (26). Simulation were
carried out using SIMULINK with the following simu-
lation parameters T = 0.25s, o = (0.1 0.1 0.1 0.1)7,
Ba(t) = 3square(0.5t) and rq(t) = 0. The results are
presented in Fig. 2. Fig. 2(a) shows the reference signal
A4 and the actual angular position of the arm 6, while
Fig. 2(b) shows the desired position of the gripper ry
and the actual position r obtained when applying the

10

Euler-based controller (28). Fig. 2(c) and Fig. 2(d) are
respectively showing the response of the corresponding
variables with emulated controller (26). The simulation
is carried out with a relatively large sampling period,
to observe the robustness of each controller to a square
wave input. It is shown that with the given simulation
set-up, Euler-based controller can still show a good per-
formance with 7' = 0.25s. On the other hand, the trajec-
tories of the system with the emulated controller (26),
exhibit finite escape times for the same simulation pa-
rameters. Moreover, it is shown in Fig. 2(d) and Fig.
2(e) that by reducing the time sampling into 7' = 0.1s,
the emulation controller results in a bounded response,
although the overshoot that occurs on the state r ex-
ceeds the feasible range of the physical parameters of the
manipulator. Reducing T further results in performance
that is closer to the continuous-time controller.

(a) (b)
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Figure 2. Responses with Euler-based controller (a,b) and
emulation controller (c,de,f) to a square wave input.

7 Conclusions

We have presented results on changing supply rates for
discrete-time SP-IOSS systems that allow for a partial
construction of Lyapunov functions for parameterized
discrete-time systems. We have applied our results to
several problems and a case study. The results play an
important role and provide a strong motivation for the
development of systematic controller design procedures
for sampled-data nonlinear systems based on their ap-
proximate discrete-time models.
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A Proofs of main results

The following remark, together with Lemmas 1 and 2 of
[31], is used in proving Theorems 4.1 and 4.2.

Remark A.1 Since for any o € K we have a(s; +
s2) < a(2s1) + a(2s2) for all s1 > 0,85 > 0, then
for any ay,ay € K, there exist a,@ € K such that
a(st + s2) < ai(s1) + az(s2) < @(sy + s2), for all
51 > 0,82 > 0, where a(s) := min{ai(3),a2(5)} and
a(s) := 2max{a;(s), aa(s)}. |

Proofof Lemma4.1: We denote Vr(Fr) := Vp(Fr(z,u))
and Vp := Vp(z). Suppose that all conditions in Lemma
4.1 are satisfied. Fix an arbitrary ¢ € SN and let p
be defined using (13). We prove next that p(Vr) is a
SP-IOSS Lyapunov function for the system with appro-
priate bounding and measuring functions stated in the



lemma. From the Mean Value Theorem and the fact
that ¢(+) = d—g’() is nondecreasing we have:

p(a) — p(b) < q(a)[a - b]

Let arbitrary strictly positive real numbers (A, A!, V')
be given. Let A/, A’ generate numbers M, T} via the
third condition of the lemma, so that (14) holds. Let
v1 be such that max{\(M),o(M)}q(s + 1) — q(s)] <
v, Vs € [0,a(M) + 2max{\(M),o(M)}]. Such v, al-
ways exists since ¢(+) is continuous.

Va>0,b>0. (A1)

Wedefine A, := AL, A, = Al v:= min{m,yl}.

Let (A;, Ay, v) determine Ty > 0 and Vr using the first
condition of the lemma, such that for all T' € (0, T) and
all |w, (z)] < Ay, Jwy(u)] < A, the inequalities (10)
and (11) hold. Fix T* := min{T},T5,1}. In the rest
of the proof we always consider arbitrary T' € (0,7),
lwg (2)] < Ag and |wy(u)| < A,y,.

Note that a direct consequence of condition 1 of the
lemma and the fact that T* <1 is:

Vr 2> max{a(|wa (2)]), To(jwa(2)))

= TA(|wr(2)]) = To(jws (w)]) —Tv}  (A.2)
Vr(Fr) <a(lwg(z)]) + A(lwa(z)))
+ o(Jws (u)]) + v . (A.3)

Note first that po a(|wa(z)]) < p(Vr) < poda(|wa(z)|),
which shows that (10) holds with the new bounding
functions a'(s) = p o a(s) and @'(s) = p o a(s) and
the same measuring functions. Now we prove that (11)
holds for p(Vr) with the new bounding functions and
the same measuring functions. The following two pre-
liminary cases are first considered:

1. Vr(Fr) < 1V Using the inequalities (A.1) and (A.2)
and the definition of M and v we obtain

p(Vr(Fr)) — p(Vr)

<» (%VT> —p(Vr) < g (%VT) {—%VT}

< 30 (37r) - (aluwa(@)) + Mus@)

+ o (@) + )

< 3a(37) - (alua@) + Muni@l) A
+a<\wa w)) + 722200,

)+ Alwa (2)])

< ga(37r) - (-a(uata

+o(wg (u)])) +T—

2. Vr(Fr) > 1Vr Using the inequalities (A.1) and (11)
and the definition of M and v we obtain

p(Vr(Fr)) — p(Vr) (A.5)
< q(Vr(Fr)) [Vr(Fr) — Vr]

<Tq(VT(FT)) (=a(jwa(2)]) + A(lwa (z)])
+o((wy (u)]) +v) (A.6)

<Tq(V( 7)) - (=a(jwa(z)]) + Alwa(2)])
+o(wy(u)])) + Tqoa(M)v

<Tq(Vr(Fr))- (= (\wa(x)|)+>\(|wx(a:)|)
+o(lwg (u )\))+T—

The proof is completed by considering the following
three cases:
Case 1: A(wn (@)]) + o(|w, (w)]) < La(jwa())

o Vr(Fr) < 1V We use (A.4) to write:

p(Vr(Fr)) — p(Vr)

o Vp(Fr) > %VT We use (A.6) and the fact that g is
nondecreasing to write:

p(Vr(Pr)) = p(Vr) < Tq(Vr(Fr)) - (=3a(jwa(@)))
+T% < =74 (5Vr) - allw

Since ¢ is nondecreasing, using (A.2) and the second
condition of the lemma, the following holds for Case 1:

p(Vr(Fr)) — p(Vr)
< -0 (5e08(un@D) -alun(@) + T (A)

Case 2: A(|wa(@)]) + 0w, (w)]) > La(wa (@),
A(wa(z)]) > o(|lwe(u)])

o Vr(Fr) < $Vr We use (A.4), (10), the fact that g is
nondecreasing, T* < 1 and the choice of v; to write:

p(Vr(Fr)) — p(VT)

< 50 (%VT> (~alwa(@)]) + 2A(un () + TS
< —gq <%VT> ca(jwa(z)|) + Tq (%a(wa(z))> .
AMwa(@)]) + T2 (A8)

4
< -3 (377 ) - allua @) + Ta(@ws(a)

+22(wr@)))) - Awr @) + T2 + T



° VT(FT) > %VT

We use (A.6), (10), the fact that ¢ is nondecreasing,
T* <1 and the choice of v; to write:

p(Vr(Fr)) — p(Vr)

!

< Tq (Ve (Fr)) - (~a(wa(@)]) + 2(wa (@) + 7%
< Tq( T) afwa (@)]) + 2Tq(@(ws(x))
FR(wr@) + 1) Mun@) + 75 (49)
< -4 (3¥7 ) - allwa (o)) + 2To(@(uws(o))
+ 2 (wa@)) - Mfun (@ >|>+T”5'+T”5'

Since ¢ is nondecreasing, using (A.2), (A.8), (A.9),

the second condition of the lemma, the condition that
Mlwa(z)]) > 2a(Jwa(z)]) and the definition of 6, the
following always holds for Case 2:

p(Vr(Fr)) — p(Vr)
< -39 (52omun@) ) -alua@)  (A.10

+ 2T 0 65 (jwa (2) ) - A(Jwa(@)]) + T/

Case 3: A(|wa()]) + o(Jw, (u)]) > za(jwa(@)]),
Awa(2)]) < o(jwo (uw)])

Following a similar way as in Case 2, the following always
holds for Case 3:

p(Vr(Fr)) — p(VT)

< -5 (520 alun@) ) -alua(@) (41

+27q 0 8, (|w, (w)]) - 0|, (w)]) + T/

We have shown through these three cases that the fol-
lowing holds:

p(Vr(Fr)) — p(Vr(z))
1 1
ST\ - 790 5a0 &(lwa(2)]) - aflwa(2)]) (A.12)
+2q 0 Ox(lwa(2)]) - Alwa(z)])
+2q 0 05 (Jwe (u)]) - o (|we (u)]) + v/
which completes the proof of Lemma 4.1. [ |

Proof of Theorem 4.1: Suppose that all conditions of
the theorem be satisfied. Let a,, @1, a1, 01 come from
the condition 1 and a,, @2, a2, A2, 02 come from the
condition 2. Define § as:

i(r) = inf 222 ()

rs 201+ Ma(s)) (A.13)
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where 7, comes from the third condition of the theorem.
Notice that ¢ is by definition a nondecreasing function.
Condition 4 of the theorem implies ¢(r) > 0 for all » > 0.
Let ¢(s) := G o 6;21(s), where 6, is defined in Lemma
4.1. Using ¢(-) we define p(-) via (13). Let p generate via
Lemma 4.1 the new bounding functions ab, @), ab, A},
ah.

Let arbitrary strictly positive real numbers (A,, A,,v)
be given. Let (A,,A,, %) generate via condition 1 the
number T} and Viz. Let (712(Az),73(Au), 5) generate
via condition 2 and Lemma 4.1 the number T3 and
p(Var). Let T* = min{T},T5} and define now Vr as
(15). Let wg(z) = wg, (x) and wy(u) = wy, (u). We
consider now arbitrary |w, (x)] < Ay, |wy(uw)] < A, and
€ (0,T*). Note that this implies via condition 3 of the
theorem that w,,(z) < v2(A,) and w,, () < v3(AL).

First, it follows from the definition of V7 that

)|) < Vr()
(@)]) + p o 2 (jwg, (2)]) -

)‘) +,0°Q2(|wg2(37
<o (|w51

o (|wa, (

(A.14)

Then by Remark A.1, there exist a,@ € K, such that

)|) < Vr(z)

a(|wa, (@) + |wa, (@
< a(jwg, (2)] + [wa, (2)]) -

(A.15)

Using condition 4 of the theorem, the dissipation in-
equality for Vp can be written as:

Ve (Fr) — Vp(z)
=Vir(Fr) = Vir + p(Vor (Fr)) — p(Vor)
< T 01w, (w)]) + 0 (wn (w)]) + 5

+ Xy 0 1 (|wa (7)) = ab(wa (@) + 5
< T{o1((we, (W) + 05w, (w)]) + 5
)

a1 ([wa, (£))A2 © 71 (|wa, (7)]
)

T TR s 07 (jway (@)

Since H)‘( ()) <1, Vs > 0, by monotonicity of ¢(-) and

using Remark A.l, there exist @ € Ko and 0 € K so
that we can write

Vr(Fr) = Vr(z) < —Ta(jwa, (2)] + [wa, (2)])
+ To(jwe, (u)| + |we, (u)]) + Tv . (A.16)
This completes the proof of Theorem 4.1. [ |

Proof of Theorem 4.2: Suppose that all conditions of
the theorem are satisfied. Let a;, @1, a1, 01 come from
the condition 1 and a,, @2, a2, A2, 02 come from the



condition 2. Define a function o € K, as follows

!  foau(s) for small s,
al(s) == {A2 o (s) for large s (A.17)

where 7, comes from the third condition of the theorem.
It is clear that o/ (s) = Olas(s)] for s — 07. Hence,
by Lemma 2 of [31], there exists g1 € SN such that
G1(s)-a1(s) > af(s). Further, define a function A} (s) :=
talo 7, ' (s) and note that A, € K and it is clear that
A2(s) = O[N,(s)] for s = +o00. Then by Lemma 1 of [31],
there exists ¢o € SN such that Ga(s) - A2(s) < Ay(s).
Let qi(s) = 4G1 o k7' o aj'(2s) and ga(s) 1= g o
6;21(5), where 6,, is given in Lemma 4.1. We use ¢; and
g2 respectively to define p; and po, and then let (g1, p1)
and (qo, p2) respectively generate via Lemma 4.1 new
bounding functions o}, @}, o}, o} and o}, @, af, ob.

Let arbitrary strictly positive real numbers (A,, A,,v)
be given. Let (A,,A,, %) generate via item 1 of the
theorem and Lemma 4.1 T} and p;(Vir) and let
(72(Az),v3(Ay), §) generate via item 2 of the theorem
and Lemma 4.1 T and pa(Var). Let T* := min{T}", T5}.
We now define Vr as (17). Let w,(x) = w,, (z) and
wy(u) = wy, (u). In all calculations below we con-
sider arbitrary |w,(z)] < A, |wy(u)] < A, and
T € (0,7*). Note that this implies |wg, (z)| < 72(Az)
and |wy, (z)| < 73(Ay).

It follows from the definition of Vr that

p1 oy (|wa, (2)]) + p2 0 @y (|wa, (2)]) < Vr(2)
< proa(Jwa, ()]) + p2 0 W (Jw, (2)]) . (A.18)

Then by Remark A.1, there exist a,@ € K, such that
(A.15) holds. Using condition 3 of the theorem and the
definition of A}, we have:

Vr(Fr) = Vr(z)

= p(Vir(Fr)) — pr(Vir) + p2(Var (Fr)) — p2(Var)

< T| = al (jwa, (2)]) + 0 (fwg, (w)]) +

— oy (lwa, (@)]) + A3 0 71 (Jwa, ()])

+ 03| (1)) + 5

< T[ = ab (s () ~ 504 (0, (@)

+ 01 (Jwo, (w)]) + 05 (Jwa, (uw)]) + v

v
2

Finally, using Remark A.1, there exist 0 € K and « €
K that

Vr(Fr) = Vr(z) < T|o(lws, (u)] + [ws, (u)])

—a(|wa, (2)] + |wa, (2)]) + 7.

This completes the proof of Theorem 4.2. |
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