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A systematic modeling procedure of a large class of switching power converters using the Hamil-
tonian approach.

Abstract

In this paper we show how, using the Hamiltonian formalism, we can systematically derive mathematical models that describe the
behaviour of a large class of switching power converters, including the “Boost”, “Buck”, “Buck-Boost”, “C[ uk” and “Flyback”
converters. We follow the approach proposed by van der Schaft and Maschke and extract from the basic (energy-conserving)
LC—circuit the remaining elements, i.e., resistors, switches, diodes and transformers, which we treat as external ports. This method
naturally yields a Hamiltonian system with two additional conjugated sets of port variables. This procedure, besides being systematic
and very general, has the additional advantage of resulting in equations of a form appropriate for simulation and design of the highly
succesful passivity—based controllers. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Switching power converters are complex hybrid devi-
ces, which are becoming ubiquitous in many control
applications. Since they usually operate at very high
frequencies, their dynamic behaviour is typically neglect-
ed in the controller design. However, the increasing de-
mand on higher bandwidths and the stiffer constraints on
harmonic generation makes it necessary to incorporate
their dynamics in modern control schemes.

Power converters may be viewed as a set of voltage (or
current) sourced subsystems interconnected through

—————

*Corresponding author. Tel.: 0033 1 69 85 17 66; fax: 0033 1 69 41 30
60; e-mail: rortega@lss.supelec.fr.

1This work was partially supported by the European Commission’s
Training and Mobility of Researchers (TMR) Contract ERBM-
FMRX—CT970317 and by the Consejo Nacional de Ciencia y Tec-
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switches. The objective of the switches, which actuate as
lossless transformers, is to allow the transfer of energy
from one subsystem to another. The subsystems consist
of passive elements (like inductors, capacitors, and resist-
ances), power sources, and a load where the desired
energy is delivered.2 Because of the presence of discon-
tinuous elements the behaviour of power converters con-
sists of several modes, corresponding to different circuit
topologies. A major stumbling block in the standard
modeling approaches is how to combine the various
topologies to obtain a unique model. This step, which
usually requires the identification of ignorable variables,
is far from obvious and demands a lot of ingenuity.

The main objective of the paper is to show how, using
the generalized Hamiltonian formalism advocated in
Maschke et al. (1995), van der Schaft and Maschke

—————
2For more about DC—DC power converters topologies and physical

construction the reader is referred to Wood (1981).
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(1993), we can systematically derive mathematical models
that describe the behaviour of a large class of switching
power converters, including the “Boost”, “Buck”,
“Buck-Boost”, “C[ uk” and “Flyback” converters. In this
Hamiltonian modeling approach the non-energetic
elements such as resistors, transformers, diodes and
switches are first extracted from the circuit, thereby leav-
ing an energy-conserving LC circuit with ports corre-
sponding to the various extracted elements. This LC
circuit with ports can be represented in an intrinsic way
as a Hamiltonian system with port variables. The repres-
entation of the original circuit is then obtained by termi-
nating the ports of this Hamiltonian system by the
extracted non-energetic elements. This decomposition
can be naturally carried out for power converters, with
the external ports including transformers and resistive
components as well as discontinuous elements such as
switches and diodes. The main feature of our approach is
that for all operating modes we consider the same state
variables, the same Hamiltonian, and the same dissipa-
tion functions. The variable topology is captured then
in some structure matrices that are easily defined by
inspection. A final advantage of the proposed modeling
method is that the resulting equations are in a form
suitable for simulation and control purposes. In particu-
lar, the energy dissipation properties of the circuit —
which are exploited in passivity—based control (Sanders
and Verghese, 1990; van der Schaft, 1996; Ortega et al.,
1998) are clearly revealed.

A further complication in circuits containing switches
and diodes is that they may, in principle, lead to algebraic
constraints on the energy variables. Characterization of
such behaviours is still possible invoking the notion of
implicit Hamiltonian systems recently introduced in van
der Schaft and Maschke (1997). Moreover, most practical
power converters are designed in such a way that such
algebraic constraints due to switches do not appear,
because otherwise there maybe some physical problems
with closing or opening switches like sparks, short cir-
cuits, etc. Roughly speaking, we can say that in their
functioning, the state variables of the power converter do
not exhibit jumps and the generalized Hamiltonian for-
malism of Maschke et al. (1995) and van der Schaft and
Maschke (1995) suffices. We assume also that these cir-
cuits are composed only of independent elements, i.e.,
there are no excess of elements producing algebraic con-
straints.

Control—oriented modeling of switching power con-
verters is typically addressed using small—signal and
averaged models (Kassakian et al., 1991). More recently,
generalized averaging procedures were used in Sanders
et al., (1991) while a Lagrangian viewpoint is proposed in
Sira and Delgado (1997), see also Ortega et al., (1998). In
relation with the latter there are several clear advantages
of the Hamiltonian approach advocated here. First, be-
sides being more elegant and more systematic, the

Hamiltonian approach allows us to introduce the charac-
teristics of diodes and transformers into the model, a fea-
ture that does not seem feasible in a Lagrangian formula-
tion. Second, as pointed out above, in the proposed
formulation we keep the same state variables, and the
same energy and dissipation functions for all opearating
modes. In the Lagrangian formulation to handle the
topology changes some rather artificial parametrizations
(in terms of the switching variables) of these functions are
introduced. This raises fundamental questions of unique-
ness of these parametrizations, which are not totally clear
in Sira and Delgado (1997). Furthermore, in a Lagran-
gian setting an additional step, which is obviated in the
Hamiltonian approach, is needed to obtain a reduced set
of differential equations that removes the ignorable coor-
dinates. This step requires some algebraic manipulations,
which are guided by inspection, and are far from being
systematic.

A somehow related research is reported in Söderman
(1995) and Strömberg (1994) where the bond graphs
approach was extended to mode switching physical sys-
tems, i.e., systems constructed by engineers involving
continuous as well as discrete behavioural changes. They
refer to this extension as switched bond graphs.

2. Switching devices

All the elements will be represented as ports, for which
we adopt the convention of identifying currents as flow
variables f , and voltages as effort variables e. (No distinc-
tion is made at this point between inputs and outputs,
but later on in writting the dynamic equations we will
find convenient to do so.)

An ideal switch can be considered as a lossless element,
due to the fact that it can conduct current at zero voltage,
while it is closed, and hold a voltage at zero current, while
it is open. Both positions can be controlled by an input u,
which takes values from the discrete set M0,1N. This char-
acteristic allows us to connect or disconnect subsystems,
which is essential to move energy from one subsystem to
another. The behaviour of the ideal switch is described by
the (parametrized) graph of Fig. 1, which corresponds to
the following relations:

Mode 1: u"0Ne
SW

3R, f
SW

"0

Mode 2: u"1Nf
SW

3R, e
SW

"0H e
SW

f
SW

"0.

Note that such an ideal switch can conduct current in
both directions.

An ideal diode is a particular case of unidirectional
uncontrolled switch. Its input—output curve is depicted in
Fig. 2, which represents the following conditions:

Mode 1: e
D
40, f

D
"0

Mode 2: f
D
50, e

D
"0H e

D
f
D
"0.
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Fig. 1. Ideal switch input—output relation curve.

Fig. 2. Ideal diode input—output relation curve.

Inequalities of this type are referred in van der Schaft and
Schumacher (1998) as complementarity conditions giving
rise to a kind of hybrid system called complementarity
systems.

3. Modeling of continuous circuits

As pointed out in the introduction in our Hamiltonian
modeling approach the non-energetic elements such as
resistors, transformers, diodes and switches are first ex-
tracted from the circuit, thereby leaving an energy-
conserving LC circuit with ports corresponding to the
various extracted elements. This LC circuit with ports
can be represented in an intrinsic way as a Hamiltonian
system with port variables. The representation of the
original circuit is then obtained by terminating the ports
of this Hamiltonian system by the extracted non-ener-
getic elements.

3.1. LC-circuits with external ports

For the LC circuit, it can be shown (Maschke et al.,
1995) that an n—element LC circuit with m external ports,
and total energy

H(x)"1
2
xTQx,

where x3Rn is the state vector of the system, consisting
of independent (no algebraic constraints due to ‘‘excess”
elements appear) inductance fluxes /

Li
and capacitor

charges q
Ci

, and Q is a diagonal matrix containing the
circuit parameters 1/C

i
, 1/¸

i
, can always be written in the

form

xR "JQx#Gu, (1)

where u3Rm is the vector of external inputs to the sys-
tem, G3Rn]m is called the input matrix and J is an n]n
skew-symmetric matrix, which is called the structure
matrix. The matrices G and J are determined from
Kirchhoff’s laws.

It can be shown that the, so—called, “natural” outputs
of the generalized system (1) are written in the form

y"GTQx#Du, y3Rm, (2)

where D is a skew-symmetric matrix, called the through-
put matrix, that appears whenever there are static rela-
tions between the ports variables. The skew-symmetric
nature of these matrices stems from the fact that the
interconnections are all energy conserving. Furthermore,
it immediately follows from Eqs. (1) and (2) that along
the trajectories of the system,

d

dt
H"uTy

which expresses energy conservation. (Note that uTy is the
external power applied to the system.)

4. Modeling of power converters

4.1. Systems with ideal switches

Let us consider the ideal C[ uk circuit shown in Fig. 3.
This converter provides an output voltage that could be
less than or greater to the input voltage. The capacitor
C

2
is used to transfer energy from the source to the load.

The circuit operation can be divided in two modes, each
mode corresponding to the switch position u3M0, 1N.

Note that the ideal two positions switch presented in
Fig. 3 can be modeled as two ideal conjugated switches
as in Fig. 4, i.e., both are controlled by the same control
signal u but when one of them is closed the other is open.
Now using the concept of extracting the switches from
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Fig. 3. Ideal C[ uk circuit with a two positions switch.

Fig. 4. Ideal C[ uk circuit with two single ideal switches.
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the corresponding outputs for the source, resistance and
switches are given by,
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from the constitutive relation for resistances and Eq. (4),
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Analyzing now each one of the two positions of the
switch, u3M0, 1N, we have
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Note that even if the number of switches is 2, which
implies that there would appear 22 modes, we only have
two modes because they are clearly dependent.

From the derivations above, we can write,
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Summarizing, we obtain the dynamical equations
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In the general case the dynamical equations of an LCR
cicuit with switches will be of the form

xR "JQx#G
S
u
S
#G

R
u
R
#G

SW
u
SW

, (6)
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where u
SW

is the input vector of the extracted switches
(current or voltage in the external port), and y

SW
is the

corresponding outputs vector (voltage or current in the
external port, respectively), G

SW
is the associated input

matrix, and D is the throughput skew-symmetric matrix
which describes the interaction between switches, resist-
ances and sources.

If the ports assigned to the resistances are independent
from the ports of the switches, then the outputs in the
model can be written as

y
R
"GT

R
Qx#D

R
u
R
, (8)

y
SW

"GT
SW

Qx#D
SW

u
SW

, (9)

y
S
"GT

S
Qx#D

S
u
S
, (10)

where D
SW

is a throughput skew-symmetric matrix that
shows the interaction between the switches, and D

R
the

throughput skew-symmetric matrix describing the inter-
action between the resistances. Note that in this case
there is no interaction between resistances and switches.

In order to complete the description of the system we
should include the ideal switch characteristics showed in
the input—output curve in Fig. 1. Now, the output equa-
tions and the input—output curves can be written in
a single equation parametrized on the switch position
signal u. This is always possible because the matrix D

SW
in

Eq. (9) is invertible, which stems from the assumption that
the switches do not create algebraic constraints. After
substitution of these expressions into the dynamic equa-
tions we obtain a more compact model for the circuit
which will be parametrized by the switch position signal u.

4.2. Systems with switches and diodes

The ideal switch considered above is conducting in
both directions, in real converters this is not the case. To
capture this phenomenon we must include diodes in the
circuit. This allows us to describe behaviours like the
commonly encountered discontinuous mode.

We illustrate the procedure with the boost circuit with
clamping diode of Fig. 5. This circuit is employed to
obtain an output voltage greater than the voltage in the
input source, thus it is also commonly called step-up
converter. In this converter the inductor is the element
used to transfer energy from the input source to the
output resistance load.

As before, we obtain the model by extracting both,
diodes and switches, from the system and treating them
as external ports. This procedure leads to

C
qR
C

/Q
L
D"C

0 1

!1 0D C
qC
C
(L

L
D#C

0

1DE#C
1

0D(!f
R
)

#C
1 0

0 1D C
!f

SW
!e

D
D (11)

Fig. 5. Boost circuit with clamping diode.

with the corresponding outputs
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We have for the resistance,
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e
R

R
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.

Analyzing now each one of the two positions of the
switch, u3M0, 1N, we have
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Substituting this values in the last term of Eq. (11) we
obtain for each position,
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We can express both cases via the parametrized expres-
sion
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Substituting the above result in Eq. (11) yields
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For each case analyzed before (each switch position),
there exists two modes, depending if the diode is conduct-
ing or not, so we can distinguish four modes of operation,

Mode 1: u"0, e
D
"0

Nf
D
"(L

L
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qR
C
"(L

L
! qC

RC
,

/Q
L
"!qC

C
#E.
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"!qC

C
NG

qR
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"! qC
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,

/Q
L
"E.
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L
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C
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"! qC
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,
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L
"0.

Mode 4: u"1, e
D
"qC

C
"0
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D
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C
"0,

/Q
L
"E.

In order to know the mode where the system is located,
we should observe first the position of u, and then we
look at the states of the system. For u"0 we have
two modes, if the signal /

L
/¸'0 then the system is in

mode 1, and if /
L
/¸"0 then it’s in mode 3. For position

u"1, if q
C
/C'0 then the system is in mode 2 but if

q
C
/C"0 then it’s working in mode 4.
Once again, in the general case the equations take the

form
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(u)u

S
#G

R
(u)u
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with respective outputs defined as
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(u)

Qx#D(u)

u
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4.3. Systems with switches, diodes and transformers

To wrap up this section we consider the circuit in
Fig. 6 commonly referred in the literature as Flyback.
Note that this circuit is very similar to that of the Buck-
Boost circuit, with the characteristic that in this case the
output is electrically isolated from the source. This char-
acteristic allows the output to be positive, in contrast to
that of the normal Buck-Boost.

To show the flexibility of the method let us analyze
now the system for each position of the switch, and
extract from the model only the transformer terminals
and the diode.

Fig. 6. Flyback circuit.

Case u"1. The equations for this case are
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with the corresponding outputs
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where e
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"E is the voltage source and f
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ing current. For the resistance we have
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As we can see
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so, if we assume that the converter is in normal operation,
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case then, the model results in
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Case u"0. The equations are
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with corresponding outputs
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From the relations for the ideal transformer, we know
that

e
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, (26)

f
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"n f
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with this and the fact that
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Substituting these expressions in the model we obtain
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As we see, for u"0, there exist two different modes,
namely
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In order to decide in which mode the system is located,
we should observe the position of u, if it is u"0 then we
are in mode 1, but if u"1 then we should observe the
state /

L
/¸, if it is greater than zero, we are in mode 2, but

if is exactly zero, then we are in mode 3, which corres-
ponds to the commonly called discontinuous mode in
this circuit.

5. Conclusions

In this article we have shown how, using the generaliz-
ed Hamiltonian formalism of Maschke et al. (1995), and

van der Schaft and Maschke (1995), we can systemati-
cally derive mathematical models that describe the be-
haviour of a large class of switching power converters.
The methodology allows us to include often encountered
devices like diodes and transformers, hence allowing for
a more realistic description. The main feature of our
approach is that for all operating modes we consider the
same state variables, the same Hamiltonian, and the
same dissipation functions, hence the variable topo-
logy—under which power converters usually operate—is
captured in some structure matrices that are easily de-
fined by inspection.

The resulting system has mixed continuous/discrete
dynamics, sometimes refered in the literature as hybrid
systems. This is an emerging area still at the stage of
formalism definition. Power converters are, of course,
a (very) particular case of hybrid systems. Nevertheless,
the fact that they can exhibit very complex dynamic
behaviour, together with their unquestionable practical
importance, makes them a suitable paradigm to test and
validate these studies. On the other hand, the possibility
of incorporating physical intuition in the formulation
of a theoretical formalism can hardly be overestimated.
In summary, it is our belief that the theoretical com-
munity working in hybrid systems and the power
electronics practicioners can only benefit from this cross-
fertilization.
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