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Abstract 

In this paper the control of linear plants, where the sensor is connected to a linear controller/actuator via a network is ad-
dressed. Both, state and output feedback, are considered and results are derived for both continuous and discrete plants. A 
key idea is that knowledge of the plant dynamics is used to reduce the usage of the network. Necessary and sufficient condi-
tions for stability are derived as simple eigenvalue tests of a well-structured test matrix, constructed in terms of the update 
time h, and the parameters of the plant and of its model. These tests are extended to include network delay as well. 
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1. Introduction 

The use of networks as a media to interconnect the dif-
ferent components in an industrial control system is rapidly 
increasing. A network introduces bandwidth restrictions. 
To overcome these bandwidth constraints several ap-
proaches have been proposed. Some of these include the 
study of networked systems with transport  delays (Mat-
veev & Savkin, 2001), and under noise disturbances (Pe-
tersen & Savkin, 2001), quantization effects and algo-
rithms (Elia & Mitter, 2001; Ishii & Francis, 2000; Nair & 
Evans, 2000), and scheduling algorithms (Hristu-
Varsakelis, 2001; Rehbinder & Sanfridson, 2000; Matveev 
& Savkin, 2001; Walsh, Beldiman, & Bushnell, 1999). 

It is clear that the reduction of bandwidth necessitated 
by the communication network in a networked control sys-
tem is a major concern. In this paper we explore the effect 
of reducing the number of data packet exchanges between 
the sensor and the controller/actuator. In particular, we 
identify the maximum allowed transfer time between the 
sensor and the actuator for the system to be stable. In order 
to increase the transfer time we will use the intuitive idea 
of using the knowledge we have of the plant dynamics as it 
is contained in the plant model. The plant model is used at 
the controller/actuator side to approximate the plant behav-
ior during time periods when sensor data are not available. 
The main idea is to perform the feedback by updating the 
model’s state using the actual state of the plant that is pro-
vided by the sensor. The rest of the time the control action 
is based on a plant model that is incorporated in the con-
troller/actuator and is running open loop for a period of h 
seconds (or samples, in the case of discrete plants). The 
setup for a continuous plant is shown in Figure1.  Output 
feedback on a continuous plant is used in Figure 2. 

This idea of a tradeoff between open loop and closed 
loop control is related to the minimal attention control pro-
posed by Brockett (1997). One of the main differences re-
sides in that minimal attention control makes this tradeoff 
in a continuous way while the proposed setup does this 
tradeoff in a “discrete” manner. 

The compensated plant model with its update scheme on 
Figure 1 can also be seen as a type of hold system. Mirkin, 
Rotstein, & Palmor (1999) explore the joint optimization 
of a generalized hold, sampler, and controller for a sam-
pled system using a technique known as lifting. It turns out 
that our model resembles the 2H  optimal hold. However, 
these results don’t explicitly incorporate the plant-model 
error, the discrete plant case, or the inclusion of transport 
delays on the network.  

Our approach incorporates a model of the plant, the 
state of which is updated with the plant’s state. We derive 
a necessary and sufficient condition for stability that re-
sults in a maximum transfer time, which depends on the 
model inaccuracies. In the absence of plant disturbances 
arbitrarily long transfer times can be achieved depending 
on modeling errors. 

For our analysis we will assume that the compensated 
model is stable and that the transportation delay is negligi-
ble. We will assume that the frequency at which the net-
work updates the state in the controller is constant. The 
idea is to find the smallest frequency at which the network 
must update the state in the controller, that is, an upper 
bound for h, the update time. Usual assumptions in the lit-
erature include requiring a stable plant or a smaller update 
time than the sampling time in the case of a discrete con-
troller. Here we do not make any of these assumptions. 
The plant may be unstable. These results are extended to 
the output feedback case as well. 
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Figure 1: Proposed configuration of a state feedback networked 

control system. 

This paper is organized as follows: in Section 2 neces-
sary and sufficient conditions are developed for the control 
architecture shown in Figure 1. This is the case where the 
state vector is directly measurable and sent through the 
network to the controller/actuator. The case of output feed-
back control is analyzed in Section 3. An extension to dis-
crete systems is given in Section 4. An extension of the 
state feedback system in the presence of network delays is 
presented in Section 5. A numeric example is given in Ap-
pendix A. Conclusions are presented in Section 6. 

2. A State Feedback Networked Control System 

Consider the control system of Figure 1 where the ac-
tual plant behavior is described by BuAxx +=& , the plant 

model is given by uBxAx ˆˆˆˆ +=& , and the controller by 
xKu ˆ= . 

Since the sensor has the full state vector available, its 
function will be to send the state information through the 
network every h seconds. The state error is defined as 

,x̂xe −=  and represents the difference between the plant 
state and the model state. The modeling error matrices 

BBBAAA ˆ~ andˆ~ −=−= represent the difference between 

the plant and the model. Finally, the update times are kt , 

where htt kk =− −1  for all k . Since the model state is up-

dated every kt seconds, 0)( =kte  for ...,2,1,0=k . This 
resetting of the state error every update time is key of our 
control system. It is easy to see that the dynamics of the 
overall system for 1[ , )k kt t t +∈  can be described by 

 1 for [ , ) and ( ) ( ) 0
T

k k k kz z t t t z t x t−
+  = Λ ∈ =  &  (1) 

where [ ]( ) ( ) ( ) Tz t x t e t= , and ˆ
A BK BK

A BK A BK

+ − 
Λ =  

+ − % % % . 

Proposition #1 
The system described by Equation (1) with initial condi-

tions [ ]0 0 0( ) ( ) 0 Tz t x t z= = , has the following response: 

 
( )

0

1 1

0 0
( ) ,

0 0 0 0

for [ , ),with 

k

k
t t h

k k k k

I I
z t e e z

t t t t t h

Λ − Λ

+ +

    
=          
∈ − =

 (2) 

Proof. 
On the interval ),[ 1+∈ kk ttt , the system response is  

 ( ) ( )( )( )
( ) ( )

( ) 0
k kkt t t t

k
x tx t

z t e e z t
e t

Λ − Λ −  
= = =  

   
 (3) 

Now, note that at times kt , ( ) ( ) 0
T

k kz t x t− =   , that is, 

the error e(t) is reset to zero. We can represent this by 

( ) ( )k S kz t I z t −=  where 
0

0 0S
I

I
 

=  
 

. Using Equation (3) 

to calculate )( −
ktz  we obtain: 1( ) ( )h

k S kz t I e z tΛ
−= . 

In view of (3) we have that if at time t=t0, 

[ ]0 0 0( ) 0 Tz t z x= =  is the initial condition then 

 ( ) ( )( ) ( )
0 0( ) k k

k kt t t th h
S S Sz t e I e z e I e I zΛ − Λ −Λ Λ= =   (4)♦  

We now state the following theorem characterizing the 
necessary and sufficient conditions for the system de-
scribed by Equation (1) to have global exponential stability 
around the solution 0=z . The norm used here is the 2-
norm but any other consistent norm can also be used. 
Theorem #1 

The system described by Equation (1) is globally expo-

nentially stable around the solution [ ] [ ]0 0T Tz x e= =  

if and only if the eigenvalues of 















= Λ

00
0

00
0 I

e
I

M h are 

strictly inside the unit circle. 
 

Proof. 
Sufficiency: Taking the norm of the solution described 

as in Proposition 1: 

 ( ) ( )
0 0( ) k kt t t tk kz t e M z e M zΛ − Λ −= ≤ ⋅ ⋅  (5) 

Analyzing the first term on the right hand side of (5): 

 ( ) ( )( ) ( )
1

k kt t t t he e e Kσ σΛ − Λ − Λ≤ ≤ =  (6) 

where ( )σ Λ  is the largest singular value of Λ . In general 
this term can always be bounded since the time difference 

kt t− is always smaller than h. 

We now study the term kM . It is clear that this term 

will be bounded if and only if the eigenvalues of M lie in-

side the unit circle 1
2 3

kk tM K e K eα α− −≤ ≤ with 

2 3 1, , , 0K K α α > .  So we can conclude that 

1 3 0( ) tz t K K e zα−≤ ⋅ ⋅ . 

Necessity: We will now prove the necessity part of the 
theorem by contradiction. Assume the system described by 
(1) is stable and that M has at least one eigenvalue outside 
the unit circle. Since the system is stable, a periodic sample 
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of the response should be stable as well. We will take the 
sample at times 1kt

−
+ , that is, just before the update. We 

will concentrate on a specific term: the state of the plant 

1( )kx t−
+ , which is the first element of 1( )kz t −

+ . We will call 

1( )kx t−
+ , ( )kξ . Now assume τΛe  has the following 

form:
( ) ( )
( ) ( )

W X
e

Y Z
τ τ τ

τ τ
Λ  

=  
 

. Now the values of the solution 

at times −
+1kt , that is just before the update, are 

1

1 0 0
( )( ( )) 0 ( ( )) 0

( )
( )( ( )) 0 ( )( ( )) 0

k k

k k k

W h W h W h
z t z z

Y h W h Y h W h

+
−
+

   
= =   

      
 

It is clear that, since M has at least one eigenvalue out-
side the unit circle (and thus in W), ( )kξ  will in general 
grow with k . This clearly means the system cannot be sta-
ble, and thus we have a contradiction.♦  
Discussion. 

One can gain insight into the closed loop system behav-
ior by noticing that the nonzero eigenvalues of the test ma-
trix M are exactly the eigenvalues of another matrix: 

ˆ ˆˆ ˆ( ) ( )

0
( )

hA BK h Ah A A BKN e e e A BK e dτ τ τ+ − += + +∫ % %  

This can be shown either directly or by using Laplace 
transform (see Montestruque & Antsaklis, 2002). 

Note that the eigenvalues of the compensated model ap-
pear in the first term of N. We can view the term 

ˆ ˆ( )

0
( )

hAh A A BKe e A BK e dτ τ τ− +∆ = +∫ % %  as a perturbation on 

the desired eigenvalues, that is, the eigenvalues of the 
compensated model. Even if the eigenvalues of the original 
plant were unstable the perturbation ∆ can be made small 
enough by having h and A BK+% % small and thus minimiz-
ing their impact over the eigenvalues of the compensated 
plant. We also observe that if the update time h is driven to 
zero, then ∆=0. It is apparent that the results are influenced 
by the choice of K. 

3. An Output Feedback Networked Control System 

We now extend our approach to include plants where 
the state is not directly measurable. In this case, in order to 
obtain an estimate of the plant state vector, a state observer 
is used. It is assumed that the state observer is collocated 
with the sensor. Again, we use the plant model, 

uBxAx ˆˆˆˆ +=& , to design the state observer. See Figure 2. 
The observer has as inputs the output and input of the 

plant. In the implementation, in order to acquire the input 
of the plant, which is at the other side of the communica-
tion link, the observer can have a version of the model and 
controller, and knowledge of the update time h.  

 
Figure 2: Proposed configuration of an output feedback 

networked control system. 

In summary, the system dynamic equations are 

1for [ , )k kt t t +∈ : 

Plant: ,
ˆ ˆˆ ˆˆ ˆ ˆModel: ,

ˆController:

ˆ ˆ ˆ ˆObserver: ( ) .

x Ax Bu y Cx Du

x Ax Bu y Cx Du
u Kx

u
x A LC x B LD L

y

= + = +

= + = +
=

  = − + −     

&
&

&
 

We now proceed in a similar way as in the previous 
case of full state feedback. Namely, there will be an update 
interval h, after which the observer updates the controller’s 
model state x̂  with its estimate x . We define an error e 
that is the difference between the controller’s model state 
and the observer’s estimate: ˆe x x= − . It is clear that at 
times kt , where 1k kt t h−− = , the error e will be equal to 
zero. We also define the modeling error matrices in the 

same way as before: ˆ ,A A A= −%  ˆ ,B B B= −%  ˆ,C C C= −%  
ˆD D D= −% . 

Now for 1[ , )k kt t t +∈ , we have ˆu Kx=  and: 

ˆ
ˆ ˆˆ ˆ( )

ˆ ˆˆ ˆ T

x Ax BKx

x A BK x

x LC BK LDK A LC x x x

= +

= +

 = + −    

&
&
& %

 

with initial conditions )()(ˆ kk txtx = . Then the dynamics 

of the overall system for 1[ , )k kt t t +∈  can be described by: 

 1for [ , ), ( ) ( ) ( ) 0
T

o k k k k kz z t t t z t x t x t− −
+  = Λ ∈ =  &  (7) 

where [ ]Tz x x e= , and: 
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ˆ ˆ ˆ ˆ

ˆ ˆ
o

A BK BK

LC A LC BK LDK BK LDK

LC LDK LC A LDK

− 
 

Λ = − + + − − 
 − −  

% %
% %

 

Proposition #2 
The system with dynamics described by (7) with initial 

conditions [ ]0 0 0 0 0( ) ( ) ( ) 0 , 0Tz t x t x t z t= = = , has the 

following response: 

( )
0

1 1

0 0 0 0
( ) 0 0 0 0 ,

0 0 0 0 0 0

for [ , ), with

o k

k

t t h

k k k k

I I
z t e I e I z

t t t t t h

Λ − Λ

+ +

    
    =     
        

∈ − =

 

In the following, we present the necessary and sufficient 
conditions for this system to be exponentially stable at 
large (or globally). 
Theorem #2 

The system described by (7) is globally exponentially 

stable around the solution [ ] [ ]0 0 0T Tz x x e= =  if 

and only if the eigenvalues of 
0 0 0 0

0 0 0 0
0 0 0 0 0 0

oh
o

I I
M I e IΛ

   
   =    
      

are inside the unit circle. 

The proof for this theorem is analogous to the one for 
Theorem 1 and can be found in the technical report (Mon-
testruque & Antsaklis, 2002). 

The eigenvalues of the test matrix Mo can be studied in 
a similar fashion to those of the state feedback case. By 
replacing h by t, applying the Laplace transform and isolat-
ing the nonzero upper left block of Mo we obtain: 

 

( ) ( )
( )

1 1
1

1

1

3 2

ˆ ˆˆ ˆ( )

ˆ ˆ

sI A BK sI A BK sI A BK
P

sI A LC

− −
−

−

 − − + ∆ − − − 
=  

 ∆ − + + ∆
 

 

( )( )

( ) ( )( )

1 1
1

1
2

1 1

1
3

1

1

ˆ ˆ( ) ( )( )
ˆ ˆ( )

ˆ ˆ( ) ( )

ˆ ˆ( )

( )

ˆ ˆ( )

sI A A BK sI A BK

sI A LC

BK A LC sI A BK sI A BK

sI A LC

A LC BK A LC sI A A BK

sI A BK

− −

−

− −

−

−

−

∆ = − + − −

∆ = − +

− − − − −

∆ = − +

− + − − − +

− −

% %
i

% %%

i
% % % % %% % i

 

It is clear that if 0, 0, and 0A B C→ → →% %%  then 

1 2 30, 0, and 0∆ → ∆ → ∆ → from here it can be seen 
that by making the error between the plant and the model 
zero, we obtain the classic state feedback-observer archi-
tecture. From the structure of matrix P it is clear that the 

separation principle does not apply when the model-plant 
error is not zero. 

4. The Discrete Time Domain 

We now extend our results to discrete time plants. We 
will assume that the update interval h will be an integer, 
representing the number of clock tics after which the actua-
tor’s model is updated. 

Consider the following equations: 

1 1

Plant: ( 1) ( ) ( ), ( ) ( ) ( )
ˆ ˆˆ ˆˆ ˆ ˆModel: ( 1) ( ) ( ), ( ) ( ) ( )

ˆController: ( ) ( )

( )ˆ ˆ ˆ ˆObserver: ( 1) ( ) ( )
( )

for [ , ), withk k k k

x n Ax n Bu n y n Cx n Du n

x n Ax n Bu n y n Cx n Du n
u n Kx n

u n
x n A LC x n B LD L

y n

n n n n n h+ +

+ = + = +

+ = + = +
=

  + = − + −     
∈ − =

   

Below the results for the full state feedback case are 
presented. Proofs will be omitted and can be found in the 
report  (Montestruque & Antsaklis, 2002). 
Theorem #3 

The discrete state feedback system is globally exponen-

tially stable around the solution [ ] [ ]0 0T Tz x e= =  if 

and only if the eigenvalues of 
0 0

0 0 0 0
h

D D
I I

M
   

= Λ   
   

are inside the unit circle, where 

ˆD

A BK BK

A BK A BK

+ − 
Λ =  

+ −  % % % . 

Theorem #4 
The discrete output feedback system is globally expo-

nentially stable around the solution 

[ ] [ ]0 0 0T Tz x x e= =  if and only if the eigenvalues 

of 

0 0 0 0
0 0 0 0
0 0 0 0 0 0

h
F F

I I
M I I

   
   = Λ   
      

are inside the unit cir-

cle, where 

ˆ ˆ ˆ ˆ

ˆ ˆ
F

A BK BK

LC A LC BK LDK BK LDK

LC LDK LC A LDK

− 
 

Λ = − + + − − 
 − −  

% %
% %

. 

5. A State Feedback Networked Control System in a 

Network with Communication Delays 

Previously we assumed that the network delays were 
negligible. This is usually true for plants with slow dynam-
ics relative to the network bandwidth. Next we ext end our 
results to include the case where transmission delay is pre-
sent. We assume that the update time h is larger than the 
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delay time τ, and that the update time h and the delay τ  are 
constant. 

At times kh-τ the sensor transmits the state data to the 
controller/actuator. This data will arrive τ seconds latter. 
So, at times kh the controller/actuator receives the state 
vector value x(kh-τ). The main idea is to use the plant 
model in the controller/actuator to calculate the present 
value of the state. The state approximate obtained can be 
used to update the controller’s model as in previous setups. 
The system is depicted in Figure 3. 

 
Figure 3: Proposed configuration of a state feedback networked 

control system in the presence of network delays. 

The Propagation Unit uses the plant model and the past 
values of the control input u(t) to calculate an estimate of 
actual state )(khx(  from the received data x(kh-τ). This es-
timate is then used to update the model that with the con-
troller will generate the control signal for the plant. 

The system is then described by the following equa-
tions: 

1

1 1

1

1

Plant:
ˆ ˆˆ ˆModel:

ˆController: , [ , )
ˆ ˆPropagation Unit: , [ , ]

,  
Update law:

ˆ ,

k k

k k

k

k

x Ax Bu

x Ax Bu
u Kx t t t

x Ax Bu t t t

x x t t
x x t t

τ

τ

+

+ +

+

+

= +

= +
= ∈

= + ∈ −

← = − 
 ← = 

&
&

( (&
(

(

(8) 

To simplify the analysis, we initialize the propagation 
unit at time tk+1-τ with the state vector that the sensor 
transmitts. We then run the plant, model, and propagation 
unit together until tk+1. At this time, the model is updated 
with the propagation unit state vector, as described in the 
update law of (8). This is equivalent to having the propaga-
tion unit receive the state vector x(tk+1-τ) at tk+1 and propa-
gating it instantaneously to tk+1. 

We define the errors xxe ˆˆ −= (
 and xxe

(( −= . We also 
make the following definitions: 

1 2

ˆ ,
ˆˆ0 0

0 0 0 0
0 0 , 0 0 0
0 0 0 0 0

T

T T

A BK BK BK x
A BK A BK BK z e

eA

I I
I I I

I

+ − −   
   Λ = + − − =   
      
   
   = =   
      

(% % % %

 

With these definitions we proceed to present the system 
described by (8) in a compact form. The dynamics of the 
overall system for ),[ 1+∈ kk ttt  can be described by 
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with state reset equations: ( ) ( ) ( ) 0 ,
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(9) 

Proposition #3 
The system with dynamics described by (9) with initial 

conditions 0 0 0 0 0 0ˆ( ) , 0,Tz t x e e z t= = =  
(

 has the fol-

lowing response: 
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In the following the necessary and sufficient conditions 
for this system to be exponentially stable at large (or glob-
ally) are presented. 
Theorem #3 

The system described by (9) is globally exponentially 

stable around the solution [ ]ˆ 0 0 0T Tz x e e= =  
(

 if 
and only if the eigenvalues of 
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0 0 0 0
0 0 0 0 0
0 0 0 0

T T h
T

I I
M I e e

I I
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   
   =    
      

are inside the unit 

circle. 
It is interesting to note that the results on Theorem #3 

can be seen as a generalization of Theorem #1. This can be 
shown by drivingτ to zero. The details for the proof of 
Proposition #3 and Theorem #3 can be found in the techni-
cal report (Montestruque & Antsaklis, 2002). 
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6. Conclusions 

The control architecture introduced in this paper repre-
sents a natural way of placing critical information about 
the plant on the network so to reduce the data traffic load. 
By making the sensor and actuator more “intelligent” the 
networked control system is able to predict the future be-
havior of the plant, and send the precise information at 
critical times so to ensure plant stability. 

Performance of the control system is also important and 
is currently under investigation. Note that the techniques 
used here are related to the ones known as lifting operators 
(Bamieh, Pearson, Francis, & Tannenbaum, 1991; Mirkin 
et al., 1999), where it has been shown that plant induced 
norms are invariant under these lifting operators.  

Note that the some of the results presented here have 
appeared earlier in the conference proceedings Montestru-
que & Antsaklis (2002). 
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Appendix A. Example of a State Feedback Networked 
Control System. 

An example is given on how the theorem can be applied 
if two entries on the A matrix of the model can vary within 
a certain interval. 
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Figure 4 shows the contour levels representing the 
maximum eigenvalue magnitude for the test matrix M as a 
function of the values of the entries (1,2) and (2,1) of the 
plant matrix A. The update time h was 2.5 seconds 

 
Figure 4: Maximum Eigenvalue Magnitude vs Model Error 

It is easy to isolate the stable and unstable regions in the 
uncertainty parameter plane. The stable region lies in be-
tween the two contours labeled one. 
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