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Abstract—A tracking control methodology via time-varying
state feedback based on the backstepping technique is
proposed for both a kinematic and simplified dynamic model
of a two-degrees-of-freedom mobile robot. We first address
the local tracking problem where initial tracking errors are
sufficiently smalil. Then, under additional conditions on the
desired velocities, we treat the global tracking problem
where initial tracking errors are arbitrary. Simulation results
are provided to validate and analyse our theoretical results.
© 1997 Elsevier Science Ltd.

1. Introduction

In recent years there has been enormous activity in the study
of a class of mechanical control systems called nonholonomic
systems. In particular, many kinematic models of physical
systems (i.e. systems where velocities are treated as input
signals) belong to this category, see the survey by
Kolmanovsky and McClamroch (1995) and references cited
therein. Controlling such nonholonomic systems turns out to
be a nontrivial problem for a number of reasons. Even in the
simplest case, which we shall study here, the kinematic model
of a two-wheel mobile robot, the stabilization (or parking)
problem at a given position requires a nontrivial controller
(see e.g. Samson, 1991; Pomet, 1992; Murray et al., 1992;
Bloch and Drakunov, 1994; Canudas de Wit er al, 1994;
McCloskey and Murray, 1994; Oelen er al., 1995). The crucial
problem in this stabilization question centers around the fact
that the mobile robot model does not meet Brockett’s
well-known necessary smooth feedback stabilization condi-
tion (Brockett 1983), therefore immediately leading to more
complex-structured controllers as either time-varying con-
trollers or approximate, practically stabilizing, controllers.
The (from an engineering perspective) very interesting
tracking problem for mobile robots has been addressed quite
rarely (cf. Kanayama et al., 1990; Murray et al., 1992, Oelen
and van Amerongen, 1994; Micaelli and Samson, 1993;
Fierro and Lewis, 1995). In all these papers, basically a local
viewpoint in the stabilizing feedback design has been taken
by using the Taylor linearization of the corresponding error
model. A dynamic feedback linearization approach was
proposed in Canudas de Wit er al. (1996, Chapter 8) that
allows (local) posture tracking with exponential convergence
for restricted mobility robots. Similar results were obtained
in Fliess et al. (1995a, b) using time-reparametrization and
motion-planning properties of differentially flat systems
(systems that have the property that they are linearizable
using a dynamic state feedback).
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The purpose of the present paper is to use Lyapunov’s
direct method for obtaining semiglobal and global results in
the tracking problem for the mobile robot. In particular,
under our proposed time-varying controllers, the two-
degrees-of-freedom mobile robot can globally follow special
paths such as straight lines and circles (see Remark 4 below).
We do this for both the kinematic model and an ‘integrated’
simplified dynamic model of the mobile robot. In both cases,
the design technique to obtain a suitable feedback control
law is based upon the integrator backstepping procedure.
The latter idea was firstly discovered by Koditschek (1987)
and then developed in independent work in the context of
nonlinear stabilization (see e.g., Byrnes and Isidori, 1989;
Tsinias, 1989) and adaptive nonlinear control (see e.g. Krstié
et al., 1995). Applications of the backstepping technique to
the adaptive control of nonholonomic systems with unknown
parameters and the global stabilization of multi-input
chained-form nonholonomic systems were recently con-
sidered in Jiang and Pomet (1994, 1995) and Jiang (1996).

The theoretical results obtained in this paper are
illustrated by means of simulations using the local
(semiglobal) controller and the global controller under
changing initial conditions.

The organisation of the paper is as follows. We start with
basic concepts, stability definitions and preliminary results in
Section 2.1. Section 2.2 is devoted to modelling of the
tracking configuration for a wheeled mobile robot and the
statement of our problems. In Section 3, we first propose
time-varying feedback control laws that solve the local
tracking problem. Then, under extra (mild) conditions on the
desired velocities, we solve the global tracking problem via
time-varying state feedback. Along the way, a solution for
local exponential stabilization is given. In section 4, we show
how to extend our control method to the tracking problem
for the mobile robot described by a simplified dynamic
model. Several simulation results are presented in Section 5
to demonstrate our theoretical results. We close with some
brief concluding remarks in Section 6.

2. Preliminaries and problem formulation

2.1. Preliminaries. For any bounded function y:(a, b)—
R, ll¢)l= means its L. norm, ie. |l¢|==sup{gx);
a<x<b}) L,(a b) represents the set of measurable
functions f from (a, b) to R such that [% |f(x)|” dx < +=. For
any differentiable function ¢:(a,b)—>R, ¢'(x) is the
derivative of ¢ at x (not to be confused with ¢(x(r)), which is
the time derivative of ¢(x(t))). We write ¢ € C* if ¢ is a
smooth function. For any function g:R, - R, liminf,_,.. g(t)
denotes the limit inferior of g(t) as rt—», ie.
lim inf, .. g(t) = SUPr=0 [inflzrg(’)]'

Next, we recall some basic concepts about stability theory
(see e.g. Khalil, 1992; Vidyasagar, 1993). A function
v:R. >R, is of class K if v is strictly increasing, continuous
and ¥(0) = 0. It is of class K. if furthermore y(x) goes to «
as x goes to ©. A function V:R, XR"—R is said to be
positive-definite if (i) it is continuous, (ii) V(1,0)=0V:=0
and (iii) there exists a function vy, of class K such that

ikl =V, x) V{,x)e R, XR" 6}



1394 Brief Papers

V is decrescent if there exists a function ¥, of class K such
that

Vi, x)=yy(x) V(L x)e R, XR" 2

V is radially unbounded if (1) holds for some continuous
function ¥, (not necessarily of class K) satisfying y,(r)—>
as r— o,

Consider a nonautonomous system

¥=f(t,x), xeRn 3)

with f a continuously differentiable function such that
f(t,0)=0for all t=0.

Definition
(i) The solutions of the system (3) are uniformly bounded if
for any a >0 and ¢, =0, there exists a B(a) >0 such that

k(o) <a, t(L=0x()I<B Vizy,. O]
(ii) The zero equilibrium (i.e. x=0) of the system (3) is

uniformly stable if, for each £ >0, there exists a 8(¢) >0
such that

x(to) <8(e), =0 x(I<e Vizy, (5)

In the following, we give two technical lemmas that are of
frequent use in proving our results. Recall that a function
¢:(a, b)— R is uniformly continuous if for any & >0, there
exists a 8(&) >0 such that if |x, — x,| < 8§, with xy, x, € (a, b),
then |@(x)) - $(x2)| <&

Lemma 1. (Barbilat). If ¢:R, — R is uniformly continuous
and if the limit of the integral [}, (1) d7 exists as t — = and is
finite then

lim ¢(r) = 0. (6)
Proof. See Popov (1973, p. 211).
In the same vein, the following lemma can be proved.
Lemma 2. Consider a scalar system
X =—cx +p(1), 7)
where ¢ >0 and p(¢) is a bounded and uniformly continuous
function. If, for any initial time ¢,=0 and any initial

condition x(¢,), the solution x(¢) is bounded and converges to
0 as t— = then

lim p(t) = 0. (8)
P
Proof. See Jiang and Nijmeijer (1996). O

2.2. Problem formulation. The problem we study deals
with a wheeled mobile robot with two degrees of freedom.
The robot’s dynamics is described by the following
differential equations:

Xx=vcosH,
y=vsiné, %)
9=w,

where v is the linear velocity and o is the angular velocity of
the mobile robot; (x, y) are the Cartesian coordinates of the
center of mass of the vehicle, and 6 is the angle between the
heading direction and the x axis (see Fig. 1). Systems like (9),
or similar chained systems (see Murray and Sastry, 1993) and
further nonholonomic systems have been the subject of much
ongoing research; see Kolmanovsky and McClamroch (1995)
and references therein.

Fig. 1. Tracking configuration square.

The problem we consider here is the tracking problem;
that is, we wish to find control laws for v and w such that the
robot follows a reference robot, with position p, = (x,, y,, 6,)"
and inputs v, and o, (see Fig. 1). Denoting the error
coordinates by (see Kanayama et al., 1990)

Xe cos@ sin@® O x.—x
Ye |=| —sin6 cos6 0] »-y |, (10)
6. 0 0o 1]le-e

the error dynamics are (see Kanayama ez al., 1990)

X.=wy.— v+ v.cos 0,
Y= —wx. + v, sin 8., (11)
éc =w; — .

In the following sections, we shall examine separately the
following two problems.

Local tracking problem. Find appropriate velocity control
laws v and e of the form

v= V(x€7 yes ee’ vl” wr! “/r), (12)

® = &(Xe, Ve, O, Ve, 0y, V)

such that, for small initial tracking errors (x.(0), y.(0), 8.(0)),
the closed-loop trajectories of (11) and (12) are uniformly
bounded and converge to zero.

Global tracking problem. Find appropriate velocity control
laws v and e of the form

V= V(xe~ Yes oe- Vi Wy, f’n d)r)s (13)

o= w(xe~ y&? ee* Vl” wr\ 1”]“ u.,l’)

such that, for arbitrary initial tracking errors
(x.(0), y.(0), 8.(0)), the closed-loop trajectories of (11) and
(13) are (giobally) uniformly bounded and converge to zero.

2. Tracking of the kinematic model
3.1. The local tracking problem. Given any fixed 0<e <
, let us introduce a set of functions denoted by #7:

Fe={lpRo(—n+e m—€):¢peCT,
©(0)=0, z¢(z)>0V¥z #0 and ¢’ is bounded}. (14)

Simple examples of functions in ¥, include ¢(z)=
oz/(1+z%) for any 0<o<Xnm—¢€), and ¢(z)=
o, arctan (o,z) for all 0 < o, <2(7 — €)/7 and o, >0.

In the tracking error model (11), y. is not directly
controlled. and to overcome this difficulty we use the idea of
integrator backstepping.
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More precisely, for any function ¢ in &7, when setting
x. =0 and 8, = —¢(y.v,) in the y, system of (11), the system
obtained, y, = —v,sin ¢(y.v,) is uniformly stable at y.=0.
With this observation in mind, we introduce a new variable
6, as follows:

0. = 0. + @(yevy). (15)

With (15), the 8, equation in the system (11) is transformed
into

8. = w,— w + @' (yev,)(—wx.v, + visin B, + y.v,). (16)

Consider the candidate Lyapunov function
1 1 1 -
17 ==x2+-y2+—62 17
1([, Xes Ves ee) 2xe 2ye 2'Y ees ( )

with y>0 and 6, given by (15). As can be directly verified,
V, is a positive-definite, decrescent and radially unbounded
function.

In view of (15) and (16), taking the time derivative of V;
along solutions of (11) yields
Vit X Yer 02) = x (@Y, — v + v, COs 8,)

+y{—wx, + vsin[—o(y.v,) + 6]}

+ ée[wr —wt ¢'(yevr)(_wxe v+ U% sin @, + Yevr)]'

1
Y
(18)
Noting that
sin [~ @(ye V) + 6] =sin [~ o(ye /]

1
+ ée J’ cos [_‘P(YEVr) + Sée] ds, (19)
0

J

70
it follows that (18) implies
Vill, Xe, Yes ) = Xe(—V + v, cos 6) — ye v, sin [e(y. v,)]
+ % Oimnyeve + 0.~ [L+ @' (yevi)revilow
+ @' (yeve)(vZsin 6 + ye V). (20)

By choosing the tracking controller v and w as

v=v,cos 8, +c X, 21
o=[1+¢'(yvIx V] [ynyev. + o
+ ‘p’(yc vr)(V% Sin ee + Ye 1‘/l‘) + CZVée] (22)

with ¢, c; >0, we have
Vl(tv Xes Yes ee) = _Clx§ ~YeVr sin [‘P(yevr)] - Czég- (23)

Note that the control law  as introduced in (22) may not be
defined for every . However, we shall prove that, for any
initial condition (x.(0), y.(0), 8.(0)) in a neighborhood of the
origin, w(r) does exist for every r =0.

Proposition 1. Assume that v,, v, and w, are bounded on
[0, ). Then there exists a function ¢ € ¥¢ such that the
equilibrium point (x,, ¥, 8.) = (0,0,0) of the closed-loop
system (11), (21), (22) is uniformly stable. Furthermore, if
v(t) does not converge to zero then, for small initial
conditions (x.(0), y.(0), 8.(0)), the corresponding solution
(xc(1), ye(r), 8.(7)) converges to zero, i.e.

lim [lee(0)) + 1ye(Dl + [8:(0)]] = . (29)

Proof. We first prove that there exists a nonempty
neighborhood Q = R* of the origin such that for any initial
condition (x.(0), y.(0), 8.(0)) € Q, w(t) is well defined on
[0, T), the maximal interval of definition of the solution
(xe(1), ye(1), 8.(1))-

For any r, rn=0, let B(r,r;) stand for the set

{(xe, Y, 6.) € R3:1y75 x| < 1}. Note that B(0, ;) = B(r,,0) =
R3. Also, let Q be a set given by

Q = {(x51 ye, 88) € R3 : Vl(tl xe7 yea ee) < C* vt '>_ 0}’ (25)
where c* >0 is the largest constant such that

{(xey ye’ 98) € RB: ‘/l(t’ xe’ ye’ ee) < C*} < B(lvr”ma ”¢’ “m)~
(26)

It follows from (23) that (x.(7), y.(7), 6.(t)) remains in Q, and
therefore w(t) is well defined on [0, 7). Furthermore, since
V; is nonincreasing along solutions of the closed-loop system,
the boundedness property of the closed-loop trajectory
follows readily, and therefore 7 = +o. We conclude the
uniform stability of the zero equilibrium from (23) and
Lyapunov stability theory (see Vidyasagar 1993, Theorem
5.3.14).

To prove the second statement, observe that, with (23), the
signals x2, y.v,sin[@(y.v;)], 62 e L,(0, »). By assumption,
the derivatives of these signals are bounded. Hence they are
uniformly continuous on [0, ). With the help of Barbilat’s
lemma (Lemma 1), it follows that x.(¢), y.(¢)v.(z) and 8.(t)
converge to zero as t goes to =, With (15), this in turn
implies the convergence of 6(¢). Finally, since
Vi1, xe, ye(2), 6.(1)) is decreasing and bounded from below by
zero, V), tends to a finite nonnegative constant. This implies
that the limit of |y.(¢)| exists and is a finite real number /,. If
l, were not zero, there would exist a sequence of increasing
time instants {#,};=,, with t;— o, such that both the limits of
v(y;) and |y.(t,)v.(t;,)| are not zero. This is impossible,
because |y.(f)v.(t)| was proved to go as zero as t — .

Remark 1. It is of interest to note that we can enlarge the
region Q defined in (25) by choosing an appropriate function
¢ whose gradient ¢’ is small enough; see also (26). In this
sense, we say that the system (11) is semiglobally stabilized.

Remark 2. The local tracking control laws (21) and (22) do
not allow us to conclude that the tracking errors converge to
zero if v(¢) tends to zero. The latter case will be addressed in
the next subsection via a different controller at the cost of
imposing additional asumptions on the desired velocities.

Some related results have been reported on the local
tracking problem in the literature (see e.g. Kanayama et al.,
1990; Murray et al., 1992, Oelen and van Amerongen, 1994).
In particular, asymptotic stabilization was achieved in Oelen
and van Amerongen (1994) using input/output linearization,
and results on local exponential stabilization were obtained
in Kanayama et al. (1990) and Murray er al. (1992) via
linearization (or Lyapunov’s indirect method). In the
following, we prove that our control laws may also guarantee
exponential stability for the system (11). However, our
approach is based on Lyapunov’s direct method, and does
not rely upon the linearization method.

Corollary 1. Under the conditions of Proposition 1, given
any refeerence velocity v, with the property that
liminf,_,.. | v,(£)| >0, it follows that the zero equilibrium of
the closed-loop system (11), (21), (22) is exponentially stable
if we select a function ¢ € &% such that ¢'(0) > 0.

Proof. By choice of ¢, y.v/{t)sin[@(y.v.(t)]=0 for all y.
and all = 0. Furthermore,

(D)) = yov (1) f enya @)

Yevt) sin [y vel))] = y2v(e)? j o' (hyevi()) dA

X J: cos [syev,(t) ,[)1 @' (Ay.v (1)) d).] ds (28)

. J

x(!-'ye)

Note that yo(y.) = sup,=o x(t, ¥.) is a continuous function
satisfying  ¥o(0) = ¢’(0). Letting [, =liminf_.v/(t)?, it
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follows from (28), that y.v,(t) sin [¢(y.v.(£))] = 0.5L,¢'(0)y?
for sufficiently small y, and sufficiently large ¢ It follows from
(23) that

Vit X, Ve 8) < €132 = 0.50,0'(0)y2 — c,62  (29)

as long as |y.|<c, and t>¢* for certain ¢, >0 and certain
t*>0.
Let Q, be a subset of Q defined as follows:

Ql = {(xc’ Yes ee) € R3: Vl(t; Xey Yes oe) < C**}, (30)
where c** >0 is the largest constant such that
{(xe) yer B) € R VA8, xe, e, ) <c**}
cQn {(xea Ve ee) € RB:Iyel < Cy}- (31)

By (23), (x.(t), ye(t), 6.(¢)) remains in €, as long as
(x(0), y.(0)) does. In particular, in this case, we have

V](t’ Xes Yoo oe) = _CVVl(tP Xes Yes ec) Vt Z* (32)

for some ¢, >0. A direct application of Gronwall's
inequality (Vidyasagar, 1993), together with (15) and (23),
implies the existence of two positive real numbers k; and &,
such that

|(xe(t)r ye(t)» ee(’))l = kle_kzl l(xe(o)s ye(O)’ 63(0))] (33)

Therefore we conclude the local exponential stability of the
closed-loop system (11), (21), (22) at the zero equilibrium for
initial conditions (x.(0), y.(0), 8.(0)) belonging to Q,. a

3.2. The global tracking problem. The tracking control
laws proposed in the above section solve the local tracking
problem. The purpose of this section is to tackle the global
tracking case. In this case, additional conditions are required.
As in the previous subsection, the integerator backstepping
will also be employed for controller design in the global case.
Noticing that x, = c;wy, and 8, =0 are stabilizing functions
for the y. system of (11), we introduce a new variable

X =X~ C3wYe, (34)

where ¢; is a positive constant.
With (34), the x, equation in the system (11) is rewritten as

o= wy.— v+ v,.co8 8, - c30¥,
- c3o(—wx, + v, sin ;) (35)
For notational simplicity, denote

V(1) = w(t)ye(t) + v,(t) cos 6.(1)
= c20(t)ye(t) + cao()[w(t)x(t) — vir) sin 6.()] (36)

In this case, instead of (17), consider the function

1., 1 1
Va(t, Xe, Ve, 8) = Exi + 5)’3 *3y 62, (37

with ¥ >0 and ¥, given by (34).
We have, using an identity as in (19),

Valt, Xe, Yoo 8e) = —C3072 + Te—yew + Vi — V)
+ % Be[yyev, j“] cos (s8.) ds + w, — w] .

(38)

By choosing the tracking controllers v and w as
V=V~ Yew + c4¥e 1= a,, (39)
© =W F YV J: cos (58,)ds + csy0.:=csy0.:=a,, (40)

with ¢4, ¢5>0, we have

Vz(’y Xes Yer Be) = —C30%y2 — C4 %2 — c5 62, 41)

We establish the following result.

Proposition 2. Assume that v, V,, o, and o, are bounded

on [0, ). Then all the trajectories of the resulting system
composed of (11), (39) and (40) are globally uniformly
bounded. Furthermore, if v,(f) does not converge to zero, or
if v,(t) tends to zero but w,(t) does not converge to zero,
then the closed-loop solutions converge to zero, i.e.

lim [Pee()] + 1ye(D)] + 18e(2)I] = O. 42)

Proof. Since V, is positive-definite and radially unbounded,
as in the proof of Proposition 1, we conclude from (41) that
the original trajectories x.(t), y.(f) and 6.(t) are uniformly
bounded and are defined for all r =0.

Notice that (41) yields the property that w(¢)%y.(t)?, %.(t)?
8.(1)? € L,(0, ). By assumption, the derivatives of these
signals are bounded. Hence w(t)%y (1), x.(¢)* and 6.(r)* are
uniformly continuous on [0, ). With the help of Barbilat’s
lemma, it follows that w(t)y.(t), X.(t) and 8.(r) converge to
zero as ¢ goes to ®. From the definition of x, in (34), it
follows that x.(¢) goes to 0.

It remains to prove that y.(¢) tends to 0. Setting
m(#) = [} cos [56.(1)] ds, we have 7,(¢t) going to unity as ¢
goes to ©. We consider the case where v,(t) does not
converge to zero; the other case proceeds similarly and is
therefore omitted. In the closed-loop system, the 8, equation
becomes

6. = —cs¥6. = YY)V (OM(0). (43)

A direct application of Lemma 2 gives that y.(£)v,(t)n,(t)
tends to 0. By means of the same reasoning as in the proof of
Proposition 1, we conclude that y.(f) must converge to 0. O

Remark 3. Similarly to Corollary 1, we can conclude that,
under the additional assumption that liminf,_,. |w(t)|>0,
the zero equilibrium of the closed-loop system (11), (39),
(40) is exponentially stable (for small initial errors). In other
words, all the closed-loop trajectories go to zero at an
exponential rate after a considerable period of time.

Remark 4. (Path following.) It is of interest to mention that
the robot under study can globally follow two particular
types of paths: straight lines and circles. Indeed, putting
w, =0 and v, =c,, with ¢, a nonzero constant, the reference
trajectories are straight lines of the form x.(z)=x/(0)+
rc, cos [6,(0)] and y.(¢) = y{(0) + tc, sin [6:(0)]. In the case
where we choose w.=¢c, and v, =c,, with ¢, and c, two
nonzero constants, the reference trajectories are circles of
radius |c,| described by x.(t)=x,(0)+c,sin(c,t) and
yt) =1+ 3(0) — ¢, cos (c, 1)

3.3. An extension. In the above sections, we have studied
asymptotic posture tracking problems with exponential
convergence by Lyapunov’s direct method. The main
purpose of this subsection is to give a backstepping-based
global tracking controller under less restrictive assumptions
than Proposition 2. In particular, we relax the conditions of
the main Proposition of Samson and Ait-Abderrahim (1991).

Proposition 3. Assume that v, and o, are uniformly
continuous and bounded on [0, ). Then all the trajectories
of the system (11) in closed loop with the controllers

v=cx,+v.cos 8, c,>0, (44)

1
w=w + v,y,f cos (A8,.) dA + ce8., ce>0, (45)
(1]

are globally uniformly bounded. Furthermore, if either v.(r)
or w,t) does not converge to zero then the closed-loop
solutions converge to zero, i.e.

,li.“l [lxe(®)] + [ye(2)] + |8(2)]] = 0. (46)

Proof. Setting c; =0 in (34) and y =1 in the definition (37)
of V,, the proof of Proposition 3 follows by mimicking the
arguments used in the proof of Proposition 2. a

Note that, unlike in Sections 3.1 and 3.2, the exponential
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stability of the zero solution of the closed-loop system (11),
(44), (45) does not follow from Lyapunov’s direct method.
Nevertheless, the exponential stability property can be
established via Lyapunov’s indirect method (Vidyasagar,
1993).

4. Tracking of a simplified dynamic model
In this section, we study the augmented system (11)
appended with two integrators, i.e.

Xe = wy, — v + v, cos 8,

Yo = —wX, + v, sin 8.,

O.=w, - o, 47
V=,
tb=u2,

where u, and u, may be regarded as torques or generalized
force variables of the two-degrees-of-freedom mobile robot.
The system (47) is referred to as a simplified dynamic model
for the mobile robot. It is well known that consideration of
models including dynamic effects is interesting from an
engineering point of view, although (47) is certainly not a
‘complete’ dynamic model of the mobile robot, since several
other effects acting on the vehicle are not included. However,
we wish to demonstrate that the tracking controllers that
were developed for the kinematic model can also be obtained
for a simple dynamic model as (47), thereby at least making
it plausible that a similar controller could be derived for a
‘complete’ dynamic model. The control objective is to find a
control law u = (u,, u,) of the form

u = ul(xe’ Yes ee, v, @, ¥y, vr’ Vrv Wy d’rv (B,.),
(48)

U= u2(x=’ Yes ee» v, W, ¥y, {'n vn Wiy d)n wr)

in such a way that local or global tracking is achieved. In
other words, x., y. and 8, are forced to converge to zero.

We discuss in this section how the methodology presented
in the previous section can be extended to the system (47).
For simplicity, we only look at the global tracking case that
extends the local tracking result of Fierro and Lewis (1995).
The development for the local case is analogous and is
omitted.

Introduce the new variables

V=v-—a, @&=w-—a,, (49)

where a, and a,, are defined as in (39) and (40) respectively.

Following the notation used in Section 3 (see in particular
(34)), in the new coordinates (X, y., 8., ¥, @) the system (47)
is transformed into

i.e = wye — CaXe — ¥,

Yo = —C3wly, — wX, + v, sin 6,,

1
b= =csrb=mov, [ cos(8)ds =5, (50)
(1]
v= Uy~ dv,
@=Vv,~ d,,

where &, and &, are given by

@, = (cos 6, — C3w Sin 8.)V, — C3 Yeils
+ (c302% + cg)(wy, — v + v, cOs 8,)
= (c3Uy + c3c4@)(—wx, + v, 8in 6,)
— (v, sin 8, + c3wv, cos 8. )(w, — w)

+ (2c30xe ~ €3V, SID B, — C3C4 Ve U2, (51)

1
a, = &, + y(y. V. — wk, + v,sin 8,) j cos (s8.) ds
0

1
- 7y=vr(wr - w) f sin (SG,)S ds
{4

+csy(w— w). (52)

Inspired by the control scheme proposed in the above
section, consider the candidate Lyapunov function

1 1
U(t, x., Yoy Bes v, @) = Efﬁ + Eyﬁ

1

+
2y

2 l Y l ~2
9e+2v2+2w. (53)
It can be directly checked that U is a positive-definite,
decrescent and radially unbounded function.

According to the calculation performed in Section 3.2, and
in particular (41), the time derivative of U along solutions of
(50) satisfies

U(t, Xes Yeo Ge, v, (t)) = —Cszy% - C4-f% - C59§
— XV~ 0.8 + W(uy — &)
+ou; — &) (54
Applying the feedback controllers
U =X, +a,—ce, (55)
Uy =0, + d, — 0, (56)

with ¢4, ¢; >0, we arrive at

U(t) xe’ yea 9¢7 v? w)

= —c302y2 — 452 ~ 502 — c, VP — 702 (57)

We have the following proposition.

Proposition 4. Under the conditions of Proposition 2, if ¥,
and &, are bounded then all the trajectories of the resulting
system composed of (47), (55) and (56) are globally
uniformly bounded. Furthermore, if v,(f) does not converge
to zero, or if v(f) converges to zero but w.(z) does not
converge to zero, then

lm [l (0)] + [y +18()] + V() = vi(0)l

te() ~edn)]=0. (58)

Proof. This follows the same reasoning as the proof of
Proposition 2.

5. Discussion and simulation results

With the purpose of illustrating the tracking controllers
derived in this paper, a number of simulations have been
done. The simulations were carried out using MATLAB,
with the following choice for the parameters in the
controllers (21), (22), (39) and (40) and the reference
velocities

CI=C3=Cs=Ce=0Cr=1,
(59)

C2=C4=2, v,=1, w,EO.

The simulations not only illustrate the effectiveness of the
tracking controllers but are also used for obtaining an insight
into the difference between the usefuiness of the global
versus the local controller under changing initial conditions.
Clearly, the local controller (21), (22) assures, by Proposition
1, that the tracking errors converge to zero provided that the
initial errors are sufficiently small, but no explicit estimate of
how small these errors should be was given. On the other
hand, the global controller (39), (40) can be used for
arbitrary (large) initial errors (see Proposition 2), but the
price will be a relatively slow convergence of the tracking
errors. We demonstrate these effects as follows. In Figs 2 and
3, the local controller (21), (22) is applied with initial
tracking errors (x.(0), y.(0), 8.(0)) = (—0.5, 0.5, 1) (respec-
tively (x.(0), y.(0), 8.(0)) = (16.6, 1.5, —1)). Similarly, in Figs
4 and 5, the global controller (39), (40) is applied with the
same initial tracking errors as in Fig. 2 (respectively Fig. 3).
One can clearly see the difference between the local and
global controller under the changing initial tracking errors.
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Fig. 2. Local tracking of the kinematic model, with initial
errors (x.(0), ¥.(0), 6.(0)) =(—0.5, 0.5, 1).

To quantify the difference between the four simulations, one
may use the following error measure over the time period
[0, T):

Pt [ @ 0+ 007 (60)

corresponding to the simulations described in Figs 2-5, we
find the values

P,=0.1249, P;=15.6502,

(61)
Py=01367, Ps=7.7944.

Indeed, the above outcomes agree with our expectations in
that the local controller performs better for small initial
tracking errors, but for large initial tracking errors the global
controller (39), (40) is preferable.

6. Conclusions

The mobile robot kinematic model, or its simplified
dynamic model, serves, as has been shown, as an excellent
‘test-bed’ for using the backstepping technique in the
tracking control problem. Both the local and global tracking
problems with exponential convergence have then solved.
Our theoretical results have been confirmed by means of a
number of simulations together with an analysis of the
performance of these controllers. The backstepping tracking
control method presented in this paper was recently
extended to the more general class of nonholonomic chained
systems (Jiang and Nijmeijer 1997).
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Fig. 3. Local tracking of the kinematic model, with initial
errors (x.(0), y(0), 6.(0)) = (16.6, 1.5, —1).

Fig. 4. Global tracking of the kinematic model, with initial
errors (x.(0), y.(0), 6.(0)) = (=05, 0.5, 1).

W --
8 -

tracking errors

controllers
o N a0
—— T
—

Fig. 5. Global tracking of the kinematic model, with initial
errors (x.(0), y.(0), 6,(0)) = (16.6, 1.5, —1).

As in most previous work on the study of nonholonomic
systems, our results are heavily based on a ‘nonholonomic’
assumption of the form xsin8 —ycos®=0. It should be
mentioned that this condition is an idealization of real
situations, and is never satisfied by real physical control
systems. In d’Andréa-Novel er al. (1995), the authors
proposed a singular perturbation approach to point-tracking
contro] for nonlinear mechanical systems that do not satisfy
ideal velocity constraints. There is still no general answer for
the tracking control problem if common velocity constraints
are not satisfied by the class of nonholonomic mechanical
systems under consideration.
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