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Abstract—For discrete-time single-input single-output nonlin-
ear plant and reference model, the model matching problem
does not have an exact solution if the relative degree of the plant
is larger than that of the reference model, but only approximate
solutions can be considered. The notion of best approximate
controller strictly depends on the definition of distance between
the control system and the reference model. The goal of the
paper is to analyze the performance limitations, which are in-
herently present because of the mismatch between the relative
degrees of the plant and the model. Two different types of
reference models (linear and nonlinear), and two different no-
tions of distance (R-norm-based and 2-norm-based distance)
are considered. Upper and lower bounds for the maximum
achievable performances are given, as a function of the para-
meters of the reference model. ( 1998 Elsevier Science Ltd. All
rights reserved.

1. Introduction and problem statement
The control problem we deal with is a model-matching problem
(MMP), whose main elements and features are sketched in
Fig. 1. This design problem can be roughly summarized as fol-
lows: given a nonlinear system &, a nonlinear controller %, and
a reference model ( (linear or nonlinear), all of them being
discrete-time single-input single-output (SISO) systems, the
problem is to select the controller % such that the control system
& °% is as close as possible to the reference model (, according
to some notion of distance d[& °%, (]. In particular, we restrict
the input signal v(t) to be subject to the constraint Dv (t) D4vN , ∀t,
and we consider this MMP in a deterministic setting, over
a finite time horizon (t3M0, 1,2 ,¹ N).

The above-sketched problem is, per se, quite general, and
a large variety of control system design problems can be easily
re-cast in order to fit with such a formulation.

The main goal of this paper is to investigate on a particular
case of the MMP, namely the case where the relative degree r& of
the system & is strictly larger than the relative degree r( of the
model ( (that is, roughly speaking, where the intrinsic input/
output time-delay of & is strictly larger than that of (). Such

a ‘‘mismatch’’ between the relative degrees of & and ( raises many
practical and theoretical issues, since, in this situation, the MMP
does not admit, in general, an exact solution (namely a controller
in correspondence of which the distance d [& °%, (] is zero),
whatever the controller % is, but an approximate solution has to
be searched for (Allgöwer, 1995; Savaresi, 1997).

The aim of the analysis we propose is to provide a better
insight into the limit of performance which are inherently asso-
ciated with any specific choice of a reference model with relative
degree smaller than r&. Such an analysis can also be helpful in
providing some guidelines in the choice of alternative reference
models, namely in the way the original reference model can be
transformed into a model of relative degree r&, with minimum
loss of performance.

To formalize the MMP above sketched, each element which
plays a role in such a design problem (see Fig. 1) is now briefly
presented and discussed.

1. ¹he control system. We assume that the system & is a dis-
crete-time, time-invariant SISO system, of order m5r& and
relative degree r&, and we consider controllers %3), ) being
the set of all the time-invariant, discrete-time systems of relative
degree larger or equal than 0 (causal systems), and of order
smaller or equal than m#n#r&!1 (n being the order of the
reference model). Moreover, we make the assumption that & is
such that for every time-invariant discrete-time SISO system $ of
dimension smaller or equal than n#r&!1 and of relative degree
larger or equal than r& there always exists a controller %3) such
that an exact model matching between $ and & °% can be
achieved (over the considered time and input domains). This
assumption on & is not, in general, particularly restrictive, since
the model-matching between & and a system of relative degree
larger or equal than r& is inherently a ‘‘well-posed’’ problem
(Kotta, 1995; Kotta and Nijmeijer, 1994; Njimeijer and van der
Schaft, 1990). Since we are mainly interested in the analysis of
the limit of performances imposed by the ‘‘mismatch’’ between
the relative degrees of & and (, the meaning of this assumption
is simply to exclude from our analysis all other types (than the
relative degree mismatch) of performance limitations.

2. ¹he reference model. Two settings will be considered,
namely the case when ( is linear, and the case when ( is
nonlinear. Since, in our analysis, we adopt a purely input/output
viewpoint, a natural choice for the reference model is an I/O
difference-equation-based representation (see e.g. Narendra and
Parthasarathy, 1990; Sjöberg, 1995). Moreover, for the sake of
simplicity and without loss of generality, we always consider
reference models of relative degree 0, and we always omit the
index ‘‘&’’ to indicate the relative degree of &. Hence, we will
consider time-invariant discrete-time SISO reference models of
order n, having the form (subscripts ‘‘l ’’ and ‘‘nl ’’ indicate linear
and nonlinear models, respectively):

(l : y(t)"a
1
y(t!1)#a

2
y (t!2)#2#a

n
y(t!n)

#b
0
v (t)#b

1
v (t!1)#2#b

n
v(t!n), (1)

(nl: y(t)"f (y(t!1), y(t!2),2, y(t!n), v (t),

v(t!1),2 , v (t!n)). (2)
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Fig. 1. Basic elements of the model-matching problem.

For the regularity of f, we make the (conservative) assumption
that f is of class C= with respect to all of its arguments.

3. ¹he time horizon. The MMP between the control system
& °% and the reference model ( is considered over a finite time
horizon t3M0,1,2,¹ N, ¹ being a finite positive integer, larger or
equal than r& .

4. ¹he input domain. The input signal v (t) is assumed to be
subject only to an amplitude-bound, namely Dv (t)D4vN , vN being
a positive number; hence, each input sequence v :"Mv(1),
v(2),2 , v(¹ )N belongs to a ¹-dimensional hyper-cube
» centered in the origin, namely v3», »"[!vN , vN ]]
[!vN , vN ]]2] [!vN , vN ]LRT.

5. ¹he notion of distance. Since the MMP we focus on can
only be solved in an approximate fashion, the notion of distance
d [& °%, (], between the control system & ° % and the reference
model (, plays a central role. As a matter of fact, the notion of
the ‘‘best’’ controller strongly depends on the notion of distance
we take.

In the rest of the paper, we consider the following two differ-
ent definitions of (normalized) distance:

d
=

[& ° %,(]:"max
v3»

M max
t3M1, 2,2,¹N

Dy
1
(t; %)!y

2
(t)) D/v6 N , (4)

d
2
[& °%,(]:"max

v3» GA
1

¹

T
+
t/1

(y
1
(t; %)!y

2
(t))2B

2

Nv6 H , (5)

where (see Fig. 1) y
1
(t;%) and y

2
(t) are the output of & °% and (,

respectively. The subscripts ‘‘R’’ and ‘‘2’’, used in equations (3)
and (4) respectively, refer to the fact that equations (3) and (4) are
based upon the ‘‘truncated’’ (at time ¹ ) version of the standard
notion of R-norm and 2-norm of signals (Doyle et al., 1992).

6. ¹he initial conditions. We exclude from our analysis the
situation where the distance between & °% and ( is biased by
different initial conditions. To this end, we make the assumption
that, at time t"0, both & °% and ( are at rest, and that in such
equilibrium conditions they are characterized by the same out-
put. Without loss of generality, we assume that this equilibrium
condition is the origin, namely that and v(t)"y

1
(t;%)"

y
1
(t)"0.
Within the setting outlined in the issues 1—6 above, the rest of

this paper is entirely devoted to the analysis of the following
quantity (where d can be d

=
or d

2
, and ( can be (l or (nl) :

min
%3)

Md [& ° %, (]N. (5)

In particular, our goal is to give lower an upper bounds for
equation (5), as a function of the system characteristics of (.

We will consider this problem in four different settings, given
by the combination of different types of models ((l and (nl ,)
and of different definitions of distances (d

=
and d

2
). For each

setting, results of different type and ‘‘strength’’ have been ob-
tained. In particular, when using the R-norm-based notion of

distance (3), it is possible to prove strong ‘‘equality’’ results,
namely it is possible to provide the value of the lowest possible
distance achievable between & ° % and (, as a function of the
parameters of the reference model (. Instead, when the 2-norm-
based notion of distance (4) is resorted to, only ‘‘inequality’’
results (namely lower and upper bounds for equation (5)) can be
given.

Apparently, in the case of linear reference models (Section 2),
the bounds on the best achievable performance can be explicitly
given as a function of the coefficients of (l , whereas in the case
of nonlinear reference models (Section 3), in general only ‘‘impli-
cit’’ definitions of the performance bounds can be provided.

2. ¸imit of performances in MMPs: the linear case
The first case we consider is the case where the reference

model (l is linear. Before stating the main results concerning
this specific situation, some definitions are due.

First remind that the linear model (l defined in equation (1)
with a difference equation, can be also written in the following
form (z~1, as usual, indicates the 1-step-delay operator):

(l : y(t)"
B(z~1)

A(z~1)
v (t), A(z~1) :"1!a

1
z~1!2!a

n
z~n,

B(z~1) :"b
0
#b

1
z~1#2#b

n
z~n, b

0
O0. (6)

By computing the r-steps polynomial division between B(z~1)
and A(z~1), namely B(z~1)"E(z~1)A(z~1)#F(z~1)z~r

(where E(z~1)"e
0
#e

1
z~1#2#e

r~1
z~r`1 and

F(z~1)z~r" ( f
0
#f

1
z~1#2#f

n
z~n)z~r are the result and

the residual, respectively, of such a division), it is easy to see that
equation (6) can be also given the form

(l : y(t)"E(z~1)v (t)#
F(z~1)

A (z~1)
v(t!r). (7)

The main advantage of using the form (7) of (l is that it
clearly separates the part of y(t) which depends on Mv(t),2,
v(t!r#1)N, from that which depends on Mv(t!r),2,v(1)N.
Using equation (7), some results can now be stated.

¹heorem 1. Under the assumptions 1—6, min%3)Md
=

[& °%,
(l]N"De

0
D#De

1
D#De

2
D#2#De

r~1
D , where e

0
, e

1
,2 , e

r~1
follows from the representation (7) of (l .

Proof. Consider the matching error between the outputs of
& °% (%3)) and (l , at a time instant t (r4t4¹ ) :

Dy
1
(t/t!r; % )!y

2
(t/t) D (8)

(the time index after the ‘‘ / ’’ indicates that signal depends on
inputs v ( ) ) up to that time). Notice that, due to the assumptions
on their relative degrees, the outputs of & ° % and (l depend, at
time t, on the inputs up to time t!r and t, respectively. Using
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the expression (7) of (l , the matching-error can be given the
following form:

Dy
1
(t/t!r; %)!y

2
(t/t) D"K [e0v (t)#e

1
v (t!1)#2

#e
r~1

v(t!r#1)]#C
F(z~1)

A (z~1)
v (t!r)!y

1
(t/t!r; %)D K .

Given the input sequence Mv(t!r),2 , v(1)N, select the inputs
Mv(t), v (t!1),2 , v (t!r#1)N as follows:

G
v(t)"!vN signSe

0
T

]signTC
F(z~1)

A (z~1)
v(t!r)!y

1
(t/t!r;%)DU,

v(t!1)"!vN signSe
1
T

]sign C
F(z~1)

A (z~1)
v(t!r)!y

1
(t/t!r;%)DU ,

F

v(t!r#1)"!vN signSe
r~1

T

]signTC
F(z~1)

A (z~1)
v(t!r)!y

1
(t/t!r;%)DU

(19)

(where signSxT"#1 if x50, and signSxT"!1 if x(0).
Notice that equation (9) is an admissible choice for the inputs
Mv(t), v (t!1),2 , v (t!r#1)N, and that, if equation (9) is used,
the matching error at time t is such that

Dy
1
(t/t!r;%)!y

2
(t/t) D5( De

0
D#2#De

r~1
D ) ) vN

#K
F(z~1)

A(z~1)
v (t!r)!y

1
(t/t!r;%) K5( De

0
D#2#De

r~1
D) ) vN .

(10)

This means that it is always possible (∀%3)) to ‘‘cause’’
a matching error at time t larger or equal than
( De

0
D#2#De

r~1
D ) ) vN , by choosing an admissible input se-

quence as equation (9). Hence, by the definition of distance (3):

d
=

[& ° %, (l]5De
0
D#De

1
D#2#De

r~1
D. (11)

Notice that, since the lower bound stated by equation (11)
does not depend on %, if there exists a controller % such that
d
=

[& ° %, (l]"De
0
D#De

1
D#2#De

r~1
D , this would imply

that De
0
D#2#De

r~1
D is not only a lower bound for

d
=
[& °%,(l], but it is exactly the best achievable result. There-

fore, consider the controller %03) such that

& °%0: y(t)"
F(z~1)z~r

A(z~1)
v(t); (12)

notice that such a controller exists (by virtue of the assumptions
made in 1), since equation (12) is a system having relative degree
r. Using such a parameter vector, the following holds:

d
=

[& °%0, (l]

"max
v3» G max

t3M1, 2,2,¹N
Dy

1
(t;%0)!y

2
(t) D/ vN H

"max
v3» G max

t3M1, 2,2,¹N K
F(z~1)z~r

A (z~1)
v(t)!

B(z~1 )

A(z~1)
v (t) K NvN H

"max
v3» G max

t3M1, 2,2,¹N
De

0
v(t)#e

1
v(t!1)#2

#e
r~1

v (t!r#1) D /vN H"De
0
D#De

1
D#2#De

r~1
D .

Hence, since there exists at least one (admissible) controller,
for which the lower bound in equation (11) is exactly
attained, we can conclude that min%3) Md

=
[& ° %,(l]N"

De
0
D#De

1
D#De

2
D#2#De

r~1
D . h

¹heorem 2. Under the assumptions 1—6, De
0
D4min%3)

Md
=

[& °%, (l]N4 De
0
D#De

1
D#De

2
D#2#De

r~1
D , where

e
0
, e

1
,2, e

r~1
follows from the representation (7) of (l .

Proof. The upper bound can be easily proved by reminding the
result stated in Theorem 1, and the definition of 2-norm-based
distance (4):

min
%3)

Md
2
[& ° %, (l]N

"min
%3) Gmax

v3» GA
1

¹

T
+
t/1

(y
1
(t; %)!y

2
(t))2B

1@2

NlN HH
4min

%3) Gmax
v3» GA

1

¹

T
+
t/1
A max

t3M1, 2,2,¹N
Dy

1
(t;%)!y

2
(t) D )2B

1@2

Nl6 HH
"min

%3) Gmax
v3» G max

t3M1, 2,2,¹N
Dy

1
(t;%)!y

2
(t)DNlN HH

"De
0
D#De

1
D#2#De

r~1
D

As for the lower bound, first notice that, for every %3) and
for every time t4¹, the following holds:

y
1
(t/t!r;%)!y

2
(t/t)"e

0
v(t)#c(v (t!1),

v (t!2),2 , v (1); t; %),

where c is a function depending on the time instant t, on the
controller %3), and on the inputs up to t!1. Hence, if we
choose the input v (t) as v(t)"!vN signSe

0
T signSc(v (t!1),

v(t!2),2 , v (1); t; %)T, we can always ‘‘cause’’, at every time
instant 04t4¹, a matching error such that Dy

1
(t/t!r;%)!

y
2
(t/t)D5De

0
D ) vN , ∀t3M0, 1,2,¹N.

In other words, we can always find an admissible input
sequence such that

max
v3» GA

1

¹

T
+
t/1

(y
1
(t; %)!y

2
(t))2B

1@2

NvN H5De
0
D .

Since such lower bound does not depend on %, De
0
D4

minP3) Md
2
[& ° %,(l]N4De

0
D#De

1
D#De

2
D#2#De

r~1
D . h

A simple but interesting corollary of Theorems 1 and 2 is the
following:

Corollary 1. Under the assumptions 1—6, if the relative degree
r of the system & is 1, the following holds:

max
%3)

Md
2
[& ° %,(l]N"max

%3)
Md

=
[& ° %, (l]N"De

0
D .

Proof. The proof is trivial, and can be obtained by simply
combining the results of Theorems 1 and 2, when r"1. h

Notice that Corollary 1 states that, even though in general the
‘‘best’’ controller designed according to the notion of R-norm
and the ‘‘best’’ controller designed according to the notion of
2-norm are different, in the case when the relative degree of the
system is 1, they coincide, and a strong ‘‘equality’’ result holds in
both cases.

Remark 1 (r-steps-ahead predictor). It is interesting to point out
that the Theorem 1 not only provides an explicit expression for
the lower bound of d

=
[& ° %,(l], but also gives the explicit

expression of the dynamic behavior of the control system at the
optimum:

y(t)"(F(z~1)/A(z~1)) v(t!r). (13)

It is interesting to remind that equation (13) plays a very
special role in the context of the theory of linear stochastic and
stationary processes (see e.g. Ljung, 1987), namely it is the best
r-steps-ahead predictor for the system (1), when the input is
a zero-mean stationary white noise, and the norm of the signals
is given by their variance. In the rest of the paper we therefore
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refer to equation (13) as the ‘‘best r-steps-ahead predictor of (l’’
(using the symbol ( (r)l ).

Notice that, in our setting, the concept of ‘‘best r-steps-ahead
predictor’’ has a purely deterministic meaning, and its optimality
is related to the notion of norm (3), i.e. ( (r)l has the special
property of being the system with minimum distance d

=
[((r)l ,

(l] from (l , among all the finite-dimensional systems of rela-
tive degree larger or equal than r. h

3. ¸imit of performances in MMPs: the nonlinear case
The second case we consider refers to the case when a nonlin-

ear reference model (nl is used.
In the linear case, a crucial role is played by the representation

(7) of the linear model (l; such expression of (l is useful since it
separates the part of y(t) which depends on inputs Mv (t),2,
v(t!r#1)N, from that which depends on inputs Mv(t!r),2,
v(1)N; in particular, using such a representation, it is straightfor-
ward to obtain the system ((r)l , namely the closest (in the sense
of the R-norm-based notion of distance (3)) system to (l,
having relative degree r.

Analogous to the linear case, even in the nonlinear case the
best r-steps-ahead deterministic predictor of the model (nl plays
a central role in determining the best achievable performance.
Therefore, the first part of this section is devoted to the general-
ization of the ‘‘best r-steps-ahead deterministic predictor’’, to the
nonlinear case.

The first step in the construction of ((r)l is to re-write the
original expression

(nl: y (t)"f (y (t!1), y (t!2),2, y(t!n),v(t),

v (t!1),2, v(t!n))

of (nl in a different form, by recursively substituting r!1 times
the expression of y (t!1),2, y(t!r#1) into equation (2):

y(t)"f ( f (y(t!2),2, y(t!n!1), v (t!1),2, v(t!n!1)),

y(t!2),2, y (t!n), v (t),2, v (t!n)),

:"f
(2)

(y(t!2), y(t!3),2, y(t!n!1), v (t),

v(t!1),2, v (t!n!1)),

y(t)"f
(2)

( f (y (t!3),2, y (t!n!2), v(t!2),2,

v(t!n!2)), y(t!3),2,y (t!n!1), v(t),2,

v(t!n!1))

:"f
(3)

(y(t!3), y(t!4),2, y(t!n!2), v(t), v(t!1),2,

v(t!n!2)),

F

y(t)"f
(r~1)

( f (y(t!r),2, y (t!n!r#1), v (t!r#1),2,

v(t!n!r#1)), y(t!r),2, y(t!n!r#2), v(t),2,

v(t!n!r#2))

:"f
(r)

(y (t!r), y (t!r!1),2,y (t!n!r#1),

v(t),2, v(t!r#1), v (t!r),2, v(t!n!r#1)).

In the above expressions, with the symbol f
(i)

we indicate the
function obtained after i!1 substitutions; notice that the index
i in f

(i)
also indicates the number of delays between the output

and the first appearance of y within f
(i)

(hence, using this nota-
tion, the original function f is named f

(1)
"f ).

The function we are mainly interested in is the function f
(r)

,
namely the function obtained after r!1 substitutions. In par-
ticular, by defining the n-dimensional vectors y

n
(t) and v

n
(t) as

y
n
(t) :"My (t), y(t!1),2,y (t!n#1)N,

v
n
(t) :"Mv(t), v(t!1),2, v(t!n#1)N,

and by using the function f
(r)

above, the nonlinear model (nl can
be given the following form:

(nl: y (t)"f
(r)

(y
n
(t!r), v(t),v(t!1),2, v (t!r#1), v

n
(t!r)).

(14)

Notice that the arguments of the above expression of (nl are
divided into three groups, namely the past outputs My (t!r),2,
y(t!n!r#1)N (collected in the vector y

n
(t!r)), the past

inputs up to time t!r Mv (t!r),2, v(t!n!r#1)N (collected
in the vector v

n
(t!r)), and the last r inputs

Mv(t),2, v(t!r#1)N.
Consider now the 2n-dimensional vector My

n
(t), v

n
(t)N, and

consider the set of all the values such vector may take, for
t4¹!r, when admissible inputs sequences v3» (see 4) are
used, namely # :"MMy

n
(t), v

n
(t)N/t4¹!r'v3»N.

Thanks to the hypothesis made on the regularity of the
function f, it can be shown that # is a compact closed subset of
R2n, containing the origin. Corresponding to every My

n
, v

n
N3#,

consider now the following quantities:

G
y.!9
(r)

(y
n
, v

n
):" max

Dv
1
D4vN ,2, Dv

r
D4vN

M f
(r)

(y
n
, v

1
, v

2
,2, v

r
, v

n
)N

My
n
, v

n
N3#

y.*/
(r)

(y
n
, v

n
):" max

Dv
1
D4vN ,2, Dv

r
D4vN

M f
(r)

(y
n
, v

1
, v

2
,2, v

r
, v

n
)N

(15)

Notice that both y.!9
(r)

(y
n
, v

n
) and y.*/

(r)
(y

n
, v

n
) exist for every

My
n
, v

n
N3#, because of the regularity of f.

Using the definition (15), consider now the (nonlinear) mapping
s from R2n to Rr, defined as

s: #P[!vN , vN ]][!vN , vN ]]2][!vN , vN ]

My
n
, v

n
NPMv

1
, v

2
,2, v

r
N (16a)

such that

f
(r)

(y
n
, s

1
(y

n
, v

n
), s

2
(y

n
, v

n
),2,s

r
(y

n
, v

n
), v

r
)

"(y.!9
(r)

(y
n
, v

n
)#y.*/

(r)
(y

n
, v

n
))/2, ∀My

n
v
n
N3#, (16b)

Ds
i
(y

n
, v

n
)D4vN , i"1, 2,2, r, ∀My

n
v
n
N3# (16c)

(where the symbols s
1
, s

2
,2,s

r
indicate the r components of the

mapping s). Notice that, using the definition (15) of y.!9
(r)

(y
n
, v

n
) and

y.*/
(r)

(y
n
, v

n
), a mapping s which fulfills the requirements (16b) and

(16c) is guaranteed to exist, even though, in general, it is not unique.
Using the mapping s, the following nonlinear system ((r)nl can be
defined:

((r)nl : G
yL (t)"f

(r)
(y

n
(t!r), s

1
(y

n
(t!r), v

n
(t!r)),2,

s
r
(y

n
(t!r), v

n
(t!r)), v

n
(t!r)),

y(t!r)"f
(r)

(y(t!r!1),2,y(t!r!n),

v(t!r),2, v(t!r!n)).

(17)

The system (17) plays a central role in determining the best
achievable performances, when the nonlinear reference model
(nl is used (see Theorems 3 and 4). About ((r)nl , the following
remarks can be made:
— As it will be shown in Theorem 3, equation (17) is the nonlinear

counterpart of ((r)l , and can be seen as the best r-steps-ahead
nonlinear predictor of (nl , when the notion of distance (3) is
used.

— It is important to remark that, even though the mapping
s defined in equation (16) is, in general, not unique, the I/O
behavior of ((r)l defined in equation (17) is uniquely determined,
when the reference model (nl is fixed.

— The worst (normalized) r-steps-ahead ‘‘prediction-error’’, which
((r)l can make, is given by

*
(r)

:" max
My

n
,v

n
N3#

M(y.!9
(r)

(y
n
, v

n
)!y.*/

(r)
(y

n
, v

n
))/2lN. (18)

*
(r)

also represents the R-norm-based distance between ((r)l and
(nl , namely d

=
[((r)nl ,(nl]"*

(r)
.

Using the above definitions, two results can now be proved.

¹heorem 3. Under the assumptions 1—6, min%3) Md
=

[& °%,
(nl]N"*

(r)
, with *

(r)
defined in equation (18).

Proof. First consider a 2n-dimensional vector My8
n
, v8

n
N3# (which, in

general, is not unique) such that

(y.!9
(r)

(y8
n
, v8

n
)!y.*/

(r)
(yJ

n
, vJ

n
))/2vN"*

(r)
. (19)
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Notice that (due to the definition of #) it is always possible to
find an admissible input sequence Mv(t), v(t!1),2, v(1)N,
t4¹!r, such that, when the nonlinear reference model (nl is fed
with such an input:

Mv(t), v(t!1),2, v(t!n#1)N"v8
n
,

My(t), y(t!1),2,y(t!n#1)N"y8
n
,

where Mv(t),2, v(t!n#1)N are the last n samples of such an input
sequence, and My(t),2,y(t!n#1)N are the last n samples of the
corresponding output of the reference model (nl. If we feed both
the reference model (nl and the control system & °% with such
a ‘‘special’’ input sequence, at time t#r the following holds:

Dy
1
(t#r/t; %)!y

2
(t#r/t#r)D"Dy

1
(t#r/t;%)

!f
(r)

(yJ
n
, v(t#r), v(t#r!1),2, v(t#1), v8

n
)D.

Notice that, at time t#r, the output of the control system & °%
does not depend on Mv(t#r),2, v(t#1)N (since the relative degree
of & °% is larger or equal than r, y

1
(t#r/t;%) it is uniquely

determined by the input sequence up to time t). Hence, since we
have assumed thatMy8J

n
, vJ

n
N3# is such that equation (19) holds, it is

possible to select the inputs Mv(t#r),2, v(t#1)N so that the
corresponding matching error at time t#r is larger or equal than
*
(r)

. Hence, by virtue of the definition of distance (3), it is always
true that

d
=

[& °%, (nl]5*
(r)
, ∀%3). (20)

Notice that, since the lower bound stated by equation (20) does
not depend on %, if there exists a % such that d

=
[& °%, (nl]"*

(r)
,

this would imply that *
(r)

is not only a lower bound for
d
=

[& °%, (nl], but it is exactly the best achievable result.
Now consider the controller %03), such that & °%0"((r)nl ,

((r)nl being the best nonlinear r-steps-ahead predictor for (nl, whose
expression is given by equation (17). Such a controller exists (by
virtue of the assumptions made in 1), since equation (17) is a system
of order n#r!1 having relative degree r. Using such a controller,
and reminding the definition of ((r)nl , d

=
[& °%0, (nl]"

d
=

[((r)nl, (nl]"*
(r)
. Hence, since there exists at least one (admiss-

ible) controller, in correspondence of which the lower bound stated
by equation (20) is reached, we conclude that min%3) [d

=
[& °%,

(nl]N"*
(r)

. h

Before presenting the main result for the case when the controller
is designed according to the 2-norm-based notion of distance (4)
(Theorem 4), notice that the nonlinear model (2) can be rewritten in
compact form as

(nl: y(t)"f
(1)

(y
n
(t!1), v(t), v

n
(t!1)) (21)

(where y
n
(t!1) and v

n
(t!1) are n-dimensional vectors, and f

(1)
"f

is used instead of f ). Then define

y.!9
(1)

(y
n
, v

n
):"max

Dv
1
D4v

M f
(1)

(y
n
, v

1
,, v

n
)N

y.*/
(1)

(y
n
, v

n
):"min

Dv
1
D4v

M f
(1)

(y
n
, v

1
, v

n
)N

My
n
, v

n
N3#, (22)

d
(1)

:" min
Dy

n
, v

n
D3#

M(y.!9
(1)

(y
n
, v

n
)!y.*/

(1)
(y

n
, v

n
))/2vN N. (23)

¹heorem 4. Under the assumptions 1—6, d
(1)
4min%3) Md

2
[& °%,

(nl]N4*
(r)
, with *

(r)
as in equation (18), and d

(1)
as in equation

(30).

Proof. The upper bound can be proved by using Theorem 3, and
the definition of distance (4):

min
%3)

Md
2
[& °%, (nl]N

"min
%3) Gmax

v3» GA
1

¹

T
+
t/1

(y
1
(t;%)!y

2
(t))2B

1@2

NvN HH
4min

%3) Gmax
v3» GA

1

¹

T
+
t/1
A min

t3M1, 2,2,¹N
Dy

1
(t;%)!y

2
(t) D )2B

1@2

BNvN HH
"min

%3) Gmax
v3» G min

t3M1, 2,2,¹N
Dy

1
(t;%)!y

2
(t)DNvN HH

"min
%3)

Md
=

[& °%,(nl]N"*
(r)

As for the lower bound, notice that, by virtue of the definition
(23) of d

(1)
, we can always ‘‘cause’’ a matching error between & °%

and (nl such that Dy
1
(t/t!r; %)!y

2
(t/t)D5d

(1)
) vN ,

∀t3M1, 2,2,¹N. In other words, we can always find an admissible
input sequence such that

max
v3» GA

1

¹

T
+
t/1

(y
1
(t;%)!y

2
(t))2B

1@2

NvN H5d
(1)

.

Since such a lower bound does not depend on %, d
(1)
4

min%3) Md
2
[& °&, (nl]N4D

(r)
. h

Similar to the linear case (see Remark 1) notice that Theorem
3 not only provides the lower bound of d

=
[& °%,(nl], but also

provides the expression of the dynamical behavior of the control
system at the ‘‘optimum’’. As in the linear case, it is given by the best
r-steps-ahead predictor ((r)nl , defined as in equation (17).

It is interesting to notice that the procedure (outlined at the
beginning of this subsection) used to build the nonlinear predictor
(17) can also be used to compute the best predictor for a linear
model (even though, in the linear case, the procedure described in
Section 2 based on the polynomial division is, in general, more
straightforward). In particular, a peculiar feature of the linear case
is that the function s defined in equation (16) is unique, and it is
simply given by the null function s

i
(y

n
, v

n
)"0, i"1, 2,2, r,

∀My
n
, v

n
N3# (whereas, in general, in the non-

linear case, s is a non-trivial function of its arguments, and the
search for a function s which fulfills the requirements (16b) and
(16c) represents the most difficult step in the construction of the
nonlinear predictor ((r)nl).

To better illustrate the difference between the linear and the
nonlinear case, a numerical example is given.

Example 1. Consider the following nonlinear system (of relative
degree 0)

(nl: y(t)"y(t!1)#exp(v(t))v(t!1)#v(t!1)

over the time interval t3M0, 1,2,¹N, where Dv(t)D4vN . In order to
find the closest system to (nl of (for instance) relative degree 2, in
the sense of the R-norm-based notion of distance (3), as a first step
(nl must be written as:

(nl : y(t)"[y(t!2)#exp(v(t!1))v(t!2)#v(t!2)]

#exp(v(t))v(t!1)#v(t!1), (24)

or, using the notation presented at the beginning of this subsection:

(nl : y(t)"f
(2)

(y
1
(t!2), v(t), v(t!1), v

1
(t!2)),

y
1
(t):"My(t)N, v

1
(t):"Mv(t)N.

A function s which fulfills the conditions (16b) and (16c) for the
system (24) is implicitly given by

exp(v(t))v(t!1)#v(t!1)#exp(v(t!1))v(t!2)

"v(t!2)
exp(vN )#exp(!vN )

2
.

By plugging the expression above in equation (24), the best
2-steps-ahead predictor is then obtained:

((2)nl :G
yL (t)"y(t!2)#v(t!2)#v(t!2)

exp(vN )#exp(!vN )
2

y(t!2)"y(t!3)#exp(v(t!2))v(t!3)#v(t!3)

(25)

yL (t) being the output of such a system.
Consider now the linear system (of relative degree 0):

(l: y(t)"y(t!1)#v(t)#v(t!1) (26)

over the time interval t3M0, 1,2,¹ N, where Dv(t)D4vN . Using the
same procedure used in the nonlinear case, first rewrite equation

Brief Papers 1265



(26) in the following form:

(l: y(t)"[y(t!2)#v(t!1)#v(t!2)]#v(t)

#v(t!1)"v(t)#2v(t!1)#y(t!2)#v(t!2). (27)

Since the part of the output which depends on Mv(t),v (t!1)N is
separated by the rest, the function s defined in equation (16) is
implicitly given by

v(t)#2v(t!1)"0, (28)

namely it is simply obtained by zeroing the part of the output
which depends on Mv (t),v(t!1)N, when the system is given the
form equation (27). By plugging equation (28) into equation (27),
the best 2-steps-ahead predictor of (l can be obtained as:

( (2)l : G
yL (t)"y(t!2)#v (t!2),

y(t!2)"y (t!3)#v(t!2)#v(t!3).
(29)

Notice that equation (29) can be also rewritten as

( (2)l : yL (t)"
2z~2

1#z~1
v (t),

which (obviously) exactly coincides with the 2-steps-ahead pre-
dictor one can obtain by using the polynomial-division-based
procedure illustrated in Section 2. h

From the simple numerical example above, it should be ap-
parent that the main difference between the linear and the
nonlinear case, is that in the former case the predictor can be
obtained by simply using s,0, whereas, in the latter, the search
for a suitable function v might be a non-trivial task.

Finally, it is interesting to notice that a result similar to that
stated in the Corollary 1 does not hold in the nonlinear case. As
a matter of fact, in the nonlinear case d

(1)
4*

(1)
, since

d
(1)
" min

My
n
, v

n
N3#G

y.!9
(1)

(y
n
, v

n
)!y.*/

(1)
(y

n
, v

n
)

2vN H
4 min

My
n
, v

n
N3#G

y.!9
(1)

(y
n
, v

n
)!y.*/

(1)
(y

n
, v

n
)

2vN H"*
(1)

.

Therefore, even when r"1, the controllers designed accord-
ing to the R-norm-based and to the 2-norm-based notions of
distance do not, in general, coincide. Instead, in the linear case,
the following relationships hold:

*
(r)
"De

0
D#De

1
D#2#De

r~1
D ,

d
(1)
"De

0
D .

(31)

From equation (31), it is apparent that, if r"1, *
(1)

and d
(1)

coincides (which is the result stated in Corollary 1). h

4. Conclusions
In this paper, the limits of performances, which are inherently

imposed by the choice of a reference model having relative
degree strictly smaller than the relative degree of the plant, have
been analyzed and discussed.

It has been shown that the notion of best achievable perfor-
mance strictly depends on the notion of distance between sys-
tems, since, in the case of ‘‘mismatch’’ between the relative
degrees of the plant and the reference model, no exact model-
matching can in general be achieved.

In particular, we have shown that a crucial role for the
determination of the limits of performances is played by the
notion of best r-steps-ahead predictor for the reference model.
The notion of best (according to the R-norm-based distance)
predictor have been developed both in the linear and in the
nonlinear case in a deterministic setting.
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