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Abstract

Properties of simple strategies for swinging up an inverted pendulum are discussed. It is shown that the behavior critically depends
on the ratio of the maximum acceleration of the pivot to the acceleration of gravity. A comparison of energy-based strategies with
minimum time strategy gives interesting insights into the robustness of minimum time solutions. ( 1999 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Inverted pendulums have been classic tools in the
control laboratories since the 1950s. They were originally
used to illustrate ideas in linear control such as stabiliz-
ation of unstable systems, see e.g. Schaefer and Cannon
(1967), Mori, Nishihara and Furuta (1976), Maletinsky,
Senning and Wiederkehr (1981), and Meier, Farwig and
Unbehauen (1990). Because of their nonlinear nature
pendulums have maintained their usefulness and they are
now used to illustrate many of the ideas emerging in the
"eld of nonlinear control. Typical examples are feedback
stabilization, variable structure control (Yamakita
& Furuta, 1992), passivity based control (Fradkov,
Guzenko, Hill & Pogromsky, 1995), back-stepping and
forwarding (KrsticH , Kanellakopoulos & KokotovicH ,
1994), nonlinear observers (Eker & As stroK m, 1996), fric-
tion compensation (Abelson, 1996), and nonlinear model
reduction. Pendulums have also been used to illustrate
task oriented control such as swinging up and catching
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the pendulum, see Furuta and Yamakita (1991), Furuta,
Yamakita and Kobayashi (1992), Wiklund, Kristenson
and As stroK m (1993), Yamakita, Nonaka and Furuta
(1993), Yamakita, Nonaka, Sugahara and Furuta (1994),
Spong (1995), Spong and Praly (1995), Chung and
Hauser (1995), Yamakita, Iwashiro, Sugahara and
Furuta (1995), Wei, Dayawansa and Levine (1995),
Borto! (1996), Lin, Saberi, Gutmann and Shamash
(1996), Fradkov and Pogromsky (1996), Fradkov,
Makarov, Shiriaev and Tomchina (1997), Lozano and
Fantoni (1998). Pendulums are also excellently suited to
illustrate hybrid systems (Guckenheimer, 1995; As stroK m,
1998) and control of chaotic systems (Shinbrot, Grebogi
& Wisdom, 1992).

In this paper we will investigate some properties of the
simple strategies for swinging up the pendulum based on
energy control. The position and the velocity of the pivot
are not considered in the paper. The main results is that
the global behavior of the swing up is completely charac-
terized by the ratio n of the maximum acceleration of the
pivot and the acceleration of gravity. For example, it is
shown that one swing is su$cient if n is larger than 4

3
. The

analysis also gives insight into the robustness of min-
imum time swing up in terms of energy overshoot.

The ideas of energy control can be generalized in many
di!erent ways. Spong (1995) and Chung and Hauser
(1995) have shown that it can be used to also control the
position of the pivot. An application to multiple pendu-
lums is sketched in the end of the paper. The ideas have
been applied to many di!erent laboratory experiments,
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see e.g. Iwashiro, Furuta and As stroK m (1996), Eker and
As stroK m (1996) and As stroK m, Furuta, Iwashiro and
Hoshino (1995).

2. Preliminaries

Consider a single pendulum. Let its mass be m and let
the moment of inertia with respect to the pivot point be J.
Furthermore, let l be the distance from the pivot to the
center of mass. The angle between the vertical and the
pendulum is h, where h is positive in the clockwise direc-
tion. The acceleration of gravity is g and the acceleration
of the pivot is u. The acceleration u is positive if it is in the
direction of the positive x-axis. The equation of motion
for the pendulum is

Jh$!mgl sin h#mul cos h"0. (1)

The system has two state variables, the angle h and the
rate of change of the angle hQ . It is natural to let the state
space be a cylinder. In this state space the system has two
equilibria corresponding to h"0, hQ "0, and h"p,
hQ "0. If the state space is considered as R2 there are
in"nitely many equilibria. There are many deeper di!er-
ences between the choice of states.

The model given by Eq. (1) is based on several assump-
tions: friction has been neglected and it has been assumed
that the pendulum is a rigid body. It has also been
assumed that there is no limitation on the velocity of
the pivot. The energy of the uncontrolled pendulum
(u"0) is

E"1
2
JhQ 2#mgl(cos h!1). (2)

It is de"ned to be zero when the pendulum is in the
upright position. The model given by Eq. (1) has four
parameters: the moment of inertia J, the mass m, the
length l, and the acceleration of gravity g. Introduce the
maximum acceleration of the pivot

u
.!9

"max DuD"ng. (3)

Introduce the normalized variables u
0
"Jmgl/Jt,

q"Jmgl/Jt"u
0
t and v"u/g. The equation of motion

(1) then becomes

d2h
dq2

!sin h#v cos h"0,

where DvD4n. The normalized total energy of the uncon-
trolled system (v"0) is

E
n
"

E

mgl
"

1

2A
dh
dqB

2
#cos h!1. (4)

The system is thus characterized by two parameters only,

the natural frequency for small oscillations u
0
"Jmgl/J

and the normalized maximum acceleration of the pendu-
lum n"u

.!9
/g. The model given by Eq. (1) is locally

Fig. 1. Geometric illustration of a simple swing-up strategy. The origin
of the coordinate system is called O.

controllable when hOp/2, i.e. for all states except when
the pendulum is horizontal.

2.1. A simple swing-up strategy

Before going into technicalities we will discuss a simple
strategy for swinging up the pendulum. Consider the
situation shown in Fig. 1 where the pendulum starts with
zero velocity at the point A. Let the pivot accelerate with
maximum acceleration ng to the right. The gravity "led
seen by an observer "xed to the pivot has the direction

OB where h"arctan n, and the magnitude gJ1#n2.
The pendulum then swings symmetrically around OB.
The velocity is zero when it reaches the point C where the
angle is u#2h

0
. The pendulum thus increases its swing

angle by 2h
0

for each reversal of the velocity. The simple
strategy we have described can be considered as a simple
way of pumping energy into the pendulum. In the next
sections we will elaborate on this simple idea.

3. Energy control

Many tasks can be accomplished by controlling the
energy of the pendulum instead of controlling its position
and velocity directly, see Wiklund et al. (1993). For
example one way to swing the pendulum to the upright
position is to give it an energy that corresponds to the
upright position. This corresponds to the trajectory

E"1
2
J(hQ )2#mgl(cosh!1)"0,

which passes through the unstable equilibrium at the
upright position. A di!erent strategy is used to catch
the pendulum as it approaches the equilibrium. Such
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a strategy can also catch the pendulum even if there is an
error in the energy control so that the constant energy
strategy does not pass through the desired equilibrium,
see As stroK m (1999).

The energy E of the uncontrolled pendulum is given by
Eq. (2). To perform energy control it is necessary to
understand how the energy is in#uenced by the acceler-
ation of the pivot. Computing the derivative of E with
respect to time we "nd

dE

dt
"JhQ h$!mglhQ sin h"!mulhQ cos h, (5)

where Eq. (1) has been used to obtain the last equality.
Eq. (5) implies that it is easy to control the energy. The
system is simply an integrator with varying gain. Con-
trollability is lost when the coe$cient of u in the right-
hand side of (5) vanishes. This occurs for hQ "0 or
h"$p/2, i.e., when the pendulum is horizontal or when
it reverses its velocity. Control action is most e!ective
when the angle h is 0 or p and the velocity is large. To
increase energy the acceleration of the pivot u should be
positive when the quantity hQ cos h is negative. A control
strategy is easily obtained by the Lyapunov method.
With the Lyapunov function <"(E!E

0
)2/2, and the

control law

u"k(E!E
0
)hQ cos h, (6)

we "nd that

d<

dt
"!mlk((E!E

0
)hQ cos h)2.

The Lyapunov function decreases as long as hQ O0 and
cos hO0. Since the pendulum cannot maintain a station-
ary position with h"$p/2 strategy (6) drives the en-
ergy towards its desired value E

0
. There are many other

control laws that accomplishes this. To change the en-
ergy as fast as possible the magnitude of the control
signal should be as large as possible. This is achieved with
the control law

u"ng sign((E!E
0
)hQ cos h), (7)

which drives the function <"DE!E
0
D to zero and E

towards E
0
. Control law (7) may result in chattering.

This is avoided with the control law

u"sat
ng
(k(E!E

0
)sign(hQ cos h)), (8)

where sat
ng

denotes a linear function which saturates at
ng. Strategy (8) behaves like linear controller (6) for small
errors and like strategy (7) for large errors. Notice that
the function sign is not de"ned when its argument is zero.
If the value is de"ned as zero the control signal will be
zero when the pendulum is at rest or when it is horizon-
tal. If the pendulum starts at rest in the downward
position strategies (7), (6) and (8) all give u"0 and the
pendulum will remain in the downward position.

The parameter n is crucial because it gives the max-
imum control signal and thus the maximum rate of
energy change, compare with Eq. (5). Parameter n drasti-
cally in#uences the behavior of the swing up as will be
shown later. Parameter k determines the region where
the strategy behaves linearly. For large values of k
strategy (8) is arbitrarily close to the strategy that gives
the maximum increase or decrease of the energy. In
practical experiments, the parameter is determined by the
noise levels on the measured signals.

4. Swing-up behaviors

We will now discuss strategies for bringing the pendu-
lum to rest in the upright position. The analysis will be
carried out for the strategy given by Eq. (7). The sign
function in Eq. (7) is de"ned to be #1 when the argu-
ment is zero. The energy of the pendulum given by Eq. (2)
is de"ned so that it is zero in the stable upright position
and !2mgl in the downward position. With these con-
ventions the acceleration is always positive when the
pendulum starts at rest in the downward position.

Energy control with E
0
"0 gives the pendulum the

desired energy. The motion approaches the manifold
where the energy is zero. This manifold contains the
desired equilibrium. With energy control the equilibrium
is an unstable saddle. It is necessary to use another
strategy to catch and stabilize the pendulum in the up-
right position. In Malmborg, Bernhardsson and As stroK m
(1996) it is shown how to design suitable hybrid
strategies. Before considering the details we will make a
taxonomy of the di!erent strategies. We will do this by
characterizing the gross behavior of the pendulum and
the control signal during swing-up. The number of
swings the pendulum makes before reaching the upright
position is used as the primary classi"er and the number
of switches of the control signal as a secondary classi"er.
It turns out that the gross behavior is entirely determined
by the maximum acceleration of the pivot ng. The behav-
ior during swing up is simple for large values of ng and
becomes more complicated with decreasing values of ng.

4.1. Single-swing double-switch behavior

There are situations where the pendulum swings in
such a way that the angle increases or decreases mono-
tonically. This is called the single-swing behavior. If the
available acceleration is su$ciently large, the pendulum
can be swung up simply by using the maximum acceler-
ation until the desired energy is obtained and then setting
acceleration to zero. With this strategy the control signal
switches from zero to its largest value and then back to
zero again. This motivates the name of the strategy.

To "nd the strategy we will consider a coordinate
system "xed to the pivot of the pendulum and regard the
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Fig. 2. Simulation of a single-swing double-switch strategy. The para-
meters are n"2.1, u

0
"1 and k"100.

force due to the acceleration of the pivot as an external
force. In this coordinate system the center of mass of the
pendulum moves along a circular path with radius l. It
follows from Eq. (8) that the desired energy must be
reached before the pendulum is horizontal.

The energy supplied to a mass when it is moved from
a to b by a force F is

=
ab
"P

b

a

F dx. (9)

To swing up the pendulum with only two switches of the
control signal the pendulum must have obtained the
required energy before the pendulum is horizontal. In
a coordinate system "xed to the pivot the center of mass
of the pendulum has moved the distance l when it be-
comes horizontal. The horizontal force is mng and its
energy has thus been increased by mngl. The energy
required to swing up the pendulum is 2mgl and we thus
"nd that the maximum acceleration must be at least 2g
for single-swing double-switch behavior. If the acceler-
ation is larger than 2g the acceleration will be switched
o! when the pendulum angle has changed by hH. The
center of the mass has moved the distance l sin hH and the
energy supplied to the pendulum is nmgl sin hH. Equating
this with 2mgl gives sin hH"2/n.

4.1.1. Example 1 * simulation of SSDS behavior
The single-swing double-switch strategy is illustrated

in Fig. 2 which shows the angle, the normalized energy,
and the control signal. The simulation is made using the
normalized model with u

0
"1 and the control law given

by Eq. (8) with n"2.1 and k"100. With this value of
k the behavior is very close to a pure switching strategy.
Notice that it is required to have n52 to have the
single-swing double switch behavior for pure switching.
Slightly larger values of n are required with the control

law (8). For the simulations in Fig. 2 we used n"2.1. For
a pure switching strategy (7) the control signal is switched
to zero when the pendulum is 17.83 below the horizontal
line.

4.2. Single-swing triple-switch behavior

To obtain the single-swing double-switch behavior the
pendulum must be given su$cient energy before it
reaches the horizontal position. In the previous section
we found that the condition is n'2. It is possible to have
single-swing behavior for smaller values of n but the
control signal must then switch three times because the
acceleration must be reversed when the pendulum is
horizontal. Since the pendulum must reach the horizon-
tal in one swing we must still require that n'1. To "nd
out how much larger it has to be we will consider the
situation illustrated in Fig. 3. The pendulum starts at rest
at position A. The pivot is then accelerated ng in the
direction of the positive x-axis. An observer "xed to the
pivot sees a gravitational "eld in the direction OB with

the strength w"gJ1#n2 and the pendulum swings
clockwise. When the pendulum moves from A to D it
loses the potential energy mwa, which is converted to
kinetic energy. To supply energy as fast as possible to the
pendulum it follows from Eq. (5) that acceleration should
be reversed when the pendulum reaches the point D. An
observer in a coordinate frame "xed to the pivot then
sees a gravitational "eld with strength w in the direction
OC. The kinetic energy is continuous at the switch but
the potential energy is discontinuous. The pendulum will
swing towards the upright position if its kinetic energy is
so large that it reaches the point E. The kinetic energy at
F must thus be at least mbw. The condition for this is

a5b. (10)

It follows from Fig. 3 that a"sin h
0
!cos h

0
and

b"1!sin h
0
. Condition (10) then becomes

2 sin h
0
51#cos h

0
. (11)

Introducing n"tan h
0

and using equality in Eq. (11)
gives

2n"1#J1#n2.

This equation has the solution n"4
3
. To have a single-

swing triple-switch behavior the acceleration of the pivot
must thus be at least 4g/3. If n"4

3
the pivot accelerates to

the right until the pendulum reaches the horizontal. The
pivot is then accelerated to the left until the desired
energy is obtained. This happens when the pendulum is
303 from the vertical and the acceleration is then set to
zero.

If n is greater than 4
3
the acceleration of the pivot can be

set to zero before the pendulum reaches the point E. Let
hH be the angle of the pendulum when the acceleration of
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Fig. 3. Diagram used to explain the single-swing, triple-switch behav-
ior. The origin of the coordinate system is called O.

Fig. 4. Simulation of the single-swing triple-switch control. The para-
meters are n"1.5, u

0
"1 and k"100.

the pivot is set to zero. In a coordinate system "xed to the
pivot the center of mass has then traveled the distance
l(2!sin hH) in the horizontal direction. The force in the
horizontal direction is mng. It follows from Eq. (9) that
the energy supplied to the pendulum is mngl(2!sin hH).
Equating this with 2mgl gives sin hH"2(1!1/n).

4.2.1. Example 2 * simulation of SSTS behavior
The single-swing triple-switch control is illustrated by

the simulation shown in Fig. 4. The swing-up is executed
by simulating the normalized model with u

0
"1. The

control strategy is given by Eq. (8) with parameters
n"1.5, and k"100. The strategy is close to a pure

Fig. 5. Figure used to derive the conditions for the double-swing
quadruple-switch behavior. The origin of the coordinate system is
called O.

switching strategy. The maximum control signal is ap-
plied initially. Energy increases but it has not reached the
desired level when the pendulum is horizontal. To
continue to supply energy to the pendulum the control
signal is then reversed. The control signal is then set to
zero when the desired energy is obtained.

4.3. Multi-swing behavior

If the maximum acceleration is smaller than 4g/3 it is
necessary to swing the pendulum several times before it
reaches the upright position. Let us "rst consider the
conditions for bringing the pendulum up in two swings
illustrated in Fig. 5, which shows a coordinate system
"xed to the pivot. An observer in this coordinate system

sees a gravity "eld with strength w"gJ1#n2. The "eld
has direction OB if the acceleration of the pivot is posi-
tive, and the direction OC when it is negative.

Assume that the pendulum starts at rest at A and that
the pivot "rst accelerates to the right. The pendulum then
swings from A to D. Acceleration is reversed when the
pendulum reaches D and the pendulum then swings to
the right around the line OD. The acceleration of the
pivot is switched to the right when the pendulum reaches
the horizontal position at E. To reach the upright posi-
tion it is necessary that the pendulum can reach the point
F without additional reversal of the acceleration. This is
possible if its energy at E is su$ciently large to bring it up
to point F. Consider the change of energy of the pendu-
lum when it moves from rest at D to E. When it has
moved to E it has lost the potential energy mwa, which
has been transferred to kinetic energy. This kinetic
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energy must be su$ciently large to move the pendulum
to F. This energy required for this is mwb, and we
get the condition a5b. It follows from Fig. 5
that a"sin h

0
!cos 3h

0
and b"1!sin h

0
. Hence,

sin h
0
!cos 3h

0
51!sin h

0
, which implies that

2sin h
0
51#cos 3h

0
. (12)

4.4. The general case

It is easy to extend the argument to cases where more
swings are required. For example in a strategy with three
swings the pendulum "rst swings 2h

0
in one direction.

Next time it swings 6h
0

in the other direction, and the
condition to reach the upright position becomes
2 sin h

0
51#cos 5h

0
. The corresponding equation for

the case of k swings is

2 sin h
0
51#cos(2k!1)h

0
. (13)

Solving this equation numerically we obtain the follow-
ing relation between the acceleration of the pivot n and
the number of swings k:

n 1.333 0.577 0.388 0.296 0.241 0.128

k 1 2 3 4 5 10.

For small values of n the relation between n and k is
approximately given by n+p/(2k!1). Single swing be-
havior requires that n'4

3
, double swing behavior that

n'0.577. The number of swings required increases with
decreasing n.

4.4.1. Example 3 * simulation of xve swing behavior
When n"0.25 it follows from the table that "ve

swings are required to bring the pendulum to the upright
position. This is illustrated in the simulation shown in
Fig. 6. The process is simulated with the normalized
equations with u

0
"1. The control strategy given by Eq.

(8) is used with n"0.25, and k"100.

4.5. Minimum time strategies

It follows from Pontryagins maximum principle that
the minimum time strategies for swinging up the pendu-
lum are of bang}bang type. It can be shown that the
strategies have a nice interpretation as energy control.
They will inject energy into the pendulum at maximum
rate and then remove energy at maximum rate in such
a way that the energy corresponds to the equilibrium
energy when the upright position is reached. For small
values of n the minimum time strategies give control
signals that initially are identical with the strategies
based on energy control. The "nal part of the control
signals are, however, di!erent because the strategies we
have described will set the control signal to zero when the

Fig. 6. Simulation of energy control for the case n"0.25, u
0
"1 and

k"100. Five swings are required in this case.

desired energy has been obtained. The strategies we have
given can thus be described as strategies where there is no
overshoot in the energy.

Consider for example the case n'2, where a one-
swing strategy can be used. To swing up the pendulum its
energy must be increased with 2mgl. This can be achieved
by a single-swing double-switch strategy illustrated in
Fig. 2. The maximum acceleration is used until the pen-
dulum has moved the angle arctan 2/n. The energy can be
increased further by continuing the acceleration, until the
pendulum has reached the horizontal position. It follows
from Eq. (5) that the acceleration should then be rever-
sed. By reversing the acceleration at a proper position the
energy can then be reduced so that it reaches the desired
value when the pendulum is horizontal. The energy is
increased until it reaches a maximum value and it is then
reduced at the maximum rate.

Let hH be the angle where the pendulum has its max-
imum energy. In a coordinate system "xed to the pivot
the center of mass of the pendulum has traveled the
distance l(2!sin hH) in the horizontal direction, when
the energy is maximum. Since the horizontal force is mng
it follows from Eq. (9) that the energy supplied to the
pendulum is nmgl(2!sin hH). To reduce the energy to
zero when the pendulum is upright maximum deceler-
ation is used for the distance l sin hH. This reduced the
energy by nmgl sin hH. Since the energy required to swing
up the pendulum is 2mgl we get

nmgl(2!sin hH)!nmgl sin hH"2mgl,

which implies that hH"arcsin(1!1/n). The maximum
energy is

E
.!9

"nmgl sin hH"(n!1)mgl. (14)

For n"2 the maximum energy is mgl. The `energy
overshoota is 50% for n"2 and it increases rapidly
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Fig. 7. A comparison of energy control with minimum time control for
n"2.1 (left) and n"5 (right).

with n. This explains why the minimum time strategies
are sensitive for large n. Much energy is pumped into
the system and dissipated as the pendulum approaches
the upright position. Minor errors can give a substantial
excess or de"cit in energy. The energy control gives
a much gentler control.

Fig. 7 compares the minimum time strategies and the
energy control strategies. The "gure also shows that the
di!erence in the time to reach the upright position in-
creases with increasing n but the di!erences between
n"2.1 and 5 are not very large. It also shows that the
minimum time strategy has an overshoot in the energy.
With n"5 it follows from Eq. (14) that the maximum
energy is 4mgl which is also visible in the simulation. The
energy overshoot is more than 200%.

Several di!erent strategies are often combined to
swing-up the pendulum. A catching strategy is used when
the pendulum is close to the upright position. The energy
overshoot can actually be used as a robustness measure.
A good practical approach is to use an energy control
strategy with an energy excess of 10}20% and catch the
pendulum when it is close to the upright position. Such
a strategy is simple and quite robust to modeling errors.
The idea has been used in many di!erent laboratory
experiments, see Iwashiro et al. (1996) and Eker and
As stroK m (1996)

5. Generalizations

The energy control for a single pendulum is very
simple. It leads to a "rst-order system described by an
integrator whose gain depends on the angle and its rate

of change. The only di$culty is that the gain may vanish.
This will only happen at isolated time instants because
the time variation of the gain is generated by the motion
of the pendulum. The ideas can be extended to control of
more complicated con"gurations with rotating and mul-
tiple pendulums. In this section we will brie#y discuss
two generalizations.

5.1. General dynamical system

To illustrate the ideas we consider a general mechan-
ical system described by the equation

M(q,q5 )qK#C(q, q5 )q5 #
L;(q)

Lq
"¹, (15)

where q is a vector of generalized coordinates, M(q, q5 ) is
the inertia matrix, C(q, q5 ) the damping matrix, ;(q) the
potential energy and ¹ the external control torques, see
Marsden (1992). The total energy is

E"1
2
q5 @M(q, q5 )q5 #;(q). (16)

The time derivative of E is given by

dE

dt
"

1

2
q5 @(MQ (q, q5 )!2C(q, q5 ))q5 #¹@q5 . (17)

In Spong and Vidyasagar (1989) it is shown that the
matrix MQ (q, q5 )!2C(q, q5 ) is skew symmetric. It thus
follows that

dE

dt
"¹@q5 .

The control torques depend on the control signal u and
we thus have a problem of the type we have discussed
previously. The problem is particularly simple if ¹ is
linear or a$ne in the control variable.

5.2. Two pendulums

To illustrate the power of the method we consider two
pendulums on a cart. The equations of motion for such
a system are

dE
1

dt
"!m

1
ul

1
hQ
1
cos h

1
,

(18)
dE

2
dt

"!m
2
ul

2
hQ
2
cos h

2
.

A control strategy that drives E
1

and E
2

to zero can be
obtained from the Lyapunov function <"(E2

1
#E2

2
)/2.

The derivative of this function is

d<

dt
"!Gu,

where

G"m
1
l
1
E
1
hQ
1
cos h

1
#m

2
l
2
E
2
hQ
2
cos h

2
.
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Fig. 8. Simulation of the strategy for swinging up two pendulums on
the same cart.

Provided that G is di!erent from zero the control law

u"sat
ng

kG, (19)

drives the Lyapunov function to zero. This implies that
both pendulums will obtain their appropriate energies.
Control law (19) will not work if the system is not
controllable. This happens when the pendulums are iden-
tical. It is then possible to have a motion with
h
1
#h

2
"0 which makes G equal to zero. A detailed

discussion of the properties of the strategy is outside the
scope of the paper.

5.2.1. Example 4* swinging up two pendulums on a cart
Fig. 8 illustrates swing-up of two pendulums with

u
01
"1 and u

02
"2. The control strategy is given by

Eq. (19) with parameters n"1.5 and k"20. Notice that
the control strategy brings the energies of both pendu-
lums to their desired values. Also notice that the pendu-
lums approach the upright position from di!erent
directions. The strategy swings up the pendulums much
faster than the strategy proposed in Borto! (1996).

6. Conclusion

Energy control is a convenient way to swing up a pen-
dulum. The behavior of such systems depend critically on
one parameter, the maximum acceleration of the pivot. If
the acceleration is su$ciently large, u'2g, the pendu-
lum can be brought to the upright position with one
swing and two switches of the control signal. The control
signal uses its maximum value until the desired energy is
obtained and is then set to zero. If 4g/3(u(2g the
pendulum can still be brought up with one swing, but the
control signal now makes three switches. For lower ac-
celerations the pendulum has to swing several times. The
case of swinging up a simple pendulum has been treated

in detail. The method has, however, also been applied to
many other problems, for example swinging up of
two pendulums on a cart and swinging up a double
pendulum.
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