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Abstract—This paper proposes a feedback structure for the
design of [;-stable algorithms for nonlinear adaptive filter-
ing and identification, and establishes explicit connections
between classical schemes in ITR modeling and more recent
results in H*®-theory. In particular, two algorithms due to
Feintuch (1976) and Landau (1979), as well as the so-called
pseudo-linear regression and Gauss-Newton algorithms, are
discussed within the framework proposed herein. Additional
examples and simulation results are included to illustrate
the applicability of the approach to several nonlinear sce-
narios.
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I. INTRODUCTION

CONSIDERABLE RESEARCH activity has been devoted over the
last two decades to the analysis and design of adaptive
algorithms in both signal processing and control applica-
tions. In particular, several ingenious methods have been
proposed for the performance and stability analysis of the
varied adaptive schemes. Among these, the most notable
are the hyperstability results of Popov, an account of which
is given by [14], the ODE approach of Ljung [17], [18], and
the related class of averaging methods for trajectory ap-
proximation, as described in the books by [1] and [24].

Correspondingly, in the last decade, there has been an
explosion of research in the areas of robust (H>) filtering
and control, as indicated by several of the references at the
end of this paper —e.g., [5], [13], [2], [26], [16], [9]. A major
concern in the H* setup has been the design of filters and
controllers that are robust to parameter variations and to
exogenous signals. In the filtering context, for instance, it
is currently known how to design estimators with bounded
2—induced norms, and the available results provide us with
both (i) solvability and existence conditions, as well as (ii)
recursive methods for the construction of a solution.

Motivated by these results, we take here an alternative
look at the analysis and design of adaptive and identifi-
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cation schemes. One of the objectives of this work is to
show how to reconcile, within a nonlinear estimation con-
text, earlier developments in stable adaptive schemes with
more recent developments in H* design. For this purpose,
the discussion in this paper exploits a useful tool in system
theory that is widely known as the small gain theorem.
While this theorem can be reformulated in terms of hy-
perstability or passivity results [14], [1], [16], the analysis
provided herein has several distinctive features that will
become clear as the discussion progresses.

At this stage, however, we only wish to highlight the fact
that by relying on the small gain theorem, we can now ad-
vantageously exploit the wealth of results that are already
available in the H® —setting. This is especially helpful in
the design (i.e., synthesis) phase. In particular, it will allow
us to propose an adaptive structure that will be shown to
include, as special cases, several algorithms that have been
derived earlier in the literature (even prior to the emer-
gence of the H* point of view). The feedback formulation
will also enable us to establish that these earlier schemes
are special instances of the more recent class of H* —filters!

Moreover, although the feedback nature of adaptive
schemes has been advantageously exploited in earlier places
in the literature —e.g., [17], [14], the feedback configuration
in this paper is of a different nature. It does not only refer
to the fact that the update equations of an adaptive scheme
can be put into a feedback form (as explained in [15]), but
is instead motivated by our concern with the overall ro-
bustness performance of the algorithm. For this reason,
the feedback configuration is defined here in such a way so
as to explicitly consider the effect of both the measurement
noise and the uncertainty in the initial weight-vector guess
on the overall algorithm performance.

Notation. We use small boldface letters to denote vectors
(e.g., h) and capital boldface letters to denote matrices
(e.g., P). The symbol “+” denotes Hermitian conjugation
(complex conjugation for scalars), and the notation ||x||2
denotes the squared Euclidean norm of a vector. Also,
A'/2 denotes a square-root factor of a matrix A, viz., any
matrix satisfying A/2A*/2 = A.

We also use subscripts for time-indexing of vector quan-
tities (e.g., h;) and parenthesis for time-indexing of scalar
quantities (e.g., d(z)). We further employ the shift op-
erator notation ¢ 'u(k) = u(k — 1). Hence, applying an
operator W(g~1!) = Ekle wy ¢~ * to a sequence d(i) means
W (g™)d(i) = X)L wp d(i — k).
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II. AN EXAMPLE AND MOTIVATION

Consider a linear time-invariant autoregressive model
that is described by the difference equation

di) = ) akd(i— k) +u(i). (2.1)
k=1

Here, M is the order of the filter (assumed known), u(z)
is the value of the input sequence at time 7 (also known),
and the {a;} are unknown filter coefficients that we wish
to estimate from noisy measurements of the output signal
d(2), say from m(i) = d(z) + v(¢) for 0 < i < N. Here m(:)
and v(z) denote the noisy measurement and the additive
noise at time 7, respectively.
If we collect the past M values of d(7) into a row vector
di_1,
di 1 =[d(i-1)

dii—M) |, (2.2)

and the M unknown coefficients a; into a column vector
W?

w = col{ay,as,... (2.3)

then (2.1) can be rewritten in a compact vector form as
d(i) = d;—1w+u(i). Consequently, the noisy measurements
m(z) satisfy

aa'M}y

m(i) = di—1w + u(i) + v(3). (2.4)
In expression (2.4), the quantities m(i) and u(7) are known
and we can therefore introduce the known quantity y(i) =
m(i) — u(i) and write instead the equivalent expression:

y(i) =di 1w+ v(s). (2.5)
The problem can then be interpreted as follows: we are
given noisy quantities (or measurements) y(z) that are re-
lated to the unknown vector w via the term d;_;w as in
(2.5). This term is not only time-variant, but also nonlin-
ear in w because each entry of d;_; is itself a function of
w, as is evident from (2.1) and (2.2).

We can indicate more explicitly the nonlinear depen-
dency of the measurements {y(¢)} on the unknown vector
w by rewriting equation (2.5) in the more generic form

y(i) = hi(w)w + (i), (2.6)
where h;(w) denotes a time-variant nonlinear (row vector)
function of w. In the special case of the above autore-
gressive example we have h;(w) = d;_;. More generally,
however, we may have situations with alternative forms
for the nonlinear term h;(w). Examples of such cases are
provided later in Sec. 5.

Now given the noisy measurements y (i) of (2.6), we may

distinguish between two problems:
(i) The first problem is to use the given measurements y (%)
in order to estimate the unknown vector of parameters w.
This formulation has been extensively studied in the liter-
ature and several algorithms have been proposed (see, e.g.,
[14], [17], [18]). We shall return to these classical solutions
in later sections of this work (Secs. 7 — 9).

(i) The second problem is to use the given measurements
y(?) in order to estimate the uncorrupted terms h;(w)w
in (2.6). While a distinction between cases (i) and (ii)
may not seem necessary in least-squares formulations, it
is nevertheless crucial in H*-based designs. It turns out
that if one poses an H* problem for estimating w and an
H* problem for estimating h;(w)w, the solutions will in
general be distinct. More interesting perhaps, it is the H®
estimation of h;(w)w, rather than w, that will allow us to
establish connections with the classical schemes mentioned
in (i).

To accommodate for case (ii) above, we shall define an
auxiliary variable

z(1) = hy(w)w | (2.7)
and pose the problem of estimating z (i) from the y(i) (ac-
cording to a certain H* criterion to be defined further
ahead). In fact, we can allow for more general cases and
define auxiliary variables of the form

2(i) = gi(w)w, (2.8)

for some given (row vector) function g;(w) that may also
be time-variant and a function of the unknown w. It may
also be a constant vector that is independent of both time
and w, say 2(i) = gw = z. This level of generality al-
lows us to handle other situations of interest. For example,
assume that we are only interested in estimating the third
filter coefficient of the autoregressive model, then we would
choose g=[00100...0] in z = gw.

We are now in a position to state the nonlinear estima-
tion setting of this paper. For convenience of presentation,
the problem will be formulated in a state-space context.

III. THE NONLINEAR H* PROBLEM

Consider a collection of noisy measurements {y(i)}~,

that are related to a column vector of unknown parameters
w via the nonlinear relation

y(2) = hy(w)w + v(7). (3.1)

Here v(7) stands for the noise component (or modeling un-
certainties) at the discrete time instant ¢, and h;(w) de-
notes a known time-variant row vector whose entries are
themselves functions of the unknown entries of w.

A special example of an autoregressive model that leads
to an equation of the form (3.1) was discussed in the pre-
vious section. However, other nonlinear problems also lead
to measurement structures that are similar to (3.1) and,
hence, the discussion in this section applies to these prob-
lems as well. Examples to this effect will be postponed to
Secs. 5, 6.2, and 6.3 (see though expressions (5.8), (5.12),
and (5.17)).

The measurements {y(i)} can be alternatively inter-
preted as the noisy outputs of a simple state-space model
of the form

Xi,
h;(x;)x; + v(3).

Xi+1 = X =W,

y(?)
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The state equation in (3.2) is trivial: the state vector does
not change with time and it therefore remains equal to the
initial state vector, which is taken to be w, i.e.,
Xi41 =X; = ... =X0 = W.

[We may add though that the analysis of this paper ex-
tends to more general state-space models, e.g., with driv-
ing inputs in the state equation and nonunity transition
matrices].

Let z(7) denote a desired combination of the unknown
vector w, say

(1) = gi(w)w = gi(xi)xi , (3.4)
for some known function form g;(-). The objective is to em-
ploy the available measurements y(i) in order to estimate
2(i). The estimate of z(¢) is to be computed in a causal
manner, i.e., it can only depend on the observations that
are available up to time 7, {y(j), 0 < j <1i}. A motivation
for this problem in the context of autoregressive modeling
was provided in Sec. 2. Similar problem formulations also
arise in other contexts and will be illustrated in Sec. 5.

So let 2(i|i) denote an estimate for z(¢) that is dependent
on the available observation data {y(-)} up to time ¢, and
which is defined according to the following H* criterion.

Let IIy be a given positive-definite matrix and choose any
initial guess for w, which we shall denote by Xy. Define the
weighted initial weight error %o = Iy L/ (
as the estimation error

X — Xo), as well

ep(i) = 2(3) — 2(i[9). (3.5)
For every time instant i, define the ratio:
i 12
o e
o Dimlol) .

[1%oll3 + 32— [v(H)I?

This ratio provides a relative measure of the energies due
to the estimation errors, the error in the initial guess Xq,
and the disturbances v(-).

PROBLEM 1. [NONLINEAR H* ESTIMATION] Given (3.2)-
(8.4), determine, if possible, causal estimates 2(j|j), for
j=0,1,...,N, so as to guarantee that, for any Xo and v(-),

the ratios (i) will be bounded by a given positive constant

v?, say

r(i) <y* for 0<i<N. (3.7

Assume we collect the estimation errors ep(7) into a col-
umn vector, say

ep = col{ep(0), ep(1),...,ep(N)},

and the noise sequence and the initial weight-error into
another column vector, say

(3.8)

n = col{Xo, v} = disturbance vector, (3.9)

where v contains the additive noise sequence

;0(N)}-

That is, n contains the disturbance signals (these are sig-
nals that we have no control over) while e, contains the
resulting estimation errors (these are the errors that result
from the solution). Now if a solution to the estimation
problem exists, it should induce a mapping, say 7y, from
the quantities in (3.9) to the quantities in (3.8) satisfying
7(N) < 2. In this case, we say that the level of robustness
is 7.

As mentioned earlier, while the state equation (3.2) is
trivial, the nonlinear H* problem can be stated in full
generality (i.e., for general state-space equations). In this
paper, however, we focus on the special state equation form
(3.2). Such forms arise also in adaptive least-squares prob-
lems [21] and, for this reason, we may refer to the special
Problem 1 as a nonlinear H* —adaptive (or identification)
problem.

v = col{v(0),v(1),... (3.10)

IV. AN APPROXIMATE H*-LINEAR SOLUTION

The presence of the w—dependent (nonlinear) functions
h;(w) and g;(w), in both the numerator and the denomi-
nator of the cost ratio r(4) in (3.6), complicates the solution
of Problem 1. For this reason, we proceed here in two steps.
(i) We first assume that the nonlinear terms h;(w) and
gi(w) (which are dependent on w) are replaced by esti-
mates ﬁi and g; that do not depend on w but only causally
on the given measurements. This allows us to approximate
the nonlinear problem by a standard linear H* —setting,
and therefore proceed with a linear filter design. Lineariza-
tions of this kind are common in the literature and have of-
ten been invoked in many different contexts in order to han-
dle nonlinear situations. However, a linearized design need
not (and it often does not) guarantee that performance
specifications for the original nonlinear problem will nec-
essarily be met by the linearized solution. For this reason,
our design procedure proposes a second step, the purpose
of which is to clarify under what conditions, and subject
to what modifications, the linearized design can still guar-
antee the desired performance for the nonlinear setting.
(#i) More specifically, by using the estimates h; and g; to
design a linear H* filter with a desired level of robustness,
we end up with a modified mapping, say 7y, from a mod-
ified disturbance vector n’ to a modified estimation error
vector, e;, = col{e;,(i)}. But since our objective is to in-
duce a robust mapping relative to the original disturbance
vector n, rather than a modified version of it, we proceed
to embed the linear H*°-design into a feedback structure.
The purpose of the feedback configuration is to guaran-
tee that the resulting induced mapping from the original
disturbance vector n (rather than n') to the modified es-
timation errors e}, will satisfy a desired level of robustness
(see Theorem 1 further ahead). We shall also argue later
that, in several cases, the use of the modified estimation er-
rors el (-), instead of the original e,(-), does not affect the

p
overall desired performance (see, e.g., Sections 5 and 6.1).
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A. Vector Estimates

We first assume that we have available at each time in-
stant 4, estimates h; and g; for h;(w) and g;(w), respec-
tively. These estimates may be computed in different forms
and should only depend on known quantities (or measure-
ments) up to time (7 — 1).

One possibility is the so-called bootstrap technique [18];
it assumes that we have access to recursive estimates of the
parameter vector w, which are then employed in approxi-
mating h;(w) and g;(w); if we let w;_; denote the estimate
of w at time ¢ — 1 that is based on the measuremets avail-
able up to that time instant, then the bootstrap method
uses

hi = hi(wi—l) and gz = gi(wi—l)- (41)

That is, it evaluates the nonlinear functions h;(w) and
gi(w) at the weight estimate w;_;. A construction along
these lines for the class of so-called modifiable nonlinear
functions is discussed in [10] in the context of continuous-
time filtering. In general, however, the bootstrap construc-
tion (4.1) may not be sufficient to guarantee an overall
lo-stable filter. Examples are provided in Secs. 5.1 and 7.
We may remark here that the time variations in h; and
g; will be due to both known time dependencies in the
original functions h;(w) and g;(w), as well as nonlinear
dependencies on the weight-vector estimates themselves.

B. Step 1: A Linear Design

Assume that, in some way, at each time instant ; we
have available estimates h; and g; that may have been
computed either according to (4.1) or according to some
other construction.

Using the {h;,&;} we can rewrite the earlier nonlinear
state-space model (3.2)—(3.3) in terms of the “linearized”
version

Xi,

flixi + Ul(i),

Xit1 Xg = W, (4.2)

y(i) =
where fli is now independent of the state vector x;, and
v'(7) denotes the difference between y(i) and the approxi-
mate term h;x;. The v'() can be interpreted as a modified

disturbace and it can also be related to the original distur-

bance v(z) since
V(@) = y(@) - hxi,

hi(xi)xi + ’U(’L) - flixi 5

[Bi(w) = By w + 0(s).

(4.4)

That is, v'(¢) and v(i) differ by [h;(w) — h;]w, which es-
sentially measures how far is the approximation h; from
h;.

Let also z'(¢) denote the approximation of z(3) in (3.4),
viz.,

(4.5)

Since g; is a known vector, z'(7) simply corresponds to a
linear combination of the entries of w.

2'(1) = giw = &ix;.

We can now pose the problem of linearly and causally
estimating the 2'(i) from the available measurements y(7)
and using the linear state-space model (4.2)-(4.3).

So let 2'(i|i) denote an estimate for 2'(z) that is depen-
dent on the available observation data {y(-)} up to time g,
and which is defined according to the following H* crite-
rion. Define
(4.6)

as well as the ratios

_ Yimole(9)P
[1%oll3 + 35— [v' ()1

PROBLEM 2. [LINEARIZED H* ESTIMATION] Given (4.2)-
(4.5), determine, if possible, causal estimates 2'(j|j), for
j=0,1,...,N, so as to guarantee that, for all X5 and v'(-),
the ratios r' (i) will be bounded by a given positive constant

&, say

r'(3) (4.7)

r'(i) < & for 0<i<N. (4.8)

Assume again that we collect the estimation errors e, (4)
into a column vector e}, the modified noise sequence v’ (i)
into v/, and define the modified disturbance vector n' =
col{xg, v'}. If a solution to the linearized estimation prob-
lem exists, then it would induce a (block) lower triangular
mapping from n' to e;, say Ty, whose 2—induced norm
will be bounded by &.

Problem 2 is a special case of a standard finite-horizon
linear H*° —filter design. One possible solution is the fol-
lowing H*°— filter — e.g., [26], [9].

ALGORITHM 1. [A-POSTERIORI FILTER] Estimates 2'(j|7)
that meet the requirements (4.8) exist if, and only if, the
matrices Pj1 given below are positive definite for j =
0,1,...,N. In this case, we can take 2'(j|j) = g;%;;, where
the state estimates X;|; (also denoted by w;) can be evalu-
ated recursively as follows:

Xjj =Xj_1)j-1 + (4.9)

~ N .11 N
P;b; [1+ BP0 ] [y(5) - By%jum]

with initial condition X_y_1 = Xo and where P; satisfies
the Riccati difference equation: Py = I,

v 1w Tt | &
Pij1 =P; - P; [ g hj ]Re,}[ Y

E ] P,, (4.10)

with

The Riccati difference equation (4.10) can be rewritten
in an alternative form that will be more convenient for our
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later analysis. By employing the matrix-inversion formula
(see, e.g., [11]), we obtain the following update for Pj_l,

P, =P;' —£2878; + hih; (4.11)
This form shows how the positivity of P; is affected by the
vectors {g;, h;} and will be useful in later sections.

The filter of Algorithm 1 is a so-called filtered or a-
posteriori version since each estimate 2'(z|i) also depends
on the most recent measurement y(¢).

There is a related estimation or a-priori version, which
estimates the 2'(i) by using only the data {y(j)} up to time
(¢ — 1) rather than time 7. If we denote these estimates by

2'(i|t — 1) and the corresponding estimation errors by

el (i) = 2'(s) — 2'(ili — 1), (4.12)
then the a-priori filter considers instead the ratios
(i) = Yo €6 ( II§ , (4.13)
1%ol3 + 2526 [v' (7)1
and tries to bound them, say by
(i) <& for 0<i<N. (4.14)

ALGORITHM 1A. [A-PRIORI FILTER| Estimates 2'(j|j — 1)
that meet the requirements (4.14) exist if, and only if,
the matrices P; given below are positive definite for j =
0,1,...,N. In this case, we can take 2'(j|j —1) = &;%;;—1,
where the state estimates X;);_, (also denoted by w; 1) can
be evaluated recursively as follows: Let

~ _ axa 1—1
P; = [P;' —¢7%g5g;] -
Then

Xjt1); = Xjjj—1 + (4.15)

[y(j) - fljij|j—1] ,

with initial condition Xo_1 = Xo and P is as in Algorithm
1.

- A N o~ A -1
B;h; [1+ P, k]

We focus in the next few sections on the a-posteriori filter
(Algorithm 1) and return in later sections to the a-priori
version (Algorithm 1A).

C. Step 2: A Feedback Structure

As mentioned earlier, the solution given by Algorithm
1 induces a mapping 7y from the modified disturbance
vector n' to the modified estimation errors e], (see defini-
tions after (4.8)). Its 2—induced norm is guaranteed to
be bounded by £ in view of (4.8). This is schematically
indicated in Fig. 1.

In view of (4.4), the modified disturbance v'(7) is re-
lated to the original disturbance v(i) and to the difference
[hi(w) — 3
amples in next section) that the difference [h;(w) — h;]w
can be related to e},(i), and in these cases we would be

h,]w. However, it may often happen (see ex-

Xg —=

Th

V(1) 7

Fig. 1. Induced map.

able to re-express the modified disturbance v'(¢) in terms
of {v(3), eh(4)}-

_This possibility is dependent on how the estimates
{h;, &;} are constructed and several examples are provided
in the next section. For the time being, let us simply as-
sume that such a construction has been determined. It
would then induce a relation between the original noise
vector v, the modified estimation errors e;, and the modi-
fied noise vector v', say of the general form

v/ = Vv + Fye! (4.16)

P
where Fn and Vn denote causal linear operators (or fil-
ters). Incorporating these operators into Fig. 1 would lead
to the feedback structure of Fig. 2.

Y0

Ta
Vo [

v(")

Fn

Fig. 2. Feedback structure of the linearized solution.

V. SEVERAL ILLUSTRATIVE EXAMPLES

Before discussing the implications of the feedback scheme
of Fig. 2 on the overall desired robustness performance,
we first exhibit several examples that illustrate how such
feedback structures can be induced by proper constructions
of the estimates {h;, &;}. We start with the autoregressive
model of Section 2.

A. Back to the Autoregressive Example

In the autoregressive problem of Section 2, we were given
noisy measurements y(7) satisfying (2.6) with the row vec-
tor h;(w) being equal to d;_1 in (2.2). That is, the entries
of h;(w) were time-delayed versions of each other,

hi(w)=[d(i—1) d(i-2) di — M) ], (5.1)
where each d(7) in turn satisfied
d(i) = dj—1w + u(i) = hy(w)w + u(i). (56.2)

Moreover, we were interested in estimating the uncorrupted
term d;_;w, which we defined as z(:) = h;(w)w in (2.7).
Therefore, for this example, we have g;(w) = h;(w).

A construction for the estimate h; is suggested by the
above expressions. Indeed, assume we incorporate a similar
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time-shift structure into the entries of h; (or d;_;), say
(compare with (5.1))

hy=[di-1) di-2) di—-M)], (5.3
where the estimates d(i) are further evaluated as suggested
by the defining relation (5.2), viz.,

d(i) = di_yw; + u(i) = hyw; + u(s). (5.4)
Here, as mentioned eariler, w; denotes an estimate for w
that is based on the data up to time ;. We may further
note that the estimate h; in (5.3) is not of the bootstrap
type (4.1). The reason being that each entry d(j) in (5.3)
is dependent on w; (in view of (5.4)) and, consequently, h;
is not only a function of the most recent estimate w;_;.

The constructions (5.3) and (5.4) lead to a relation of
the form (4.16) between v'(i) and {v(i), e, ()}, where now
(since g; = h;)

To verify this claim, let us denote the difference [d(i) —
d(i)] by d(i) (which is in fact equal to e,()). This mea-
sures the error in estimating d(i) by employing d(). Let us
also associate with the unknown vector w the polynomial
Alg™h) = lecw:l arg *, where the {a;} denote the entries
of w.

Tt is then easy to see that expression (4.4) for v'(i) be-
comes

(i) = [hi(w) - ﬁz] w + v(i),

= A(g~Hd() + (). (5.6)

We now relate d(i) to e,(i). Indeed,

hz' (W)W — ﬁiwi,

dii) =
= {hi(w) —hi}w + €(0),

= A(g ")d(i) + €(0),
= T - (5.7)

Combining with (5.6) we see that

. . A(g™! .
V)=o) + 12 )
which provides an explicit relation among the variables
{v'(@),v(4),e,(i)}, as desired.

In terms of the structure of FIG. 2 we have Vy = I (the
identity operator), and Fuy equal to the (N + 1) x (N +
1) leading triangular Toeplitz operator that describes the
action of A/(1— A) over the first (N +1) samples of {e;,(-)}
(in the absence of initial conditions). The entries of Fy are
the first (VN + 1) coefficients of the expansion of A/1 — A
in terms of powers of ¢—!. This is depicted schematically
in FIG. 3.

T

1—-A

Fig. 3. The autoregressive model.

B. An Ezample of a Sinusoidal Nonlinearity

Assume w is a scalar parameter that we wish to identify.
For this purpose, noisy measurements {y()} are available
that are related to w as follows:

y(i) = (¢ + a(i) cos[b(?)w]) w + v(7), (5.8)
where a(i) and b(i) are known (scalar-valued) sequences,

and c is a known positive constant. In the language of the
model (3.1), this corresponds to the choice

hi(w) = ¢ + a(3) cos[b(¢)w].

[hi(w) is now a scalar-valued function rather than a vector
function. For this reason, we are not employing boldface
notation to refer to h;(w) in order to be consistent with
our earlier convention].

The quantity z(¢) that is of interest in this problem is
z(1) = w and therefore (cf. (3.4)), g;(w) = 1. That is, g;(w)
is simply the unity constant and, consequently, we can set
gi = 1 = gi(w). In this example, the functions h;(w) and
gi(w) are different and, furthermore, e;,(i) = e,(¢) since no
approximations are needed for g;(w).

We proceed to replace h;(w) by the estimate

hi = ¢+ a(i) cos[b(i)wi_1] = hi(wi_1), (5.9)
where w;_1 denotes an estimate for the coefficient w that
is based on the observations up to time (i — 1). This is
now an estimate of the bootstrap form (4.1). Based on
this construction we have

ep(i) = e;(i) = §i(w — w;) = w — wy, (5.10)
and (cf. (4.4))
v'(2) = v(i) + [hi(w) — hi(wi—1)]w. (5.11)

Assuming the function h;(w) is real-valued and sufficiently
smooth (or continuous), we now invoke a useful result from
mathematical analysis, viz., the mean-value theorem. It
allows us to replace the difference [h;(w) — h;(w;_1)] by a
scalar multiple of (w — w;—1). More precisely, the mean-
value theorem guarantees the existence of a point w;_; (ly-
ing along the segment connecting w and w;_1) such that
the following exact equality holds:

hi(w) — hi(wi1) = hi(Wi1) [w —wi—1],
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where iii denotes the derivative of h; and is equal to
hi(w) = —a(3)b(¢) sin[b(¢)w]. This allows us to rewrite
(5.11) as

v'(7) = v(3)
This again establishes a relation among the quanti-
ties {v'(-),v(-),e,(:)}, as shown in Fig. 4. In this

D
case, the feedback loop is a unit delay with coefficient

—a()b()w sin[b(i)w;_1]-

— a(i)b(i)wep (i — 1) sin[b(¢)w;—1] .

X0

[
S
—~
~—

~Y0 | TR

v() N

—a(i)b(i)w sin[b(s)@;—1] ¢~ *

Fig. 4. A sinusoidal nonlinearity.

We shall see later in our analysis of the [o—stability of
the approximate solution that what matters is the norm of
the feedback loop. In other words, the fact that w; ; is an
unknown in Fig. 4 does not pose a significant problem since
its presence will be overcome by noting that a sinusoidal
function is always bounded by one no matter what the
value of its argument is (see the discussion in Sec. 6.2).

A related example that fits into this remark arises in the
context of Perceptron training in neural networks. In this
case, a feedback structure of the form shown in Fig. 4 also
arises, with a feedback loop that depends on the deriva-
tive of the activation function. A discussion along these
lines can be found in [23], where it is further shown how
to improve the convergence speed of the training phase by
studying the energy flow through the feedback interconnec-
tion.

C. A Third Example: A Squaring System

Assume again that w is a scalar parameter that we wish
to identify and that

y(i) = w® + v(d). (5.12)

This corresponds to h;(w) = w and g;(w) = 1. We set
hi(w) = w;_y and §; = g;(w) = 1. Consequently,

ep(i) = €,(i) = w — w;, (5.13)

and (cf. (4.4))

v'(4) = v(3) + (w — wi1)w = v(i) + e, (i — 1w

In this case, the feedback loop is also a unit delay with gain
equal to w itself.

D. A Fourth Example: The Vector Case

We may as well mention here that we can replace the
row vectors h;(w) and g;(w) in (3.3) and (3.4) by matri-
ces, say H;(w) and G;(w), respectively. Accordingly, the

/T 1)’(-) T]<]

wq

Fig. 5. A squaring system.

scalar quantities {y(¢),v(2), 2(2), e;,(i) el (1)} would become
column vectors, say {yi, Vi, Zi, €, ;, €, ,} [recall that we use
subscripts, rather than parenthesis, to time-index vector
and matrix quantities].

The statements and solutions of Problems 1 and 2 remain
unchanged except for the notational change of replacing h;
and g; by H; and G;, resp. We also replace the scalar
quantities by the respective vector quantities.

For example, consider again expression (3.3),

y(i) = hiy(w)w + v(i), (5.14)
and assume we are interested in estimating the column
vector w. In this case, h;(w) is still a row vector but
G;(w) = I is now the identity matrix.

If we replace h;(w) by h;(w;_;) and use

€pi=€,;=W—W, (5.15)
Then, according to (4.4),

As an illustration, consider the following contrived exam-
ple:

y(3) = v(i)+ (5.17)
R w1
[ ec@wr m[B(i)ws] ()wd | | wa |,
w3

where {wi, w2, w3} are the entries of the unknown vec-
tor w, and {a(i),5(i),v(i)} are known sequences. Let
{w1,;, wa,;,ws,;} denote estimates of the weight-vector en-
tries. Then, using the mean-value theorem, we can write

a(i)e> (@) bri-1 0 0
T 1
€p,i—1 0 W2, -1 0 w,
0 0 2’)’(2)’11)3,171
where
T
€, [ w Wi,i W2 —W2; W3 — W3, ]
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VI. l3—STABILITY OF THE FEEDBACK STRUCTURE

We now return to the general setting of the feedback
structure shown in Fig. 2 and assume that the mappings
Ta» Vn, and Fy have been identified (as demonstrated in
the above examples).

The question of interest in this section is to verify under
what conditions on the norms of {73, Vn,Fn} the over-
all mapping from the original disturbance vector n (which
includes %o and v(-), as defined in (3.9)) to the modified
estimation errors e;, (defined after (4.8)) is [—stable.

For this purpose, we let || - ||2,ing denote the 2—induced
norm of a linear operator, e.g.,

Tl

T ll2,ing = sup
|| N” > 27T <0 ||X||2

THEOREM 1. Consider the recursive solution of Algorithm
1 and assume that the estimates h; and &; result in o feed-
back structure of the form indicated in FIG. 2. If the fol-
lowing condition is satisfied,

7% |l2,inall Fivll2,ina <1, (6.1)

then the mapping from the original disturbances n to the
modified errors e), is la—stable in the following sense,

lepllz < kn { lI%oll2 + [Vnllz inallvil2 }

where

(6.2)

_ 1T ll2,ina
kn = 7 .
L= ITxll2,inall Fnl2,ind
PROOF: The filter Fny maps the vector e;, to another
vector, say ny. Likewise, the filter Vny maps the vector v
to another vector, say n,. It follows from the definition of
the 2—induced norm of an operator that

VN ll2,ind [IV]l2,
1Fn|2,ind [l€p]l2-

Inollz <
Insll2 <

But v/ = n, +ny and it follows from the triangle inequality
of norms that

V[l < lnoll2 + (gl
Therefore,
IV'll2 < VN llzinallvllz + [|Fnll2inalleyllz-  (6.3)
Now Ty maps {Xo,Vv'} into e;, and, hence,
lepllz < [1Twllz,ing { Xollz + [Iv'[l2}- (6.4)
Using (6.1) and (6.3) in (6.4) we obtain (6.2).
[ |

The above statement can be regarded as a special man-
ifestation of the small gain theorem — e.g., [12, p.214] and
[25, p.337] — when applied to the feedback connection of
FIG. 2.

Note also that since we already know that || 75 |2,ind < &
(when a solution to the design Problem 2 exists), then a
sufficient condition for (6.1) to hold is to require

|IFN]2,ina < 1/€. (6.5)

A. A Remark on the Limit Behaviour

Assume a limiting (infinite-horizon) solution 7y, exists
to Problem 2 as N — oo (examples are discussed further
ahead in Sections 7 and 8, where it is shown that in some
cases of interest the solvability condition of Algorithm 1
becomes trivial). Accordingly, let 7', F, and V denote the
(corresponding) semi-infinite operators satisfying (6.1) and
(6.2) with N — oo and |[V|[2,ing < co.

In this situation, with the noise sequence {v(-)} having
finite energy, i.e.,

> (@) < oo,

=0

the estimation errors will also have finite energy (cf. (6.2)),

|2

I

lep(4)]* < oo.

Jj=0
This implies that error convergence is guaranteed, i.e.,

c g
Jim ep(j) = 0.

If we return to the example of sub-section 5.1 we see from

expression (5.7) that a convergent e;,(¢) would imply a con-

vergent d(i), which would in turn imply that z(i) is recov-
ered since d(i) — d(i) and z(i) = d(7) — u(%).

B. Back to the Sinusoidal Example

In the sinusoidal example of Section 5.2, the
feedback loop is a wunit delay that is given by
—a(i)b(i)wsin[b(i)w; 1]g~!. That is, at each time instant
i, the error e, (i — 1) is simply scaled by the scalar quantity
—a(3)b(¢)w sin[b(i)w;—1]-

Assume, for now, that a feedforward robust filter 73,
of level ¢ exists [that is, that the solvability conditions of
Algorithm 1 are satisfied]. The I;—stability of the overall
system of Fig. 4 can then be guaranteed if we require (cf.

(6.5))

1 for all i.

£

This condition is in terms of w;_1, which is unknown. To
overcome this difficulty, we may simply invoke the fact that
—1 < sin[b(i)@w;—1] < 1 no matter what @;_4 is. In this
case, a sufficient condition for (6.6) to hold is to require

|a(3)b(i)w sin[b(s)@;_1]| < (6.6)

sup [a(i)b(i)w| < ~.

i £

This in effect specifies a region of the real axis for which

lo—stability can be guaranteed: if w lies in this region then

a robust nonlinear estimator can be designed according to

the explanation in the earlier sections. We now clarify this
statement.

Recall from Algorithm 1 that the existence of a robust

feedforward filter Ty, requires the positivity of the Riccati

(6.7)
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variables P;. In the current context, using (5.9), expression
(4.11) becomes (P is now a scalar quantity written as p(j))

p G +1) =p ') — &%+ |c+a(j) cosb()w;_1]>.

Since the initial value p(0) is assumed positive (due to
the choice of IIj), the above update shows that as long
as |c+a(j) cos[b(j)w;—1]|? is not smaller than 2, the suc-
cessive p(j) will be guaranteed to remain positive. Now
the function cos(-) is always bounded by 1. Therefore, a
sufficient condition for the existence of the filter 7}; is for
the {a(j)} to satisfy

(c— la())? > €2

Assume ¢ > sup, |a(j)|. Then the above result may also be
interpreted as follows: it suggests a choice for £. In other
words, if one chooses £ such that

£t <c—supla(j)|, (6.8)
j
then a filter 73, will be guaranteed to exist.
Assume, for example, that ¢ = 6 and
|b(i)| < 0.2, 2.0<|a(i)| <4.0 (6.9)

for all 5. According to (6.8), one can choose any ¢ such
that £7! < 2.0 and the feedforward filter 73 of Algorithm
1 will exist.

The particular choice of £ will end up restricting the
interval over which w can lie for a guaranteed overall
ly—stable design (because of (6.7)). In particular, the
choice £ = 1 requires (cf. (6.7)) |0.8w| < 1 or, equivalently,

w € [—1.25,1.25].

To confirm the above results, noisy measurements y (i)
were generated via

y(1) = [6 + a(i) cos(b(?)w)] w + v (i),

with w = 0.54 and where the sequences a(i) and b(i) were
generated randomly with values bounded as in (6.9). Also,
the noise sequence was randomly chosen in /5, and the level
of robustness £ was chosen to be £ = 1. Algorithm 1 was
then used with initial conditions Zo = 0 and p(0) = 1.
Figure 6 shows the signal y(i) and the resulting error signal
(w — w;). It is clear from the figure that the error e, (7) of
the robust filter approaches zero rather fast.

C. Back to the Square System

A similar discussion holds for the squaring system of
Sec. 5.3, where the feedback loop is determined by w itself.
Assume again that a feedforward robust filter 73 with level
¢ exists. The [y—stability of the overall system of Fig. 5
would then require (cf. (6.5)) that

w - — = w

Pl

s
y(i)
5
45
4
0 50 100 150 200
0.Q1
w — w;
0.008
0.006
0.004
0.002
0
0 50 100 150 200

Fig. 6. Simulation for a sinusoidal nonlinearity.

In other words, if the unknown w lies in the interval
[-1/£,1/€] then a robust nonlinear estimator can be de-
signed by following the discussion of the earlier sections.

Moreover, in this example, h; = w;—; and the solvabil-
ity conditions would require the positivity of the Riccati
variables p(j) in (cf. (4.11))

p G +1) =p71() — €7+ wj—a

This suggests that if £=2 is chosen small enough (smaller
than the energies of the successive weight estimates) then
|wj—1]2 — €72 > 0 for all j and the successive p(j) will be
positive.

Figure 7 shows the results of a simulation for a squaring
system y(i) = w? +v(i) with w = 0.54. The noise sequence
was randomly chosen in [5, and the initial guess was Zy =
0.5 with p(0) = 1 and £ = 3.0. It was observed for this
example that the difference |w;|? — £=2 remained positive
so that the solvability conditions were satisfied during the
simulation.
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Fig. 7. Simulation for a squaring system.
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VII. 7. THE CASE OF SYSTEMS WITH SHIFT
STRUCTURE

The case of systems where the h;(w) vector has time-
shifted entries often arises in applications. We examined
an example to this effect in the context of autoregressive
modeling in Sec. 2. A similar situation also arises in ARMA
modeling as discussed later. For this reason, we shall now
study in more details this subclass of systems and clarify
the connections with several earlier results in the literature.

We still consider the measurement model y(i) =
h;(w)w + v(¢) with the desired signal taken as z(i) =
h;(w)w, and assume the row vector h;(w) has shift struc-
ture ,

hi(w)=[ d(i—1) d(i—2) dii—M) ]. (7.1)
For generality, we further assume that each entry d(:) is
generated via a relation of the form

d(i) = S(g~ ") [hi(w)w], (7.2)
where S(¢g~!) denotes a known linear time-invariant filter.
This means that d(i) is obtained by filtering the signal
h;(w)w through S. The special case S(g ') = 1 arises in
autoregressive modeling and was considered in Section 2.

Following the discussion of sub-section 5.1, we again de-
fine

h;=[d@-1) d(i-2) di—M) ], (7.3)

where the {d(-)} are evaluated via (as suggested by (7.2))

i) = $(a ) hiwi. (r4)
In this case, we have
640 = b — b
and we get
V(i) = W@ + v(), (7.5)
with
i) = k)l 0o

where W (g~!) is the polynomial associated with the entries
of w. Consequently,

S(g HYW(g ")

U(Z) + 1 —S(q_l)W(q_l)[e;(z)]’

which again provides an explicit relation between the vari-
ables {v'(:),v(:), €5 (-)}. This is depicted in Fig. 8.

A sufficient condition for (6.1) to hold is to require
[|Fn|l2,ina < 1/€. This is satisfied if

SwW

A 1
T—Ssw is stable,

(7.7)

10
}N(O !
ey(°)
J4
~V0 | T
() Y
SW
1—SW
Fig. 8. The case of systems with shift structure.
and (oY (I
max E5(e7 )W (™) <1, (7.8)

w |1 = S(edw)W(eiv)

for 0 <w < 2m. .

Writing down Algorithm 1 for this case (with h; = §;)
we obtain the following filter equations for 0 < j < N [the
equations are now written, for convenience of exposition
and for ease of comparison with results from the literature,
in terms of w; rather than X;; — the initial condition is
now also denoted by w_; rather than Xq]:

w; = Wj_1+ (79)
1. * N I * -1 . i
Pjhj [1 + thjh]-] [y(]) — hjwj—l] ,
P = (7.10)
P,—P;| h* h* |R;! b P
Jj J[ 5 5 ] e,j ﬁj Js

The positivity of the matrices P;j;; over 0 < j < N,
as well as condition (7.8), guarantee that the above filter
attains a level of robustness that is upper-bounded by

1 7x ll2,ina
1 —[|Txll2,ind || FN|l2,ind

That is, in view of (6.2),

kn =

lepll2 < kv {[IZoll2 + [IVll2 }- (7.11)

The positivity condition is in fact always met if £ is chosen
to be a positive real number not smaller than one. This is
clarified in the next section, where we highlight a connec-
tion to the so-called PLR algorithm.

A. The Pseudo-Linear Regression Algorithm

An interesting point to note here is that the H* —based
algorithm (7.9) can in fact be related to so-called pseudo-
linear regression (PLR) algorithms in ITR modeling — e.g.,
[14][p. 167]. To clarify this, we first note, as in (4.11),
that the Riccati recursion for P; in the above algorithm is
equivalent to

-1 _ p-1 —2\ T x 1
P P;l+ (1 - €7%)h3h;.

= (7.12)
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This means that the positivity condition on the {P,} is al-
ways satisfied for any choice £ > 1 and Iy > 0. Moreover,
if we again invert (7.12) we obtain that the Riccati recur-
sion (7.10) can be rewritten in the equivalent (and more
recognizable) form

P;hih;P;
(1-£72)' +h;P;h;

Pj1=P; - (7.13)

Expressions (7.9) and (7.13) constitute the a-posteriori
form of the so-called PLR algorithm. A related a-priori
version is derived further ahead at the end of Section 9.2.

Expression (7.9) also includes as special cases other forms
of recursive identification schemes, other than the PLR al-
gorithm discussed above, such as the important class of
instantaneous-gradient-based filters. This is detailed in the
next section.

VIII. INSTANTANEOUS-GRADIENT-BASED IIR
ADAPTIVE FILTERS

Note that the Riccati recursion (7.10) (or (7.12)) trivi-
alizes in an important special case given below. This fact
was first noted in [8] in the linear context of FIR (or MA)
identification [see also [4] and [22] for a related discussion
in the continuous-time case]. We now extend the result to
the nonlinear scenario of the previous sections.

If £ is chosen to be one, £ = 1, then recursion (7.12)
trivializes to

P, =P;' =1L,
where Il is the initial condition. The solvability condition
then becomes II > 0, which is always satisfied since Il is
assumed to be positive-definite. In particular, this holds for
a special choice of the form Iy = ol, a (positive) constant
multiple of the identity. For this choice, the update of the
weight estimate (7.9) reduces to

% ~ ~
+— ks [y() — Bywya],  (81)
1+al|h,3

W; =W;_1
which is an instantaneous-gradient-based recursion (also
known as NLMS [7], [1]) with a step-size of the form

a
1+ aflh;|i3

Exponential stability of the NLMS algorithm (8.1) in the
noise-free case (v'(i) = 0) has been extensively discussed
in the literature (e.g., [1][Sec. 2.6]). It has been shown to
require, along with a persistence of excitation condition on
{h;}, the strict positive-realness of the transfer function
1/(1 = SW) [1][Thm. 2.9].

In the next subsection we connect the framework of
this paper with these earlier studies by showing that the
positive-realness condition alone also arises in the noisy
case, as a result of (7.8), and it serves to guarantee an
overall [>—stable (or robust) algorithm.

11

A. Stability Analysis and Loop Transformations

The lo—stability condition (7.8) for Figure 8 requires
SW/(1 — SW) to be strictly contractive (since £ is now
taken to be one). Noting that we can write

SW 1

T—sw ~ 1_sw -

(8.2)

and using the fact that for any complex number z, the
following conditions are equivalent,

|z —1| <1 <= Re(1/z) >1/2,

we conclude that the contractivity requirement on SW/(1—
SW) is equivalent to the positive-real part of (1 — SW)
being larger than 1/2,

Re [1 — S(e™)W (e?¥)] > 1/2. (8.3)
This guarantees an [;—stable system
from {ofl/2v'v,1,v(-)} to {e,()}  (84)

where w_; = w—w_;. The condition (8.3) can be relaxed
by applying a scaling tool that can be related to so-called
loop transformations in passivity analysis. For this pur-
pose, we first establish two preliminary results. The first
result rewrites (8.1) in an alternative form, which has al-
ready been noted earlier in the literature in the noise free
case (v'(i) = 0) — e.g., [1][Sec. 2.6.1].

LEMMA 1. [ALTERNATIVE UPDATE| The update equation
(8.1) can be rewritten in the equivalent form

w; =wj_1 +ah [e)(j) + v'(j)], (8.5)

where, as defined earlier, e;,(j) = ﬁjw—ﬁjwj, and v'(j) =
y(j) —h;w.

Proo¥: Note that e}, () +2'(j) = y(j) — fljwj. Therefore,
all we need to establish is the identity

[y(j) - ﬁjo—l] .

(67

aly(j) —hjwi] = —— =
1+ aflhy|i3

But it follows from the update equation (8.1) that

allby|3 y(5)
1+ allhy|f3

~ hjwj—l

jWj = =
1+ al[hy|3

Subtracting y(j) from both sides and multiplying by «
leads to the desired equality.
|

The map from {a~'/2W_1,v'(:)} to {e,(-)} is a strict
contraction since, as argued above, the recursion (8.5),
which is equivalent to (8.1), is an a-posteriori H*® —filter
and the positivity condition is always satisfied due to
Pj:H0=aI>0,a,nd§=1.

It is also clear that, in fact, this result holds for any
update filter of the form (8.5) and for any noise sequence
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v'(-). In other words, it holds whenever we have a recur-
sive equation of the form (we are deliberately changing the
notation here to {3, €,, 7} for generality):

w; = w;_1 + Bhj [6,(j) + 9(j)], (8.6)

for an arbitrary noise sequence {v( )}, an arbitrary positive
number G, and for €,(j) = h w—h; ;w;. We summarize this
in the form of a lemma, the proof of which follows imme-
diately from the original H>* motivation.

LEMMA 2. [A CONTRACTIVE MAPPING] Consider an up-
date relation of the form (8.6). It always holds that

Yo e ()
BHW_al3 + S0, [5()2

<1 (8.7)

PROOF: Given an arbitrary noise sequence {%(-)}, we can
define the sequence {7(-)}

y(4)
Now, recursion (8.6) can be equivalently rewritten in the
form (in view of Lemma 1)

L
+ BlIhy 113

which can be readily seen to be a special case of the
He° —filter of Algorithm 1 with IIp = I > 0 and £ = 1.
This establishes that (8.7) holds.

= fle + ’L_)(])

W =W;_1+ hj [Q(J) ﬁjwj—l] ,

Using the relation established after (7.6), and expression
(8.2), we have

1
+ T e + ()

which allows us to rewrite (8.5) in the form

wi = wy ke |Gl +00)

These observations motivate us to reexpress the update
recursion (8.5) in the equivalent form:

a/f
L+ 500

Wj,l + ﬂfl; [

= wj 1 +6h} [e,(j) + v"(5)], (8.8)
where we have now defined
" 1 O‘/ﬁ ! .
v"(§) = —e,(4) + [ P+ Zv(d), (8.9)

ﬁ

and where 3 is any positive real number. The recursion
(8.8) guarantees, in view of Lemma 2 above, a strictly con-
tractive map from {8/2W_y,v"(-)} to {e,(-)}. Accord-
ingly, an overall [o—stable system (compare with (8.4))

from {,8 V2 1,%1}()} to {e;(")} (8.10)

12
will be guaranteed if we impose
a/B
- - -1 1 8.11
T8 )W (eiv) < (8.11)
which requires (compare with (8.3))
Re [1— S(e?)W ()] > %. (8.12)

Since this should be true for any choice of 3, we therefore
conclude, by choosing 3 large enough (but finite), that a
sufficient condition for the [ —stability of (8.1), in the sense
of (8.10), is the strict positive-realness of the function (1 —
SW).

Now recall that if the real part of a complex number
z is positive then the same is true about the real part of
1/z. This allows us to conclude that a sufficient condition
for the l;—stability of (8.1) is the strict positive-realness
of the function 1/(1 — SW). Hence, if {v(-)} is a finite-
noise energy sequence, then so is {%’U()}, and we can still
conclude from the [>—stability condition that e}, (i) — 0.

In the next section we consider an important special case
that arises in ARMA modeling (see also [1][Sec. 5.1.3]).

B. Landau’s Scheme for IIR Modeling

Consider a linear time-invariant system that is described
by a recursive (i.e., pole-zero or IIR) difference equation of
the form

M, My—1
dj) = Y ard(i—k)+ Y bru(j—k)
k=1 k=0
= [djm1 w ] [ ; ]
where
dj—l = [ d(_] — 1) d(] - Ma) ] 1]
u; = [ u(j) u(j =My +1) ],
a = colai,az,...,am,},
b = col{bo,b1,..-,bm,-1},

The row (data) vector
hj(w)=[dj1 uj ]

is dependent on w since the entries of d;_; depend on w.
Here w is a column vector that contains the parameters a
and b.

The problem of interest is the following: given noisy mea-
surements {y(-)} of the output of the system, {d(-)}, in
response to a known input sequence {u(-)}, say

=d(j) +v(j)

estimate the system parameters a and b (or w).
An existing approximate solution, which is based on
instantaneous-gradient ideas [14], is one that updates the

y(4) =h;(w)w +0(j),
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weight estimate according to expression (8.1) and where ﬁj
is computed as

hj=[dj- ]
Note that u; is known, while the entries of
da=[dG-1) ... dG-M)],

are estimated recursively: start with initial guesses
{d(-1),d(-2),...,d(—M,)} and compute successive esti-
mates J(j), for j > 0, via the recursion:

d(j) =
where {a;,b;} denote estimates of {a, b} at the j*" itera-
tion. This is a special case of the construction (7.4) (with
S = 1). We also see here that we only need to estimate the
leading part of h; (the part corresponding to d;_;) since
the u; part is given. Nevertheless, the same framework
discussed so far in the paper applies. All we have to do is
employ the results of Algorithm 2 with W(g~!) replaced
by A(g~1), where A(g~!) is the shift polynomial that is as-
sociated with the coefficients in a. This is because the dif-
ference (h; —h;) now has the form [ (d; ; —d; ;) 0 ].
That is, its second block entry is zero and, consequently,

(h; — hy)w = (dj-1 — dj-1)a.

aj_laj +Ujbj, (814)

We then conclude that a sufficient condition for the I>-
stability of Landau’s scheme is to require the strict positive-
realness of 1/(1 — A).

While this is a known result for Landau’s scheme — e.g.,
[24, pp.146-150], we have rederived it here within the gen-
eral framework of this paper. In particular, we have es-
tablished that Landau’s scheme is in fact a special case
of the a-posteriori H®-filter of Algorithm 2, and that the
corresponding solvability condition has been trivialized by
choosing I1y = al.

IX. [5—STABILITY OF THE APPROXIMATE A-PRIORI
FILTER

The analysis of Sections 4 through 8 are equally appli-
cable to the a-priori filter of Algorithm 1A. For this rea-
son, we shall be brief in this section and highlight only the
points that are distinctive of the a-priori case. As it turns
out, some subtle points persist that turn out to mark the
difference between the a-posteriori and a-priori filters.

In fact, most of the analyses in the literature address sta-
bility issues of a-posteriori versions only, such as the NLMS
algorithm, the PLR algorithm, and Landau’s scheme that
were discussed in the earlier sections — e.g., [14][Sec. 5.3,
[1][Secs. 2.6 and 5.1], and [24][Sec. 6.2].

While an averaging analysis, along the lines of [3], [24],
can be pursued for a-priori adaptive schemes, the conclu-
sions would generally hold only for very small adaptation
gains. In Sections 9.4-9.5 further ahead, we study the a-
priori versions without requiring beforehand that the adap-
tation gains be very small. Instead, the solvability condi-
tions of the a-priori H* formulation will be shown to indi-
cate how large the adaptation gains can be for guaranteed
ly—stability (see, e.g., (8.32) and (8.33)).

leallz < kn{lI%ollz + VN ll2,inall¥ll2 },

13

In other words, the point of view taken in this paper
helps clarify some subtle differences that exist between the
a-priori and a-posteriori versions. This is achieved by rais-
ing and exploiting connections with the design of a-priori
and a-posteriori H*° —filters and by highlighting the differ-
ences in their solvability (or existence) conditions.

A. The Approzimate A-priori Solution

To begin with, note that the numerator in the ratio r" (¢)
in (4.13) includes the a-priori error term

efl(j) = QjW - gjwjfla

while the denominator includes the modified noise sequence
v'(j) = y(j) - Byw.

Assume again that we collect the a-priori errors into a
column vector,

el = col{e,(0),e4(1),...,eq.(N)},
the original and modified noise sequences into two vectors,

v = col{v(0), v(1),...,v(N — 1)},

v' = col{v'(0),2'(1),...,v" (N = 1)},

and the initial weight error %o along with v’ into a mod-
ified disturbance vector n’ = col{Xq,v'}. Define also
n = col{Xo,v}. Let T} denote the (causal) operator that
maps the modified disturbances n’ to the estimation errors
e/. In view of Algorithm 1A, this operator is constructed
so as to have a 2—induced norm that is bounded by &.

~~
~—

a~

v'() | T
Vy g@

v(")

Fn

Fig. 9. Feedback structure of the a-priori solution.

If we further assume that estimates h; and g; are con-
structed in such a way so as to result in an explicit relation
between v'(j) and {v(j),e, ()} (FIG. 9), then the follow-
ing statement is immediate in much the same way as in the
a-posteriori version of Theorem 1.

THEOREM 1A. Consider the recursive solution of Algo-
rithm 1A and assume that the estimates h; and g; result
in a feedback structure of the form indicated in FIG. 9. If
the following condition is satisfied,

1 Txl2,indll Frll2,ing < 1, (8.15)

then the mapping from the original disturbances n to the
modified errors el is la—stable with finite gain in the fol-
lowing sense,

(8.16)
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where ,
1 7% l2,ina

kn =
N7

2,ind|| Fn|l2,ind

B. The Case of Systems With Shift Structure

We reconsider the example of Section 7 and also assume
that h;(w) = g;(w) exhibits shift structure as in (7.1), with
the estimate h; given by (7.3) except that now the {d(-)}
are evaluated via

d(i) = S(g~H)[hiwi_1]. (8.17)
Comparing with (7.4) we see that we now have w;_; in-
stead of w;. This allows us to relate v'(z) and {v(7), e, (2)}
as follows (FIG. 10):

S(g Yw(gh) o (i

=20 T sewen “

v'(7)

~VE) | T
() N

SW
1-SW

Fig. 10. Systems with shift structure: A-priori case.

Again, a sufficient condition for (8.15) to hold is to re-

quire || Fy|l2.ina < 1/€. This is satisfied if
1 —ZW is stable, (8.18)
and —
o 15— ,(S'e(ejz’)I/I(/e(ejl) <1 (8.19)

for 0 <w < 27.

Writing down Algorithm 1A for this case we obtain [we
use w; instead of x;,; and also denote the initial condi-
tion by w_;]:

(8.20)

Wi =wj;_1+
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The positivity of the matrices f’j over 0 < j < N, as well
as condition (8.19), guarantee that the above filter attains
a level of robustness that is upper-bounded by

1 7x |2 ina
1 —[|Tx2,ind | FN|l2,ind

That is, in view of (8.16),
leall < kn { lI%ollz + IIvll2 },

C. Gauss Newton Updates and PLR Algorithm

Recursion (8.21) can also be rewritten in a more familiar
form. As argued before, the inverse of the Riccati variable
P;,1 in (8.21) can be updated as in (7.12). Therefore,

ky =

(8.22)

p—1 L*1 . _ p-—1

Consequently, using the matrix inversion formula [11], we
obtain

(1+h;P;h;)™" = 1-h;(hlh; +P;')""h},
= 1-h;P;}hj
Likewise,
-1
D 1% _ —1 —271 *1. ]
Bjh; = [Pl -¢hihy| B,
-1
_ -1 N [ %
= [Pl -Byhy] B
N N N —1
= Pyub; [1-RPILE;]
Therefore,

P;hi(1 + h;P;hl)~" =P, k).

This allows us to rewrite the recursions (8.20)—(8.21) in the
compact (and more recognizable a-priori PLR) form:

w; =wj_1 + P 1h] [y(j) ~hywi|,

P;h’h;P;
(1-£7?)~" +h;P;h;
In the special case of FIR (or MA) filters, the above form is
often known as the Gauss-Newton update. More details on

the robustness and stability of such updates can be found
in [19].

Pjp1=P; -

D. Instantaneous-Gradient-Based Algorithms

The recursions (8.20)—(8.21) also collapse to an
instantaneous-gradient-based filter. Indeed, if £ is chosen
to be one, £ = 1, then we obtain

-1 _p-1_ -1
P,,,=P, =1,
where Il is the initial condition. In particular, for the
special choice IIy = pI, a (positive) constant multiple of
the identity, we obtain

w; = wj_1 + ph} [y(j) ~hjw,|, (8.23)
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which is an instantaneous-gradient-based recursion with a
constant step-size parameter (also known as the LMS al-
gorithm [8]).

Now note that the solvability requirement 13j > 0 is not
automatically satisfied. It requires

p'I-hih; >0, 0<i<N.

The matrix g~ 'I— ﬁ;‘ h; is a rank-one modification of the
identity and hence, we may equivalently require

1
[[hy113

i (8.24)

min
0<i<N
This is in clear contrast to the a-posteriori case in (8.1),
where no condition is imposed on «. Moreover, in or-
der to guarantee a non-zero upper bound on p (as N be-

comes larger) we now require that the sequence {flj} to be
bounded.

E. A Stability Analysis

The stability condition of Algorithm 1A requires
SW/(1 — SW) to be strictly contractive, which is equiv-
alent to requiring the positive-real part of (1 — SW) to be
larger than 1/2,

Re [1 — S(e™)W (e?*)] >

DN | =

This condition, along with (8.24), guarantees an l»—stable
map from {%o,v} to e, where %o = u~/2%_;.

Now note that an [;—stable map allows us to conclude
convergence of e/ (-) to zero for a finite-energy noise se-
quence {v(-)}. But if {v(-)} has finite-energy then the same
holds for any noise sequence that is a constant multiple of
v(-), say {\v(-)}, for a finite constant A. This suggests that
we may replace (8.24) by another condition, with the intent
of guaranteeing an ls—stable map from {\v(-)} to {e,(-)}
rather than from {v(-)} to {e,(-)}, for some constant A.
This is clarified in the sequel.

First, note that

hjw +v'(j) — hjw; 1,
= eg(j) +9'(j).

y(j) —hjw;_1

Hence, the update equation (8.23) can be rewritten in the
form

wj = Wi+ phi[e,(5) + v'()],  (8:25)
where, as established earlier,
PN — (s ]- !/ .
V(i) = —eb) + T—gr e+ ol).  (8:26)

We can also use (8.26) to write (8.25) in the equivalent
form

ea (] +v(5) | -

L 1
wi = Wi by | 7Ty
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Let us for the moment ignore any restriction on yu, such as
(8.24), and simply require that it be a positive constant.
Now choose any constant § and assume that it satisfies

B < (8.27)

1
7 |Ihylf3

Using 3, we can rewrite the above update recursion for w;
in the equivalent form

wi = w4 Bt
= Wi+ 6hj [ (§) + 9'(9)], (8.28)
where we have now defined
00) = ) + TEL i+ o). (829)

In view of (8.27), the recursion (8.28) also guarantees a
strict contraction map from {3=1/2%_1,%'(-)} to {e,()}.
Accordingly, an overall [;—stable system

from {gl/zevl,gv(-)} to {el()}

will be guaranteed if we impose

©/B 3
mjx‘l—S(ejw)W(ejw) 1‘ <1, (8.30)
which requires
Re [1— S(e?)W ()] > % >0.  (831)

Assume [1 — S(e/“)W (e/%)] has a strictly positive real part
and let
k = min Re [1 - S(e™)W(e/)]. (8.32)

Then, according to (8.27) and (8.31), the step size u has
to be chosen so as to satisfy

u < 2Bk <2k inf AL (8.33)
7 |Ihy 13

If this restriction is satisfied, then an /s —stable map from
{8~ 12% 4, 5u(-)} to {e,(-)} will result, as desired.

We thus see that the following sufficient conditions will
guarantee e/, (i) — 0 for a finite-energy noise {v(-)}:
(i) [1— S(e’”)W (e’¥)] is strictly positive-real. Let x be as
in (8.32).
(#1) Choose p as in (8.33).

In the next section we consider a special case that arises
in ITR modeling.

F. Feintuch’s Scheme for IIR Modeling

Recursion (8.23) was suggested by [6] in the context of
ITR modeling, though from a very different point of view.
Here we have established that it is in fact a special case of
the nonlinear H* —structure studied in this paper.
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Moreover, and considering the same setting of Section
6.2, the estimate h; is computed with the {a;,b;} in (8.14)
replaced by {a;_1,b;_1}, viz., we now use

d(j) = dj1aj1+ujbj.

Hence, the sufficient conditions derived in the previous sec-
tion are applicable here as well. We nevertheless see that,
in addition to a strict positive-realness condition, we also
require that the step-size parameter be properly chosen as
in (8.33).

(8.34)

X. CONCLUDING REMARKS

We posed a nonlinear identification problem and pro-
posed a solution in terms of a feedback structure that con-
sists of two steps. First, a linear approximation was em-
ployed and a standard H*° —filter design was carried out.
This provided a filter with a 2—induced norm that was
guaranteed to be bounded by a given constant. Then, a
feedback interconnection was introduced in order to guar-
antee an overall [;—stable filter, under suitable conditions
on the data and system parameters.

An interesting fall out of the discussion was that it ex-
plicitly clarified the connections among several earlier ITR
modeling schemes with more recent results in H>° —theory.
In particular, we have addressed the so-called Landau’s
scheme, Feintuch’s scheme, PLR algorithm, Gauss-Newton
updates, and instantaneous-gradient schemes, as special
cases of the general algorithms (Algorithms 1 and 1A) de-
rived herein.

Moreover, the approach of this paper further clarified
the connections between Landau’s and Feintuch’s schemes
in IIR modeling. While a sufficient stability condition has
been available for Landau’s scheme in terms of a positive-
realness constraint — e.g., [24, pp.146-150], a more restric-
tive condition is required for the closely related, yet dif-
ferent, Feintuch’s algorithm. An explanation was provided
here by showing that Feintuch’s recursion required an ad-
ditional condition on the data. This was obtained by es-
tablishing the following interesting fact: Landau’s scheme
was shown to be a special case of a so-called a-posteriori
H-filter while Feintuch’s algorithm was shown to be a
special case of a so-called a-priori H*-filter. It is known in
H*°—theory that the solvability and existence conditions
for both filters are different. Here we showed that in Lan-
dau’s case, the condition trivialized and was therefore un-
necessary, but it remained in Feintuch’s case and was there-
fore required, along with a positive-realness condition.

Finally, and although not treated in this paper, we may
remark that the feedback analysis suggested herein can fur-
ther be shown to provide an interpretation of most adap-
tive schemes in terms of a feedback interconnection that
consists of two major blocks: i) a lossless (i.e., energy pre-
serving) feedforward mapping and ii) either a memoryless
or a dynamic feedback mapping. In contrast to some ear-
lier analyses via hyperstability results that require one of
the paths to be time-invariant [14][p. 381], both mappings
in the feedback composition of this work are allowed to
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be time-variant [20]. Examples to this effect were in fact
provided in the paper (e.g., Fig. 4 and also Sec. 6.2). More-
over, the losslessness of the feedforward path can be shown
to allow for interesting energy arguments that help analyze
the performance of the algorithms as well as design vari-
ants with improved convergence speed (e.g., [23]). These
details will be discussed elsewhere.
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