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Abstract

As a step toward developing a general method for determining the underlying geometric structure of two time-scale optimally
controlled nonlinear systems, we define a degenerate class of two time-scale optimal control problems, called completely hyper-
sensitive problems, and propose an indirect solution method for this class of problems. The method uses a dichotomic basis to split the
Hamiltonian vector field into its stable and unstable components. An accurate approximation to the optimal solution is constructed
by matching the initial and terminal boundary-layer segments with the equilibrium solution. A variation of the method for the case of
an approximate dichotomic basis is also developed and is applied to a nonlinear spring-mass problem. The challenging problem of
determining a dichotomic basis or a sufficiently accurate approximation to one is discussed only briefly, but some potential solutions
are identified. ( 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Optimal control; Dichotomic transformation; Hamiltonian systems

1. Introduction

In this paper, we are concerned with nonlinear optimal
control problems and are motivated not only by the
desire to obtain a solution for a particular set of bound-
ary conditions, but also to gain insight into the structure
of the optimally controlled system. The methods
for solving optimal control problems are usually classi-
fied as direct or indirect. Indirect methods involve
determining extremals by solving the Hamiltonian
boundary-value problem (HBVP) posed by the first-or-
der optimality conditions. Hamiltonian systems have the
property that a bounded, open set of initial conditions
in the state-costate space maintains a constant volume
when propagated forward in time according to the

Hamiltonian differential equations. If the set contracts in
some directions, it expands in an equal number of other
directions. We say an optimal control problem and its
corresponding HBVP are completely hyper-sensitive, if
the time interval of interest is very long relative to the
minimum rate of contraction and expansion of the
Hamiltonian system in the neighborhood of the optimal
solution to the HBVP. Completely hyper-sensitive
HBVPs are a degenerate class of two time-scale HBVPs.
For a non-degenerate two time-scale problem, the rates
of contraction and expansion are only fast in some direc-
tions and the problem is only partially hyper-sensitive.
For two time-scale problems of the boundary-layer type,
the generic solution is composed of a short duration
initial boundary-layer segment dominated by fast con-
tracting behavior, a long duration intermediate segment
dominated by slow behavior, and a short duration ter-
minal boundary-layer segment dominated by fast ex-
panding behavior.

For a two time-scale HBVP, the terminal boundary-
layer segment depends hyper-sensitively on the initial
conditions. Regarding numerical computation by single
shooting with a specified accuracy on the terminal
boundary-layer solution, this hyper-sensitivity can
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require initial condition accuracy that is difficult to
achieve or may even exceed the available precision. Us-
ing a non-uniform node distribution with high density in
the boundary-layers, indirect multiple shooting or direct
methods may make numerical solution to the specified
accuracy feasible. However, even if these methods are
capable of producing a solution with the specified accu-
racy, they do not produce information regarding the
structure of the two time-scale optimally controlled sys-
tem. In the special case where the two time-scale Hamil-
tonian dynamics are represented in the standard
singularly perturbed form, there is a systematic proced-
ure, called the singular perturbation method, to decom-
pose the dynamical model into reduced-order models for
the slow behavior and the fast behavior. The solution to
the HBVP is then constructed by matching asymptotic
expansions (see Kelley, 1973; Ardema, 1983; Kokotovic
et al. 1986). The reduced-order models also facilitate the
analysis and design of control systems and increase the
likelihood of developing high performance control laws
in feedback form (e.g., Calise, 1976; Kokotovic et al.,
1986).

Two time-scale optimal control problems are not usu-
ally formulated so that the resulting HBVP defining
extremals is in standard singularly perturbed form, since
doing so requires significant a priori knowledge of the
time-scale structure. Some procedures, specific to flight
mechanics, for transforming state equations to standard
form have been proposed (see Ardema and Rajan, 1985).
Marino and Kokotovic (1988) propose a method of
transforming a general two time-scale control system
into singularly perturbed form, but their approach de-
pends on identifying a priori a small parameter that
characterizes the time-scale separation.

Our objective is to develop an indirect solution
method for nonlinear two time-scale optimal control
problems, given in general form — a solution method
based on the underlying geometric structure of the trajec-
tories of the Hamiltonian system in the state—costate
space — but not requiring a priori knowledge of this
structure. Two capabilities are required: (i) splitting the
Hamiltonian system into slow and fast parts and
(ii) splitting the fast part into contracting and expanding
parts. If the system model is given in standard form, the
singular perturbation method provides the first capabil-
ity and reduces the second requirement to splitting the
fast part into stable and unstable parts in the neighbor-
hood of an equilibrium point. When the fast (boundary-
layer) dynamics are linear, or can be approximated as
such, eigenvalues and eigenvectors can be used to split
the stable and unstable parts. A dichotomic transforma-
tion serves the same purpose (see Wilde and Kokotovic,
1972; Chow, 1979).

In this paper, we present a method for solving com-
pletely hyper-sensitive HBVPs. The presentation is prim-
arily conceptual. A specific algorithm is given and

illustrated on a simple example, but it is not analysed.
Additional development of and computational experi-
ence with the dichotomic basis method is described in
Rao (1996) and Rao and Mease (1998). The method uses
a dichotomic transformation to decouple the contracting
and expanding behavior. The solution to the HBVP is
constructed by forward integration of the contracting
part of the dynamics and backward integration of the
expanding part of the dynamics. In this way, error ampli-
fication is avoided. The method is inspired by the com-
putational singular perturbation (CSP) method of Lam
(1993) and Lam and Goussis (1994). A geometric inter-
pretation of CSP consistent with the perspective of the
present paper is given by Mease (1995a). The application
of CSP to optimal control problems was previously con-
sidered by Ardema (1990). The use of dichotomic trans-
formations for the solution of linear boundary-value
problems is well known in the numerical analysis litera-
ture (e.g. O’Malley and Anderson, 1982; Ascher et al.,
1995). Wilde and Kokotovic (1972) applied dichotomic
transformations to linear optimal control problems.
Chow (1979) used dichotomic transformations for non-
linear two time-scale HBVPs in standard form with lin-
ear boundary-layer dynamics. We use the geometric
characterization of two time-scale systems by Fenichel
(1979) and the stable and unstable sub-bundles of Sacker
and Sell (1980) to extend the use of dichotomic trans-
formations to nonlinear HBVPs. Although we only pres-
ent a method for completely hyper-sensitive problems
here, our approach has the potential for extension to the
general two time-scale case as outlined by Mease (1995b).
Another method for solving a completely hyper-sensitive
optimal control problem is given by Anderson and
Kokotovic (1987). They construct an approximate solu-
tion from the positive and negative definite solutions to
the steady-state Hamilton—Jacobi—Bellman equation.
Their method does not appear to be extendible to the two
time-scale case, unless the system model is given in stan-
dard form.

2. Hamiltonian boundary value problem

Consider the optimal control problem of finding the
control u that steers the state x from x(0)"x

0
to

x(t
f
)"x

f
in accord with the system evolution equation

xR "f (x, u) (1)

and minimizes the scalar cost

J"P
tf

0

¸ (x, u) dt. (2)

Let x(t)3Rn and u(t)3Rm. The first-order necessary
conditions for a local minimum lead to a Hamiltonian
boundary-value problem (HBVP) for the extremal

634 A.V. Rao, K.D. Mease/Automatica 35 (1999) 633—642



trajectories. The HBVP is composed of the differential
equations

C
xR
jQ D"C

HTj (x, j)

!HT
x
(x, j)D (3)

and the boundary conditions

x(0)"x
0
, x(t

f
)"x

f
, (4)

where j(t)3Rn is the costate, H(x, j)"¸ (x, u(x, j))#
jT f (x, u (x, j)) is the optimal Hamiltonian with u(x, j) the
value of the optimal control function at the point (x, j),
and Hj and H

x
are partial derivatives of H with respect to

the subscripted variable. We assume that H is a C2 func-
tion of x and j.

The x-space and the (x, j)-space are called the state
space and the phase space, respectively. The vector field of
Eq. (3) is a Hamiltonian vector field. For a function of
time, such as the state x, we use the notation x( · ) to
denote the function on the time interval of interest and
x(t) to denote its value at time t.

Our attention is focused on the HBVP, its solution
that is the minimizing solution of the optimal control
problem, and the structure of this solution trajectory and
its neighbors in the phase space. We assume that there
exists a unique solution to the optimal control problem
(see Anderson and Kokotovic (1987) for existence theory
paralleling that for time-invariant linear quadratic prob-
lems for a certain class of completely hyper-sensitive
optimal control problems). Although the specifics of the
approach to be discussed are given for the HBVP corre-
sponding to the above form of optimal control problem,
the approach is applicable to completely hyper-sensitive
HBVPs corresponding to other forms of optimal control
problems as well.

3. Supporting theory

In this section we present the terminology, concepts
and theory that serve as the basis of our solution method.
To simplify notation, we sometimes use p"(x, j),
dp"(dx, dj), and v

H
"(Hj,!H

x
), and we use P to rep-

resent the Euclidean phase space R2n. Because we want to
consider the structure beyond that associated with an
individual trajectory, we need to introduce some geomet-
ric objects (see Boothby, 1986). The tangent space at
a point p of the phase space P is the space of tangent
vectors to all possible C1 trajectories through p. The
tangent space at p3P is a linear vector space isomorphic
to R2n and is denoted by ¹

p
P. The tangent bundle is

¹P"Z
p|P

¹
p
P, i.e., the collection of all the tangent

spaces associated with points in P. A point in the tangent
bundle is denoted by (p, dp) where dp is the 2n-dimen-
sional vector in the tangent space with base point p, i.e.,

dp3¹
p
P. Since the phase space is R2n, we commit to

a particular coordinate representation of the state and
costate and thus of p. We use dp to denote the coordinate
representation of a tangent vector in the basis induced on
¹
p
P by the coordinate basis for P.

3.1. Hyper-sensitivity in a nonlinear Hamiltonian system

A consequence of the Hamiltonian form of the vector
field in Eq. (3) is that

div(v
H
)"divC

HTj
!HT

x
D"

n
+
i/1
C

L
Lx

i

LH

Lj
i

!

L
Lj

i

LH

Lx
i
D"0. (5)

From Liouville’s theorem (e.g., Arnol’d, 1992), it follows
that the flow corresponding to the vector field of Eq. (3)
preserves volume. We can write the solution to Eq. (3) as
p(t)"/(t, p (0)), where the function / is the flow corre-
sponding to the Hamiltonian vector field and is a time-
dependent mapping of points in R2n to points in R2n.
Consider a bounded, open, connected set S (0)LR2n of
initial phase points. If we propagate each point in S (0)
ahead t units of time according to the flow, we obtain
a new set S (t) given explicitly by

S(t)"Mp3R2n : p"/ (t, p
0
) for some p

0
3S(0)N. (6)

The set S(t) will have the same volume as S (0), but may
have a much different shape. A property of a Hamil-
tonian flow is that, if the flow contracts S in certain
directions, then it expands S in an equal number of other
directions. It is this last property that can make a HBVP
difficult to solve numerically.

Consider the numerical computation of a solution to
a particular HBVP. All the elements of the state and
costate are not known at either the initial time or the final
time. Since we are solving the problem numerically, it
only makes sense to ask that initial and final phase
vectors be determined to within some error. For example
we may require that the initial and final phase vectors
each lie within a ball of radius ¹O¸ of the exact value.
The difficulty of achieving such an error tolerance in-
creases with the degree of contraction and expansion
over the time interval for the problem. If we attempt
to determine the unknown elements of the phase vector
at the initial time, the unknown elements corresponding
to expanding directions must be determined more accu-
rately than the ¹O¸-ball at the initial time would
suggest, so that when they expand during the mapping
to the final time, the phase vector will lie within the
¹O¸-ball at the final time. The greater the rate of
expansion is, the greater the required accuracy in the
unknown initial conditions corresponding to the expand-
ing directions. This characterization, albeit qualitative,
identifies the potential for hyper-sensitivity in nonlinear
HBVPs.
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3.2. Dichotomy and stable/unstable decomposition of the
induced linear flow

By considering the linearized motion with respect to
a given solution of Eq. (3), one can characterize the
contracting and expanding directions of the Hamiltonian
system by applying the theory of Sacker and Sell (1980).
The Hamiltonian vector field v

H
on the phase space

induces a linear Hamiltonian flow on the tangent bundle.
A tangent vector dp3¹

p
P is mapped during time interval

t to the tangent vector '(t, p)dp3¹/(t,p)
P, where / (t, p)

and ' (t, p) comprise the solution to the initial value
problem

/Q "v
H
(/), / (0, p)"p, (7)

'0 "
Lv

H
Lp

(/)', '(0, p)"I. (8)

Definition 1. A mapping %ª :¹PP¹P is a projector if

(i) %ª is continuous, and
(ii) for each p3P, there is a linear projection %(p)

(i.e., %2(p)"%(p)) in ¹
p
P such that %ª (p, dp)"

(p,% (p)dp) for all (p, dp)3¹P.

If %ª is a projector on ¹P, then

range(%ª )"R"M(p, dp)3¹P : %(p)dp"dpN,

nullspace(%ª )"&"M(p, dp)3¹P : %(p)dp"0N,
(9)

are complementary sub-bundles of ¹P, i.e., R (p)W
&(p)"M0N and ¹

p
P"R(p)#&(p), ∀p3P, where R (p)

and &(p) denote fibers of the sub-bundles. Conversely, if
V

1
and V

2
are complementary sub-bundles in ¹P, then

there is a unique projector %ª on ¹P such that R"V
1

and &"V
2
.

Let QLP be a smooth, compact, connected sub-
manifold of P, and let Q be invariant with respect to the
Hamiltonian flow /.

Definition 2. The induced linear Hamiltonian flow on the
tangent bundle ¹Q admits an exponential dichotomy if
there is a projector %ª

D
on ¹Q, where %

D
(p) has rank n on

Q, and positive constants K and a such that

E'(t, p)%
D
(p)'~1(q, p)E4Ke~a(t~q), t5q,

E'(t, p) (I!%
D
(p))'~1(q, p)E4Ke~a(q~t), t4q

(10)

for all p3Q (Sacker and Sell, 1980). The notation E ) E
denotes the norm induced by the Euclidean norm on P.

A dichotomic projector %ª
D

allows the splitting of
¹Q into invariant, complementary stable and unstable
sub-bundles

range(%ª
D
)"V

s
"M(p, dp)3¹Q : E'(t, p)dpEP0

as tP#RN,

nullspace(%ª
D
)"V

u
"M(p, dp)3¹Q : E'(t, p)dpEP0 as

tP!RN. (11)

The condition that the base space is compact and
invariant is too restrictive for our needs. We want to
apply the above characterization to a finite neighbor-
hood of a saddle-type equilibrium, yet the set consisting
of the equilibrium point is the only compact, invariant
set in this neighborhood. The above results would only
serve to characterize the tangent space at the equilibrium
point as the direct sum of an n-dimensional stable eigen-
space and an n-dimensional unstable eigenspace. By
allowing the base space Q to be an ‘‘overflowing invari-
ant’’ manifold with a boundary, a segment of the stable
manifold (with time reversed) or the unstable manifold,
that includes the equilibrium point, can be taken as
the base space (see Fenichel, 1979). We go a step further
and modify the dichotomy definition such that the base
space can be a non-invariant, bounded, open set. In
particular, let )LP be a neighborhood of the optimal
phase trajectory, composed of extremals of duration t

f
or longer.

Definition 3. The linear Hamiltonian flow on the tangent
bundle ¹) induced by v

H
admits a finite-time exponential

dichotomy if

(i) there are positive constants K and a and a projector
%ª

D
, such that, for all p3), rank%

D
(p)"n and the

bounds in Eq. (10) are satisfied for all values of q and
t in the time interval I (p) — the longest time interval
such that / (s, p)3) for all s3I(p).

(ii) the exponential bounds are reasonably tight uni-
formly on ¹).

(iii) t
f

is larger than several times the reciprocal of the
average minimum rate of contraction and expansion,
whose estimate is 1/a.

The notion of a finite time exponential dichotomy is
used in numerical analysis for linear time-varying sys-
tems Ascher et al., 1995). Definition 3 is our modification
for an induced linear flow on a tangent bundle. On
a finite time interval, any bounded behavior, whether
contracting or expanding, can be exponentially bounded
with either a decreasing or increasing exponential by
simply choosing a sufficiently large value of K. Stipula-
tion (ii) ensures that the local minimum rate of contrac-
tion and expansion is not too different from the average
minimum rate of contraction and expansion a. (This is
important for our application even in the case of a com-
pact, invariant base space for which Definition 2 is ap-
propriate.) Stipulation (iii) ensures that the minimum rate
of contraction and expansion is large enough that
a dichotomic splitting is effectively a stable/unstable
splitting on ¹). Consequently, we will use the
terms stable and unstable sub-bundles in connection
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with a finite-time exponential dichotomy, even though
finite-time intervals are involved.

Consider a linear coordinate change (p, dp)Â (p, v) on
¹) with dp"D(p)v, where v is the new coordinate vec-
tor and D is a nonsingular and continuously differenti-
able 2n]2n matrix-valued function of p on ). The
columns of D(p) are basis vectors for ¹

p
) for each p3).

In terms of v, the variational equation of Eq. (8) is

vR"[D~1JD!D~1DQ ]v""(/ (t, p))v, (12)

where J"Lv
H
/Lp is the local Jacobian matrix, DQ is ob-

tained by taking the Lie derivative, in the v
H

direction, of
each element of D, and " is used to denote the trans-
formed system matrix more concisely.

Definition 4. Concerning the case of a finite-time ex-
ponential dichotomy for the linear flow on ¹), a basis
D is a dichotomic basis, if it satisfies the following two
requirements.
(i) The corresponding system matrix " is block-tri-

angular of the form

""C
"

s
(p) "

su
(p)

0 "
u
(p)D (13)

for all p3), and the matrices "
s

and "
u

are both
(n]n) dimensional.

(ii) The transition matrices '
s
(t, p) and '

u
(t, p) corre-

sponding to "
s
and "

u
, defined such that '

s
(0, p)"I

and '
u
(0, p)"I satisfy the inequalities

DD'
s
(t, p)'~1

s
(q, p)DD4K

1
DDD(/(q,p))DD DDD~1(/(t, p)) DDe~a(t~q),

t5q,

DD'
u
(t,p)'~1

u
(q,p) DD4K

1
DDD(/(q, p)) DD DDD~1(/(t,p)) DDe~a(q~t),

t4q, (14)

where q and t are in I(p) as defined in Definition
3 and K

1
is a positive constant that can be related

(Ascher et al., 1995) to K in Definition 3.

The subscripts ‘‘s’’ and ‘‘u’’ indicate the stable and
unstable nature of the two subsystems. A dichotomic
basis can be split in the form

D(p)"[D
s
(p) D

u
(p)], (15)

where

D
s
(p)"[d

1
(p)2d

n
(p)] and D

u
(p)"[d

n`1
(p)2d

2n
(p)].

Correspondingly, the new coordinate vector splits as

v"C
v
s

v
u
D. (16)

A point in the stable sub-bundle V
s

has the form
(p, (v

s
, 0)). The fiber V

s
(p) of the stable sub-bundle is given

by the column span of D
s
(p). Note that the stable sub-

bundle is invariant under the dynamics, since an initial

point of the form (p, (v
s
(0), 0)) maps to a point (/(t, p),

(v
s
(t), 0))"(/(t, p), ('

s
(t)v

s
(0), 0)) and remains in the

stable sub-bundle. We could go a step further and require
a dichotomic basis to yield "

su
"0, i.e., " block diagonal.

Then V
u
(p) would be given by span D

u
(p). But this

property is not needed.
The Hamiltonian vector field in Eq. (3) assigns to each

phase point p"(x, j) a vector v
H
(p)"(Hj (x, j),

!H
x
(x, j)) in the tangent space at that point. At each

phase point, we can express this particular tangent vector
in the dichotomic basis as

v
H
(p)"C

HTj(x, j)

!HT
x
(x, j)D"D

s
(x, j)v

s
#D

u
(x, j)v

u
, (17)

where the tangent vector coordinates v
s
and v

u
are deter-

mined by

v
s
"h

s
(x, j)"D~1

s
(x, j)C

HTj(x, j)

!HT
x
(x, j)D,

(18)

v
u
"h

u
(x, j)"D~1

u
(x, j)C

HTj (x, j)

!HT
x
(x, j)D.

and D~s
s

and D~1
u

denote the first and second n rows
of D~1.

Two alternatives to integrating Eq. (3) can be identified
to compute the extremal for a given initial condition
(x

0
, j

0
). One is to replace the right-hand side of Eq. (3)

with the dichotomic basis representation given in
Eqs. (17) and (18). The second is to integrate the system

C
xR
jQ D"D

s
(x, j)v

s
#D

u
(x, j)v

u

(19)

C
vR
s

vR
u
D"C

"
s
(x, j) "

su
(x, j)

0 "
u
(x, j)DC

v
s

v
u
D

with the initial conditions

x(0)"x
0
, j(0)"j

0
,

(20)
v
s
(0)"h

s
(x

0
, j

0
), v

u
(0)"h

u
(x

0
,j

0
).

The second alternative makes clear that a property of
a dichotomic basis is that, for a given initial condition on
the state, x(0)"x

0
, the unstable component of the

Hamiltonian vector field can be suppressed at t"0 by
choosing j(0)"j

0
such that h

u
(x

0
, j

0
)"0; and that the

unstable component will remain suppressed, due to the
lack of coupling from v

s
to v

u
. In other words, we choose

j
0

such that we are at a point in the phase space on the
x"x

0
hyper-plane where the Hamiltonian vector field

lies in the fiber V
s
(x

0
, j

0
) of the stable sub-bundle.

3.3. Geometric structure associated with a completely
hyper-sensitive HBVP

In the phase space the solution to a two time-scale
HBVP and its neighbors are organized by a normally
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hyperbolic slow invariant manifold (see Fenichel, 1979).
Each trajectory on the slow manifold is the transverse
intersection of fast-stable and fast-unstable manifolds.
Except in the initial and terminal layers, the solution of
interest is well approximated by a trajectory on the slow
manifold referred to as the reduced-order trajectory. The
complete solution trajectory begins slightly off the fast-
stable manifold of the reduced-order trajectory and fol-
lows it quickly towards the slow manifold. The trajectory
then progresses slowly alongside the reduced-order tra-
jectory. Near the final time, the trajectory quickly follows
the unstable manifold of the reduced-order trajectory to
the terminal condition slightly off the unstable manifold.
For fixed boundary conditions on the state, as the length
of the time interval increases, the initial and terminal
boundary-layer segments of the trajectory lie closer and
closer to the fast-stable and fast-unstable manifolds of the
reduced-order trajectory, respectively.

The completely hyper-sensitive class of two time-scale
HBVPs is degenerate in that the slow manifold is an
isolated saddle-type equilibrium point. Moreover, the
fast-stable and fast-unstable manifolds are simply
the n-dimensional stable and unstable manifolds of the
saddle point. The stable manifold is composed of all the
phase trajectories that approach the equilibrium asymp-
totically in forward time, while the unstable manifold is
composed of all the phase trajectories that approach the
equilibrium asymptotically in backward time. The stable
and unstable eigenspaces of the linearized Hamiltonian
system at the saddle point are n-dimensional hyper-
planes and are tangent to the stable and unstable mani-
folds at the equilibrium point. (See Guckenheimer and
Holmes, 1990 for precise definitions of stable and unsta-
ble manifolds and additional information.) It follows
from this geometric characterization of a completely hy-
per-sensitive optimal control problem that there exists
a neighborhood )LP of the solution of interest that
contains portions of the stable and unstable manifolds,
including their intersection point at the equilibrium, that
admits a finite-time exponential dichotomy. Conse-
quently, the tangent bundle ¹) can be split into a stable
sub-bundle V

s
and a complementary sub-bundle. We

assume that ) is small enough that complications that
could arise from the presence of homoclinic or hetero-
clinic orbits can be ignored.

The stable manifold is positively invariant with respect
to the Hamiltonian flow. In other words, a trajectory that
begins on the stable manifold will remain on the stable
manifold as time progresses. Let S denote the set of
phase points in ) that are on the stable manifold. The
invariance of S implies that for every p3S, the Hamil-
tonian vector field must lie in the tangent space to the
stable manifold, denoted v

H
(p)3¹

p
S. For all p3S, ¹

p
S

and V
s
(p) are the same subspace of ¹

p
). Thus we have

v
H
(p)3V

s
(p) for all p3S. Representing v

H
(p) in a

dichotomic basis as in Eq. (17), points p3S are identified

as those for which the unstable component of the Hamil-
tonian vector field is zero, i.e., v

u
"h

u
(x, j)"0. This can

be viewed as a partial equilibrium condition. On the
stable manifold the unstable component is zero, whereas
at the equilibrium point, both stable and unstable com-
ponents are zero. It is clear from the block triangular
form of the variational equations in Eq. (19) that if the
unstable component is zero at some initial point, it will
remain zero along the subsequent trajectory.

4. Solution of completely hyper-sensitive HBVPs

We are now in a position to describe a method for
solving completely hyper-sensitive nonlinear HBVPs.
An approximate solution is constructed by piecing to-
gether the extremal on the stable manifold that satisfies
the condition on the initial state, the equilibrium
solution, and the extremal on the unstable manifold
that satisfies the condition on the final state. This
composite, approximate solution is essentially identical
to that of Anderson and Kokotovic (1987). The com-
posite solution can be continuous by introducing bridg-
ing segments, or discontinuities within a specified
tolerance can be allowed at the junctions. Our method
differs from that of Anderson and Kokotovic in the
computation of the boundary-layer segments. We only
describe the computation of the initial boundary-layer
segment, since the computation of the terminal bound-
ary-layer segment is essentially the same with time rever-
sed. We present two methods: one in which a dichotomic
basis is known and one in which an approximate
dichotomic basis is known.

4.1. Dichotomic basis method

Assume that we have a dichotomic basis D. We can use
it to split the Hamiltonian vector field into its stable and
unstable components. The stable manifold is composed
of phase points for which the unstable component of the
vector field is zero. Thus, we determine j

0
such that

v
u
(0)"h

u
(x

0
, j

0
)"0 (21)

is satisfied for the initial state x
0
. A solution exists, but

may not be unique. For example, one may find two
solutions corresponding to the stable manifolds of two
equilibria, only one of which is the correct one. Other
considerations must guide the selection of the appropri-
ate solution, if there is more than one. A rigorous treat-
ment of the existence and uniqueness of this solution is
beyond the scope of this paper.

The initial boundary-layer solution is then computed
by integrating Eqs. (19) to ensure that the trajectory
remains on the stable manifold. The integration is con-
tinued until the trajectory is close enough to the equilib-
rium to connect it to the equilibrium solution to within
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the specified tolerance (discontinuity is allowed). We
denote the duration of the initial boundary-layer by t

ibl
.

4.2. Approximate dichotomic basis method

Even if a dichotomic basis is not available, it may be
possible to solve a completely hyper-sensitive HBVP
using an approximate dichotomic basis. When an ap-
proximate dichotomic basis is used, the problem must be
solved iteratively, but the strategy of piecing together the
extremal on the stable manifold that satisfies the condi-
tion on the initial state, the equilibrium solution, and the
extremal on the unstable manifold that satisfies the
condition on the final state, remains the same. As before,
only the computation of the initial boundary-layer is
described.

An approximate dichotomic basis is denoted by

A(p)"[A
s
(p) A

u
(p)] (22)

where

A
s
(p)"[a

1
(p)2a

n
(p)]

and

A
u
(p)"[a

n`1
(p)2a

2n
(p)].

We express the Hamiltonian vector field in the approx-
imate dichotomic basis as

v
H
"C

HTj
!HT

x
D"A

s
(x, j)v

s
#A

u
(x, j)v

u
, (23)

where the coordinates v
s
and v

u
are determined by

v
s
"q

s
(x, j)"A~1

s
(x, j)C

HTj(x, j)

!HT
x
(x, j)D

(24)

v
u
"q

u
(x, j)"A~1

u
(x, j)C

HTj(x, j)

!HT
x
(x, j)D

and A
s
and A

u
approximate D

s
and D

u
, respectively.

The following iterative procedure is proposed for
computing the initial boundary-layer solution using an
approximate dichotomic basis.

(i) Initialization: Choose t
ibl

and v
u
( ) ) (e.g., set v

u
(t),0).

(ii) Generate initial conditions at t"0: given v
u
( ) ) from

the initialization or the previous backward integra-
tion once available
(a) Solve q

u
(x

0
, j(0))"v

u
(0) for j(0)"j

0
.

(b) Compute v
s
(0)"v

s0
"q

s
(x

0
, j

0
).

(iii) Forward integration: Given the initial conditions x
0
,

j
0
, and v

s0
, integrate from t"0 to t"t

ibl

C
xR
jQ D"A

s
(x, j)v

s
#A

u
(x, j)v

u
,

vR
s
"[A~1

s
(x, j)J (x, j)A(x, j)!A~1

s
(x, j)AQ (x, j)]C

v
s

v
u
D.

(iv) Generate the conditions at t"t
ibl

for the backward
integration: using x(t

ibl
)"x

ibl
and v

s
(t
ibl

) from the
forward integration
(a) Solve q

s
(x

ibl
, j(t

ibl
))"v

s
(t
ibl

) for j(t
ibl

)"j
ibl

.
(b) Compute v

u
(t
ibl

)"q
u
(x

ibl
, j

ibl
).

(v) Backward integration: Given v
s
( ) ) from forward in-

tegration and final conditions (x
ibl

, j
ibl

, v
u
(t
ibl

)), inte-
grate from t"t

ibl
to t"0

C
xR
jQ D"A

s
(x, j)v

s
#A

u
(x, j)v

u
,

vR
u
"[A~1

u
(x, j)J (x, j)A(x, j)!A~1

u
(x, j)AQ (x, j)]C

v
s

v
u
D.

(vi) Convergence check: If the difference between the
forward and backward trajectories is sufficiently
small, then stop. Otherwise, repeat (ii)—(v).

With an approximate dichotomic basis, v
u

only ap-
proximates the unstable component of the Hamiltonian
vector field. While v

u
is not identically zero on the stable

manifold, it does decay to zero on the stable manifold, as
does v

s
. Consequently, both v

s
and v

u
must be computed.

The objective of the iterative procedure is to determine
v
s

and v
u

that steer the phase trajectory in the stable
manifold from the specified initial state to the vicinity of
the equilibrium point.

To reduce error amplification, the predominately
stable component of the Hamiltonian vector field, v

s
, is

determined by forward integration with the predomi-
nately unstable component v

u
a fixed function of time;

v
u
is determined by backward integration with v

s
a fixed

function of time. The other means of controlling error
amplification is the choice of t

ibl
. On one hand, t

ibl
must

be large enough so that the trajectory on the stable
manifold reaches a point close enough to the equilibrium
to satisfy the matching tolerance. However, the error
amplification grows with increasing t

ibl
. Large error am-

plification is particularly problematic in the first iter-
ations because the unstable component of the
Hamiltonian vector field may not be well suppressed.
One could use a relatively small value of t

ibl
initially until

v
u

is better known, and then increase t
ibl

for the sub-
sequent iterations. The larger t

ibl
is, the more accurately

A
s
must approximate D

s
. Accuracy can be measured by

the angle between the subspaces spanned by the columns
of the matrices (see Rao, 1996).

5. Nonlinear spring-mass example

Consider a mass connected to a nonlinear spring as
modeled by the equations

xR
1
"x

2
, xR

2
"!x

1
!x3

1
#u(t), (25)

where x
1

is the position of the mass relative to the
position of zero spring force, x

2
is the velocity, and u(t) is

A.V. Rao, K.D. Mease/Automatica 35 (1999) 633—642 639



Fig. 2. Iterates of x
2
(t) versus t for initial and terminal boundary-layers

of Eq. (28).

Fig. 1. Iterates of x
1
(t) versus t for initial and terminal boundary-layers

of Eq. (28).

the controllable specific force on the mass. The optimal
control problem is to determine the control that drives
the system from the initial condition (x

1
(0),x

2
(0))"(1, 0)

to the final condition (x
1
(t
f
),x

2
(t
f
))"(0.75, 0) and min-

imizes the cost function

J"
1

2 P
tf

0

(x2
1
#x2

2
#u2) dt. (26)

The optimal Hamiltonian is given by

H"1
2
(x2

1
#x2

2
!j2

2
)#j

1
x
2
#j

2
(!x

1
!x3

1
), (27)

The final time is t
f
"40. The first-order necessary condi-

tions for optimality lead to the HBVP

xR
1
"x

2
, x

1
(0)"1,

xR
2
"!x

1
!x3

1
!j

2
, x

2
(0)"0,

jQ
1
"!x

1
#j

2
(1#3x2

1
), x

1
(t
f
)"0.75,

jQ
2
"!x

2
!j

1
, x

2
(t
f
)"0.

(28)

For this problem, the eigenvectors of the linearized
Hamiltonian vector field at the equilibrium phase point
(x

1
,x

2
, j

1
, j

2
)
eq
"(0, 0, 0, 0) are used as basis vectors. The

initial layer problem is solved on the time interval
t3[0, 15] (i.e., t

ibl
"15), while the terminal layer is solved

in backward time on the interval t3[25, 40]; these time
intervals are much larger than the minimum rate of
contraction and expansion which is approximately 2.
After transforming the time variable to p"t

f
!t, the

terminal layer problem has the same form as the initial
layer problem, and the same algorithm is applicable. We
use v

u
,0 to initialize the algorithm. Figs. 1 and 2 show

initial and terminal layer iterations 1, 2, and 10 from the
forward integration for x

1
(t) versus t and x

2
(t) vs. t,

respectively. The first important feature is that, even in
the first iteration, the unstable behavior has been suffi-
ciently suppressed. Moreover, with increasing iteration,
both the initial and terminal boundary-layer solutions
approach the equilibrium value in forward and backward
time, respectively. After ten iterations, the initial and
terminal layer solutions have converged in the sense that
the trajectories from the forward and backward integra-
tions differ by less than 10~4 and the initial and terminal
layer solutions can be matched to the equilibrium solu-
tion to within 10~4.

6. Dichotomic basis determination

While a detailed study of determining a dichotomic
basis (or a sufficiently close approximation to one) is
beyond the scope of this paper, some discussion is
warranted to indicate feasibility. Consider the trans-
formation

C
x

jD"( (z
s
, z

u
), (29)

where ( is a diffeomorphism on ) () as defined
earlier). The corresponding tangent vector coordinates
are related by

C
dx

djD"
L(
Lz

s

dz
s
#

L(
Lz

u

dz
u
. (30)

If z
s

and z
u

are stable and unstable phase coordinates,
then v

s
"dz

s
and v

u
"dz

u
are a particular set of stable

and unstable phase rate coordinates corresponding to
the dichotomic basis composed of D

s
"L(/Lz

s
and

D
u
"L(/Lz

u
.

We are proposing to determine a dichotomic basis
directly, without first determining a transformation to
stable and unstable phase coordinates. Then, in principle,
the corresponding transformation to stable and unstable
phase coordinates can be determined by solving the ap-
propriate partial differential equations. However, if the
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basis vectors are determined in numerical form, this step
is not straightforward. The most general means of deter-
mining a dichotomic basis may be to compute regional
Lyapunov exponents and their associated direction vec-
tors (see Wiesel, 1994). This is a computationally inten-
sive means and may not always be necessary. Some
alternatives are described briefly in the remainder of this
section.

For the class of HBVPs we have addressed in this
paper, the stable and unstable eigenspaces at the equilib-
rium point provide useful information for determining
a dichotomic basis. At the equilibrium point, a
dichotomic basis D"[D

s
D

u
] must be such that the

column span of D
s
is the stable eigenspace and the col-

umn span of D
u
is a complementary subspace. Thus the

eigenvectors associated with the linearized system at the
equilibrium point can be used to construct a dichotomic
basis at the equilibrium point. In the nonlinear spring-
mass example, the eigenvectors at the equilibrium point
provided a sufficiently accurate approximate dichotomic
basis along and in the neighborhood of the trajectory of
interest. The adequacy of the equilibrium eigenvectors
depends on (i) the distance of the initial (and final) phase
point from equilibrium relative to the degree of curvature
in the stable manifold and (ii) the length of the time
interval. For the case when the equilibrium eigenvectors
are inadequate, we now suggest a means of propagating
a dichotomic basis to other phase points on the stable
manifold.

Consider a basis of the form

D"C
I 0

R ID. (31)

Applying Eq. (12), the dynamics of the corresponding
phase rate coordinates along a trajectory of the Hamil-
tonian vector field in Eq. (3) are

C
vR
s

vR
u
D"C

Hjx#HjjR Hjj
!(R) !(H

xj#RHjj)DC
v
s

v
u
D, (32)

where !(R)"!RQ !RHjx!RHjjR!H
xx
!H

xjR.
By choosing R to be a solution of the Riccati differential
equation !(R)"0, v

u
is decoupled from v

s
. Provided the

correct boundary condition for the Riccati differential
equation is used, it can be shown that

spanC
I

RD (33)

is the tangent space to the stable manifold at any point
along an extremal trajectory lying on the stable manifold
of a saddle-point equilibrium. It is known that the stable
eigenspace is obtained from Eq. (33) using R"R

=
where

R
=

is the positive definite solution to the algebraic Ric-
cati equation with matrices evaluated at the equilibrium
point. Consequently, as t

ibl
PR, R"R

=
is the correct

boundary condition and should be quite accurate for
sufficiently large t

ibl
. Along an extremal on the stable

manifold, a dichotomic basis can be constructed by integ-
rating the Riccati differential equation in backward time
from R

=
. While this connection to Riccati equation

based solution methods (e.g. see the backward sweep
method described by Bryson and Ho (1975) and the
dichotomic transformations in Kokotovic et al. (1986)) is
important, it should not obscure the more general per-
spective of our approach which leaves open the possibili-
ties of generating bases by other means and exploiting
the structure of two time-scale systems.

7. Conclusions

As a step toward developing a general method for
solving and uncovering the structure of two time-scale
optimally controlled nonlinear systems, we have defined
a degenerate class of two time-scale optimal control
problems, called completely hyper-sensitive problems,
and have proposed a solution method for this class of
problems. The solution method is indirect and as such
seeks a solution to the Hamiltonian boundary-value
problem posed by the first-order optimality conditions.
The method uses a dichotomic basis to split the Hamil-
tonian vector field into its stable and unstable compo-
nents. With these components identified, an accurate
approximation to the optimal solution can be construc-
ted by matching initial and terminal boundary-layer seg-
ments, on the stable and unstable manifolds, respectively,
with the equilibrium segment. A variation of the method
for the case of an approximate dichotomic basis was also
developed, and was applied to a nonlinear spring-mass
problem. The challenging problem of determining
a dichotomic basis or a sufficiently accurate approxima-
tion to one has been discussed only briefly, but some
potential approaches have been identified.
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