BNl ORCA - Online Research @ Cardiff

PRIFYSGOL

CARDYB

This is an Open Access document downloaded from ORCA, Cardiff University's
institutional repository:https://orca.cardiff.ac.uk/id/eprint/1811/

This is the author’s version of a work that was submitted to / accepted for
publication.

Citation for final published version:

Martin, Ralph Robert, Benko, P. and Varady, T.2001. Algorithms for Reverse
Engineering Boundary Representation Models. Computer-Aided Design 33 (11), pp.
839-851.10.1016/S0010-4485(01)00100-2

Publishers page:

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting
and page numbers may not be reflected in this version. For the definitive version of
this publication, please refer to the published source. You are advised to consult the
publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for
publications made available in ORCA are retained by the copyright holders.

Algorithms for Reverse Engineering
Boundary Representation Models

P4l Benkd, Ralph R. Martin (*), Tamas Varady,
Computer and Automation Research Institute, Budapest
(*) University of Wales, Cardiff
e-mail: benko@sztaki.hu

Abstract

A procedure for reconstructing solid models of conventional engineering objects from a multiple-view,
3D point cloud is described. (Conventional means bounded by simple analytical surfaces, swept surfaces
and blends.) Emphasis is put on producing accurate and topologically consistent boundary represen-
tation models, ready to be used in computer aided design and manufacture. The basic phases of our
approach to reverse engineering are summarised, and related computational difficulties are analysed.

Four key algorithmic components are presented in more detail: efficiently segmenting point data into
regions; creating translational and rotational surfaces with smooth, constrained profiles; creating the
topology of B-rep models; and finally adding blends. The application of these algorithms in an inte-
grated system is illustrated by means of various examples, including a well-known reverse engineering
benchmark.

1. Introduction

Reconstructing objects has been a central problem in computer vision for a long time [7, 8, 22].
Technological advances in laser scanning now make it possible to produce multiple 3D point clouds
with high density and high accuracy, and in this way it has become a realistic expectation to generate
accurate models with correct topology which can be directly utilised by CAD/CAM systems. There is a
wide diversity of reverse engineering methods for converting measured data into geometric models [38].
Methods differ in the quality of measurements, the quantity of points, the geometric characteristics of
the objects in question, the amount of user interaction required, and the final representation used for the
model.

About twenty years ago, the two main areas of geometric modelling development separately addressed
(i) geometrically demanding free-form surface models and (ii) topologically complex solid models with
simple surface elements. These techniques were eventually integrated into commercial CAD/CAM sys-
tems. The current situation in reverse engineering is somewhat similar. For free-form shapes, the current
state-of-the-art relies on techniques in which the user manually segments point clouds. Segmentation is

AR,
e T S
""'%I#Awﬂ“?)"%

R
é“‘i{gaﬁf*ﬂ‘“"‘

A)
i RS
I
e

%
3
N
)

pd

&
FAVAY
AR
A Pyt
A
T

e e

o
‘]
Y

iy
S

ORI

AL A i

RStk e
s,

o

i,
S

L7
e
7

252
0y
&

ey

VA

Py

1

=7 v il
A.,_,%::wgwawmuvamv‘ %ﬂ%& -
e, e

s
;

W
e
Vi
A7
o
A
1
5
S

i
"

G

LEFT MIDDLE RIGHT

Figure 1. Triangulated and decimated data points

followed by fitting high-quality surfaces [24, 25] and the result is typically a collection of trimmed para-
metric surface patches. For conventional engineering objects, (i.e. those are bounded mainly by simple
analytic surfaces, swept surfaces and blends), the major efforts are directed towards automatic methods
of building accurate and consistent CAD models with little or no user interaction. These approaches rely
on various assumptions concerning the regularity of the objects which make it possible to automate the
process.

Although there are many valuable contributions in computer graphics and computer vision concerning
object reconstruction, the majority of these cannot directly be applied to building CAD/CAM models for
mechanical engineering. Some produce fair, triangulated, approximations suitable for graphics (see e.g.
Hoppe et al. [23]), while others represent the boundary of objects using special surface representations
such as A-patches or superquadrics (see for example [2, 31]). Such representations are of limited use as
commercial CAD/CAM systems must use standard representations for interoperability.

Approaches exist which use standard free-form surfaces, such as B-splines, to reconstruct conven-
tional engineering objects — see [13, 17, 26, 37]. Two difficulties arise. If multiple surfaces are used,
it is hard to find good segmenting curves, and to assure C'° or higher continuity between the adjacent
surfaces. On the other hand, fitting a single B-spline surface to the whole data cannot properly repro-
duce the piecewise nature of the surface with appropriate curvature distribution. Even if these limitations
could be overcome, another problem remains. Representing the separate analytical surfaces of the orig-
inal design is important in order to be able to edit the model in a meaningful way, to be able to plan
correct manufacturing operations, and for other related purposes. A free-form model does not provide
this information.

The above arguments justify dedicated approaches for conventional engineering objects, such as the
well-known benchmark in Figure 1, which was put forward a few years ago by Hoschek [24]. From
a functional point of view, this part is the union of three components. LEFT has rotational symmetry,
MIDDLE is a part of a blended cone, and RIGHT is bounded by two planar faces and a cone, as well as

a sequence of extruded side faces. All intersection edges have been blended by constant radius rolling
ball blends. Clearly, representing this shape with a single B-spline surface would be inadequate, even if
possible.

We now state the problem we wish to solve. We assume an ungridded, dense set of point data is
available, formed by merging multiple views. We assume the data comes from a conventional object
bounded mainly by relatively large primary surfaces of simple analytic surface type (planes, natural
quadrics and tori), which must be accurately represented as such, not as B-splines. Translationally and
rotationally swept surfaces must be recognised and represented by means of swept profiles. Fixed-radius
blends must also be reconstructed as small transition surfaces which smoothly join the primary surfaces.
If two adjacent faces of the original object are tangent continuous, the reconstructed model should also
guarantee smoothness. Since surface fitting to measured data sets is inherently inaccurate, we must
recognise appropriate engineering constraints such as perpendicularity, parallelism, and concentricity,
and enforce them on the model either at the fitting stage or as a postprocess.

In comparison, the majority of previous reverse engineering approaches only considered single view
range data, and only concerned itself with simple surfaces —see for example [10, 16, 21, 34].

In the remainder of the paper, in Section 2, we outline our automatic reverse engineering approach
for conventional objects, surveying relevant ideas and identifying the successive computational steps.
Then, in Sections 3—6, four particular algorithmic components are chosen and discussed in more detail:
segmenting point clouds, reconstructing translational and rotational surfaces, building the topology of
B-rep models, and adding blends.

2. Basic phases of reconstructing solid models

Our methodology for the reverse engineering procedure can be decomposed into the following steps:

1. Data capture
2. Merging multiple point clouds
3. Triangulation/decimation
4. Segmentation
5. Surface fitting for simple surfaces
6. Reconstructing translational and rotational surfaces
7. Reconstructing smooth multiple regions
8. Building an adjacency graph
9. Constraint identification, constrained fitting
10. B-rep model creation, further beautification

11. Blend reconstruction

For data capture, typically laser scanners are used, which produce measured data sets with high
density and reasonable accuracy, although outliers may occur, particularly near silhouette curves and
concave edges. There are missing portions due to occlusion in single views, meaning that discontinuities
in depth occur, and this may hold even for merged point clouds too.

A single view represents only a part of an object. In order to get a complete (or at least a multiple-view
model), point clouds need to be merged, i.e. appropriate transformations need to be found by means of
which the different data sets can be represented in a common coordinate system. This is often called
registration, which is an important problem in computer vision [5, 12]. Iterative closest point methods
match nearest points in several datasets. Such methods tend to be slow, and require relatively good initial
estimates of the registration. Some progress has been made towards overcoming these difficulties [30].
An efficient hierarchical method can be used based on computing characteristic curves in the point data
and then special points on those curves. Registration is first done using the points, then refined using the
curves and finally made accurate using the whole point set. This approach is even effective for obtaining
an initial registration. Secondly, iterative reciprocal closest point methods are more robust when there is
relatively little overlap between the data sets.

Other registration methods use calibrating balls or special markers to find the correspondence between
the individual point sets. High-precision rotary tables are often used, since transformations can robustly
be computed; however, in this case the bottom face and other downward pointing faces are not visible.

In fact, there is more than one approach for producing models from multiple views. If it is done
by merging point clouds as described above, a vast data structure is obtained with large, united point
regions, which may suffer from registration inaccuracies and uneven, irregular point distributions. The
alternative is to create single view, partial B-rep models: in this case we have to deal with discontinuities,
but simpler models are obtained. However, the single view models must be consistent and accurate to
be able to combine them using Boolean operations to produce a final model. The pros and cons of point
cloud merging and combining single-view models are discussed in detail in [3].

Even a single point cloud may contain at least 10* and perhaps as many as 10® data points. In order
to determine the surface of an object, first the neighbourhoods and connectivity of the data points must
be computed. This is a difficult problem, particularly if we have a merged data set with noise, uneven
point distributions, discontinuities, holes and disjoint parts. There are various techniques to build a
consistent triangulation, which differ in their basic assumptions, their generality and their computational
efficiency — see for example [2, 14, 23]. Methods based on variants of a-shapes are popular but require
careful implementation and the proper selection of parameters to achieve successful results [18]. As
an alternative, we use an efficient method suggested by Koés [28], in which locally created Delaunay
triangulations are merged in a consistent manner.

For efficiency reasons, the original triangulation often needs to be decimated, forming a so-called car-
rier surface. Decimation needs to be an adaptive process taking into account the local surface geometry;
it is a widely studied problem to control the amount of data displayed in computer graphics [20]. The
carrier surface reflects the original topology of the point cloud; each data point is either a vertex of the
triangulation or associated with the closest triangle of the carrier. The carrier surface plays an important
role in speeding up further computations.

One of the most crucial elements of reverse engineering is segmentation, i.e. identifying point regions
which are disjoint subsets and mark out connected portions within the whole point cloud sharing some
common property. These are considered to be pre-images of single faces (or possibly multiple faces) of
the B-rep model. For each face a single surface is fitted to the related points within a given tolerance.

Various methods for fitting simple analytic surfaces have been described in [8, 15, 16, 19, 32, 40]. We
believe that the use of geometric, or geometrically faithful, distances is more satisfactory for surface
reconstruction than algebraic distances.

In general, segmentation is a complex process [38]. Often, iterative region growing techniques are
applied [7, 31, 37]. While it is possible to apply the region growing paradigm to segment conventional
engineering objects [33], in this paper we prefer another solution called direct segmentation [40]. This
method is an efficient, non-iterative approach, which satisfies the requirements we set for the accurate
reconstruction of solid models.

Direct segmentation is based on the fact that it is possible to compute local characteristic quantities
(e.g. normal direction) within the interior of faces. If these quantities are consistent within a neighbour-
hood, this implies that we are in the interior of some region. If they change rapidly or fluctuate, we may
deduce that we are in between two or more regions. Based on this principle we can segment the point
cloud. We discard points in the neighbourhood of unstable estimates and use only the stable data points
for surface fitting. As described in Section 3, direct segmentation first splits the object into smaller re-
gions along sharp edges and small radius blends. For each region an attempt is made to approximate
the points by a single analytic surface. The regions for which this cannot be done are considered mul-
tiple, smooth regions and need to be further subdivided. We first search for translational or rotational
symmetries, and if either is found we determine a smooth, sweeping profile (see Section 4) and split
the region accordingly. If further multiple, smooth regions remain, we need more sophisticated segmen-
tation methods. These regions contain surface elements with tangential contact and surfaces must be
simultaneously fitted with smoothness constraints.

Direct segmentation produces disjoint regions, each of which is approximated by a simple analytic
or swept surface. During this process we have also identified sharp edges, which can be computed
by surface-surface intersection, and smooth edges where surface-surface intersection must not be used.
Smooth edges are directly computed by means of constrained fitting.

Based on the segmented regions, a so-called region adjacency graph is built, which reflects the com-
plete topology and serves as the basis for building the final B-rep model, as discussed in Section 5. The
actual construction of B-rep models is generally performed using a solid modelling kernel. We prefer to
build so-called stitched models, where the individual faces are glued together along their common edges,
and so a composite shell object is formed gradually. Alternatively, as mentioned earlier, it is possible to
produce volumetric models by combining prismatic objects constructed from single views [3].

Smooth edges which are the boundaries of blending surfaces occur in a different way. Blends are
temporarily ignored during segmentation and fitting, and are reconstructed only in the very last phase
of model building [27]. Blending surfaces are constructed to be tangential to the primary surfaces: see
Section 6.

A crucial step is the beautification of the final model. This can take place both before and after B-rep
model building. In the presence of noisy measured data, the generated model is likely to be imperfect.
The exclusion of very small edges and facets, filling of little holes, ensuring orthogonality, parallelism,
concentricity, etc. are all important requirements for real-life CAD/CAM models. The latter types of
beautification can also be solved by constrained fitting. As discussed earlier, for composite regions,
smoothness constraints are added and the surface elements are simultaneously fitted. Similarly, for
example, if two planes are found to be nearly perpendicular, the points of the two related surfaces can be
refitted under a perpendicularity constraint, which will lead to a better model. There are many papers on
constrained geometric modelling [9], but its relevance to reverse engineering has been recognised only

recently [4, 41].
Having concluded the overview of the reconstruction process, we continue by providing more details
of particular algorithmic phases within the above general framework.

3. Direct segmentation

In this section we describe the basic concept of direct segmentation, but lack of space prevents us
from giving full details, for which see [4, 40]. Our purpose is to subdivide the point data into disjoint
subsets, which are smooth and to which one (or more) surfaces can locally be fitted. As noted earlier,
the fundamental structure of the object is determined by primary surfaces. Along the intersection of two
primary surfaces there is either a sharp edge or a small-radius blend. Alternatively the surfaces may be
smoothly connected.

In the first stage of direct segmentation we attempt to separate regions by removing triangles which
are in the vicinity of sharp edges or small blends. Thus, disjoint regions are obtained, which can be
classified either as simple, i.e. which can be approximated by a single analytic surface, or as multiple,
which need to be further subdivided by smooth edges.

An important feature of the current algorithm is that, for each data point, we estimate a surface normal
vector and a value which characterises the planarity of the point neighbourhood. Our experience shows
that the best normal vector estimates are based on fitting a second order algebraic surface to surrounding
points in the neighbourhood. This means that first we translate all the points in the neighbourhood so that
the given point p goes to the origin (the image point set is denoted by P’), then we look for a symmetric
matrix A and unit vector d which minimise

> (XTAX + (d, x>)2 :

xeP!

This leads to a three dimensional eigenvalue problem and the normal we seek is just d. (-, -) denotes the
scalar product of two vectors.

The planarity is characterised by taking a point and the related least-square plane fitted to its neigh-
bours, and computing the normalised fitting errors over a small disk: for relatively smooth primary
surfaces this value will be small, while for highly curved parts this value will be greater. There are other
alternatives to identify highly curved parts using the triangulation; for example, the angular variation of
normals was suggested in [26], or curvature estimates can be computed [1].

After choosing an appropriate threshold value, planarity filtering will remove those triangles which
are classified as belonging to highly curved regions of the point cloud. For example, in Figure 2, we
have filtered out the small blends between the components LEFT, MIDDLE and RIGHT, and the small
blends between the side faces and the top and bottom planar faces. The larger blends contained in the
rotational and translational regions were kept. We obtained two smooth, multiple regions, as well as
many simple regions.

Note that our example object is a variant of the original benchmark of Hoschek, which did not contain
sufficiently dense data for our purposes, making it impossible to reconstruct blends reliably. Our variant
was redesigned and sampled in such a way that we can demonstrate important features of our algorithm.

Given a region, we do not immediately know whether it is simple or multiple. A sequence of hy-
potheses is tested to decide whether the region’s point set can be approximated by some simple surface.

Figure 2. Planarity filtering — simple and Figure 3. Segmented object, simple transla-
smooth, multiple regions tional and rotational surfaces detected

If an hypothesis fails, we proceed to try more complex surface types. Finally, multiple regions are de-
composed. We always proceed in order of increasing complexity. Fortunately, simpler surfaces (i) occur
more frequently in mechanical engineering, and (ii) can be detected in a more reliable and efficient
manner. The decision procedure thus follows the simplified scheme below:

1. Test whether the region is a plane or a sphere; if so: determine parameters. OTHERWISE
2. Test for translational symmetry; if so:

(a) Test whether it is a cylinder; if so: determine parameters, ELSE

(b) Test whether the sweeping contour can be decomposed into a smooth sequence of straight
line segments and circular arcs; if so: multiple region, ELSE

(¢) Compute a free-form profile. OTHERWISE
3. Test whether it is a cone; if so: determine parameters. OTHERWISE
4. Test for rotational symmetry; if so:

(a) Test, whether it is a torus, if so: determine parameters, ELSE

(b) Test whether the sweeping contour can be decomposed into a smooth sequence of straight
line segments and circular arcs if so: multiple region, ELSE

(¢) Compute a free-form profile. OTHERWISE
5. Decompose non-regular, multiple smooth regions

(a) Detect planes
(b) Detect translational subregions

(c) Search for independent axes of rotation, and for each axis detect rotational subregions

(For 5b and 5c proceed as in 2 and 4.)

The above tests are based on consecutive least-squares procedures for the geometric parameters of
these simple surfaces — see [40]. The scheme shows the significance of detecting translational and
rotational symmetries, which are based on the surface normal estimates associated with each point.

We will give details of certain key steps shortly, but in the meantime two minor points are worthy of
note in the above procedure. Firstly, consider cone fitting. True least-squares cone fitting, of course,
leads to a nonlinear system of equations. We may detect a cone as a rotational surface with a linear
profile, but our experiments show that estimating the apex by a least-squares fit using the tangent planes
at each data point, and computing an least-squares fit plane for the normal vectors on the Gaussian sphere
provides more reliable results. This process gives the axis direction and the half angle of the cone.

Secondly, consider general free-form surfaces. The last paragraph of the decision hierarchy above
should include an additional item (d), to extend the concept to include free-form surfaces too. Here our
hypothesis would be that for all isolated regions which have not been confirmed earlier to be a simple
analytic or swept surface with either straight-circular or free-form profile, there exists a B-spline surface
which can well approximate the remaining data points. Of course, in these cases special care is required
to enforce at least numerical positional and tangential continuity with the surrounding analytic geometric
elements.

3.1. Determining the Translational Direction

We can estimate the translational direction by means of a least-squares fit. The normal vectors of a
translational surface must be perpendicular to a common translational direction. We may minimise the
deviation of these angles from 7 /2, but the simplest method is to minimise the cosine of the angles,
which is just the scalar product of the given normal vectors and the unknown direction. The translational
characteristic of a shape can be visualised with the help of the Gaussian sphere: the normal vectors
of a translational surface lie on a great circle, that is, in a plane which goes through the origin and is
perpendicular to the translational direction.

Formally: if the estimated normal vectors of the region are denoted by {n; }, then we look for the unit
vector d which minimises

Z(ni, d>2

This is a well-known three dimensional eigenvalue problem.
3.2. Determining the Rotational Axis

The normal lines of a rotational surface must intersect a common axis (in a projective sense, i.e. the
lines may also be parallel to the axis). The first problem is how to measure the error of a noisy normal
line. Using the distance between the axis and the normal line has two problems: firstly, a normal line
parallel to the axis does not have zero error; secondly, the error in a line near to the axis is penalised less
than a line farther from the axis with the same angular deviation. Another idea is to use the angle between
the normal line, and the plane spanned by the axis and the data point corresponding to the normal line.
Now we do not face the first problem as above, but have the opposite of the second problem: the noise in
a data point near to the axis is penalised more than in a further point. Using the product of the distance
and the sine of the angle defined above, however, eliminates the problems (and has the advantage of

being easy to compute as will be shown below). This measure was suggested by Pottmann and Randrup
in [36].

We cannot go into details here, and just the basic concepts are presented. Lines are represented using
Pliicker coordinates. A line with direction d; through point p; is represented by a sextuple (d;, d; X p;)
(the latter term, the momentum vector is denoted by d;. Note that it is independent of the choice of p;
on the line). The axis a is also given in the same form as (a, a).

Using this formalism, our error function is linear in the coordinates of the unknown axis: we minimise

> [(di, a) + (d;, a)]*.

We solve the above least squares expression for (a,a) under the constraints ||a|| = 1, (a,a) = 0
(which are needed for normalisation and for the 6 numbers to be correct Pliicker coordinates). Initially,
the second constraint is omitted, and the remaining system (which is a generalised eigenvalue problem)
is solved. Then the full system is solved iteratively, the initial result being used as a starting value.
Generally just a few (three or four) iterations are needed. For a geometric interpretation of the initial
value see [36].

3.3. Multiple regions

In the second stage of direct segmentation we decompose any remaining smooth multiple regions.
Many are defined by sweeping smooth profiles, which consist of tangential line-segments-and-circular-
arcs or free-form profiles. Assuming translational or rotational symmetry has been detected in the given
region, we can compute the best sweeping profile, as detailed in the next Section. In other cases in step 5,
we deal with general multiple regions. Figure 4 shows a simple object, by means of which we illustrate
in Section 5 how the topology of the final model is built . The object has not only a translational region
which includes the five faces (TF1-TFS), but a general, multiple face region (SF1-SF7) as well. This
latter has one toroidal, three planar, and three cylindrical faces, which were generated presumably in the
original object by means of a blending operation, but due to the large radii used, these were not separated
in the planarity filtering phase of reverse engineering.

The standard technique for segmenting regular surfaces is to analyse the signs of the estimated mean
and Gaussian curvatures [6]. The curvatures can be estimated based on the triangulation, or by fitting the
best fit quadric at the given point. For noisy data, we apply a useful tool called dimensionality filtering.
Taking the normal vectors of a multiple region mapped onto the Gaussian sphere, the normals of any
planar region will be mapped into a point cluster; those of a translational or conical region onto a circular
arc. Classifying the normal vector distributions on the Gaussian sphere as 0- or 1-dimensional, the planar
and translational surfaces can be separated and detected [40].

The only problem left is when more than one rotational surface exists within a smooth subregion. In
this case, we may identify all likely rotational axes using an approach suggested by Lukdcs in [32]. The
basic idea is that any four normal lines determine two axes which intersect all four lines, and which can
be computed easily by a second degree equation. By clustering the potential axes, we detect rotational
surfaces locally. This step concludes the direct segmentation procedure.

Returning to our segmented benchmark object in Figure 3, the regions are coloured differently and
detected simple surfaces have already been fitted. The multiple regions, the rotational axis of LEFT and
the sweeping direction of the side face of RIGHT have also been computed and decomposed according
to their smooth profile curves, i.e. we have generated a sequence of connected cylinders, cones, and tori

9

e12 623 s2

el12
e24 S3
S3

S1 e31
4 S1
S4 e3

(c) S4
e41

e34

Figure 4. Simple object

for LEFT, and connected cylinders for RIGHT, respectively. The segmentation of the other simple test
object can be seen in Figure 5. These point regions are sufficiently stable to serve as an initial value
for constrained fitting which enforces smoothness between adjacent surface elements. Our approach to
constrained fitting is given in [4].

4. Constructing swept surface profiles

We continue with our approach to computing profiles curves for swept regions. These are made up
of smoothly connected straight line segments and circular arcs. The underlying smooth, multiple region
has already been detected in the segmentation phase.

4.1. Guiding Polygon

The guiding polygon is a key element in profile fitting. Approaches which are based only on point
data may find it difficult to approximate the point set after projection. Due to the inaccuracies of the
translational direction or rotational axis, we may obtain a point cloud which is ‘thick’, and thus it is
hard to order the points, a step which is generally needed for approximating methods. An approach for
thinning point clouds was reported recently in [29]. We propose to work over the triangulation, which
has the advantage that not only the point information, but their connectivity can be transformed into the
plane of the profile.

Once we know the translational direction or the rotational axis, we can create a polygon which ap-
proximates the profile by intersecting the triangulation with a suitably chosen plane (perpendicular to

10

Figure 5. Segmenting the multiple smooth region of the simple object

the translational direction or containing the rotational axis as appropriate). In choosing a suitable plane,
the problem is that many candidate profile planes do not contain the entire profile due to trimming of the
swept face by adjacent faces — it may even be the case that all planes have this unfortunate property.
This is why we have to apply a gradual approach to build up the complete polygon. We start at an arbi-
trary triangle of the swept region, chosen near the centre of the point set. We intersect it with the profile
plane through its barycentre and extend the polygon by taking as many adjacent triangles intersected by
that plane as possible. Of course, this may be just part of the guiding polygon and it may need to be
further extended. After building the initial polygon we check all triangles remaining in the region. Each
triangle is projected (or rotated) into the profile plane and its image is projected onto the polygon. If the
current polygon does not fully cover the image, the polygon must be extended accordingly. In order to
build up the polygon correctly, we do not traverse the triangles in an arbitrary order: we always take a
triangle adjacent to a previously processed one.

If the distance between the two endpoints of the polygon becomes too small (say, smaller than the
average distance of adjacent vertices), we close the polygon and stop the building process.

4.2. Constrained Profiles

Of course, every profile can be approximated by a free-form curve, but many engineering applications
require an explicit straight line—circular arc representation of the profile where applicable. While for
free-form curves the guiding polygon provides a sensible parametrisation of the projected points, here it
helps to segment the profile into circular arcs and straight line segments by applying a ‘recover & select’
[31] procedure.

Circles are represented in Pratt’s form [35], which includes lines as special cases and not as singulari-
ties. After segmentation, circles whose radii are too great are replaced by straight lines. Then the points
are grouped with the help of the guiding polygon and either a circle or a straight line is fitted to each
group, such that each is tangent to its neighbouring elements. There are two strategies to achieve this
goal. One of them is to fit the elements sequentially, always satisfying the smoothness constraint with
the previous element. This strategy may lead to a contradiction in the case of a closed profile; moreover,
errors are accumulated: the first object to be fitted will be quite exact, but as we proceed we obtain
worse and worse approximations. We prefer an alternative strategy which simultaneously approximates

11

Figure 6. Reconstructed rotational profile Figure 7. Reconstructed translational profile

Figure 8. Circles of the rotational profile Figure 9. Circles of the translational profile

the points and satisfies the tangency constraints for all elements at once.
The equation of a circle written in Pratt’s form is the following:

A(@* +y*)+ Br+Cy+ D =0,

where B2+C?—4AD = 1. With the given normalisation condition, the expression on the left hand side is
an approximation of the signed geometric distance of the point (z, y) from the circle, and consequently
it is appropriate for a least squares minimisation. Taken in itself, this corresponds to a generalised
eigenvector problem. As one can see, if A = 0, we obtain the equation of a straight line. The constraint
expresses that the normal vector to the curve is a unit vector.

For constrained fitting we need equations which express tangency between two circles or between a
circle and a line. These are, for two circles:

(A1By — A3B1)% + (4,05 — A,01)% — (A £ A))2 =0;

for a line and a circle:
BB.+C(C.—2D;A. £1=0.

Based on these, a large system is set up, which minimises the square of the distances of the data
points from the profile elements while at the same time satisfying a set of constraint equations. One
may apply the general method of Lagrangian multipliers, or an alternative method of constrained fitting,
as described in detail in a companion paper [4]. This solution requires an iterative process starting

12

from initial values. These are computed during segmentation of the guiding polygon by independent
unconstrained fits to each profile element.

Returning to the benchmark object, Figure 6 shows the segmented profile curve of the LEFT com-
ponent. In Figure 7 the profile of RIGHT is shown. The construction elements, i.e. the full circles
generating this profile, can be seen in Figures 8 and 9. Having the profile curves, we can create the exact
surface elements for each multiple face, which can directly be used in the final model building phase.

5. Building the boundary representation model

In order to build the B-rep model we have to compute all the edges and vertices explicitly. As dis-
cussed earlier, direct segmentation has produced a set of disjoint regions. Each simple region has already
been approximated by a single analytic surface. The smooth, multiple regions have been further seg-
mented and approximated using the constrained fitting method, which has produced not only a set of
analytic surfaces, but smooth internal curves as well, representing common boundaries between pairs of
adjacent surface elements.

Although our two-step segmentation procedure looks complex, it was formulated to avoid the po-
tential difficulties in computing edge curves. Surface-surface intersections work well to produce sharp
edges whose existence was deduced during the first planarity filtering phase. Surface-surface intersec-
tions are likely to fail for smooth edges, where the adjacent surfaces are in principle tangential, due to
inaccurate measured data and possible numerical inaccuracies of the surface fitting procedure. Never-
theless, smooth internal curves can be easily computed for translational and rotational surfaces based on
the vertices of the profile curve and the type of sweeping — extrusion or revolution. The internal curves
within smooth, multiple regions are by-products of the constrained fitting procedure, and are explicitly
available together with their points of intersection.

Let us return to our simple object shown in Figure 4 to describe the procedure of creating B-rep
models. Of course, this description cannot contain all the details, but it is sufficient to introduce the
basic concepts and most important steps of the algorithm.

5.1 Fattening

Model building starts by creating a region adjacency data structure, which fundamentally reflects the
topology of the final B-rep model. In the segmentation phase, triangles which were not unambiguously
classified were discarded. Now, we reclassify these triangles and remove the gaps between the disjoint
regions. This phase is called fattening, in which regions are extended outwards until all triangles have
been classified. In one pass, those unclassified triangles are considered which have at least one common
edge with the classified triangles. Take one of these triangles. If it has only one classified edge, the
distance of the opposite vertex from the surface to which the edge belongs is computed. If it is within
tolerance, the triangle is added to the region. If the triangle has more than one classified edge, the
distances between the related surfaces and the opposite vertices are computed, and the closest region
(assuming it is within tolerance) will acquire the triangle. If there are no further triangles which can be
added because they satisfy the tolerance criterion, we must continue based only on the adjacency of the
triangles. In this pass all regions are simultaneously grown in a reasonably even manner.

By means of fattening we have practically created the topology of the object. Edges of the triangula-
tion which are shared by two adjacent regions form polylines, from which we can deduce the existence

13

of edges in the final model. Vertices of the triangulation which are shared by at least three regions and
are located at the ends of the polylines correspond to vertices in the final model. Connected sets of
triangles which logically all belong to the same region correspond to faces.

Special treatment is needed in the case of "very short’ edges and ‘very small’ faces, which presumably
have arisen due to inaccurate determination of vertices with more than three edges. For example, take
vertex V'1 in Figure 4. The common intersection point of the ideal surfaces S1, S2, S3 and S4 is quite
likely to appear in the region adjacency structure in a different way. Due to numerical errors, fattening
may detect S2 and 5S4, or S1 and S3 as neighbouring pairs, leading to the topologies shown in Figures
4(b) and 4(c). However, the true topology must be consistent with the surface geometries, and this may
differ from the configuration determined by fattening. This issue will be addressed later.

Another kind of special treatment is needed if the model is incomplete. Take, for example, edges eb
and e6 in Figure 4, where the back faces adjacent to these edges are supposed to be missing, or the partial
reconstruction of an object based on a single view in Figure 13. While typically, region boundaries are
shared by two regions, in these cases there are no neighbouring triangles on the other side and silhouette
edges must be generated to complete the model.

5.2 Edges and vertices

Computing edge curves is simple. In the case of a sharp edge, such as e34, we just call a surface-
surface intersection routine to compute it, while if we have a smooth edge, such as €7, we just deduce
the curve from the results of the constrained fitting phase, which guarantees that the smooth edge curve
lies on both surfaces. For efficiency reasons, and to avoid ambiguities, we compute a bounding box for
each edge, based on the related approximating polyline. We always leave processing of very short and
silhouette edges to as late as possible as they are ill-defined.

Vertices where three surfaces meet are well determined. These can be determined by curve-surface
intersection. For example, to compute 1'2, one option is to take e34, which is the common intersection
curve of surfaces S3 and S4, and intersect it with surface SF'1. If one of the edges is smooth, for
example at vertex V'3, special care is needed: here the smooth edge e7 shared by 7' F'2 and T F'3 must
be intersected with the remaining third surface S5. Completely smooth vertices such as V4 are either
determined during constrained fitting, or if necessary, by curve-curve intersection. Silhouette vertices,
such as V'), are computed only approximately, constrained by the underlying edge curve €8 in our case.

If there have been no constraints enforced during surface fitting, vertices with more than three edges
need special care. Take the previous example of vertex V'1. While the fattening procedure may tell us
that the topology is as shown in Figure 4(b), upon intersecting the various faces concerned, the geometry
may produce the result shown in Figure 4(c). We must be careful to take note of this and modify the
topology accordingly. For example, moving towards the critical area on el2, one has to intersect edge
el2 with S3 and S4; if the intersection point with S4 occurs ‘earlier’, we have configuration (b) and
we insert a small edge €24, otherwise configuration (c) is correct and we have to insert edge el3. Of
course, for complex edge configurations there are many more cases which may arise, but the principle of
ordering the intersections helps to establish the correct topology. At a later stage, one of the basic tasks
of beautification is to discover these short edges and explicitly enforce coincidence.

At the edge of the triangulation (if any), we must terminate the model by silhouette edges. In order
to complete the edge loops of the corresponding faces, we must compute approximate edges by tracing
the border polylines of the triangulation, for example, along edges e5 or e6. In the general case, we

14

Figure 10. Test object without small blends

Figure 11. Test object with small blends

generate a piecewise linear approximation to the polyline and project it unto the underlying surface.
Thus a sequence of small edges lying on this face will be obtained. If the face involved is a plane, an
attempt is made to reconstruct the silhouette edge as a better composite curve made up of straight and
circular segments, using the same methods as for profile reconstruction.

5.3 Stitching

We must now create the complete topological structure by stitching together the faces, edges and
vertices. This is quite a straightforward process, since in the previous phases the consistency of the
geometrical and topological entities has been assured. Taking an edge loop of a given face, the procedure
applied guarantees that each real edge is shared by another edge of a neighbouring face and the related
end vertices are identical. Thus, taking all edges of the loops of a given face, all adjacent faces can be
stitched together. This operation is supported by most solid modelling kernels.

6. Blending surfaces

In the early planarity filtering phase we temporarily removed data points which belong to blending
surfaces. Now, having already reconstructed the primary surfaces, we can reconstruct the blends. It is
assumed that these were generated by constant-radius rolling-ball blending. We must determine the best
approximation to the appropriate radius and just forward this information to the underlying solid mod-

15

eller which will explicitly construct an appropriate blend and incorporate it into the B-rep model. Based
on the region neighbourhood graph and the triangulation, we ignore point regions around vertices, and
take the disjoint point sets which represent single edge blends between two given primary faces. Note
that in this context the primary face can possibly be a smooth, multiple face: this makes no difference
from the point of view of blending.

There are different approaches to estimating blend radii; these are thoroughly analysed in [27]. Ifer-
ative spine methods are based on the principle that the spine curve of a rolling ball blend is computed
by intersecting offsetted primary surfaces. Having an initial radius estimate, the spine and the corre-
sponding blend can be computed. After calculating the distances of the data points from this estimated
blend, the radius can be corrected and a new spine computed; this is done iteratively until all the points
are within tolerance. This method is particularly efficient in special cases when the intersection of the
primary surfaces is a simple, analytic curve, but it also works for surfaces of arbitrary type.

Another approach is to compute a so-called maximum ball for each data point such that the ball
contains the point and touches the two adjacent primary surfaces. Having the radius estimate for the
maximum ball at each point, we compute an average for the whole blend. This method is also efficient
and numerically stable, and it has the advantage that it can be generalised to reproduce varying radius
rolling ball blends.

We attach blend information to the edges, and let the modelling kernel incorporate the edge blends
into the B-rep model. We do not reconstruct vertex blends in the current development phase, since in
the case of small blends we only have a few data points. Vertex blends are considered to be by-products
which automatically connect edge blends and are constructed by the solid modeller. Setback vertex
blends provide a reasonable transition surface in the case of arbitrary edge blend configurations [39].

Figure 10 shows the reconstructed benchmark object with sharp edges. The blended object can be
seen in Figure 11.

7. Implementation and experimental details

A prototype system for solid model reconstruction is under development at the Geometric Modelling
Laboratory of the Computer and Automation Research Institute. A REPLICA laser scanner system (3D
Scanners, London, UK) is used for data acquisition. The program is written in C++ and uses the VTK
graphics library; it runs under LINUX and Windows NT. The ACIS solid modelling kernel [11] is used
for solid model creation and blending.

The original simulated data set for our benchmark test object shown in Figure 1, contained 18970
points. The size of the bounding box was 100 x 50 x 40. The noise added to the sampled data points
had standard deviation 0.05 units. In Figure 1 the point set was decimated to 8238 points with 16432
triangles. The estimated rotational axes and the translational direction were (0.0028, 0.9999, -0.0008)
and (0.0232, 0.0052, 0.9997); compare these with the exact vectors of (0, 1, 0) and (0, O, 1). The radius
of the large cylinder of LEFT was computed as 30.1478 (cf. 30); that of RIGHT was computed as 26.876
(cf. 27). The radii of the profile elements were reconstructed with reasonable accuracy. For example, for
the rotational profile, the computed radii are 4.02 (cf. 4), 3.84 (cf. 4), 4.31 (cf. 4), 3.97 (cf. 4). The blend
reconstruction also gave reasonable values, for example, for the top faces of MIDDLE and RIGHT we
obtained radii of 2.03 (cf. 2) and 2.01 (cf. 2); along their intersection their intersection the radius was
1.01 (cf. 1).

To illustrate the difficulties of dealing with real measured data another object was selected; the seg-

16

Figure 13. Solid object reconstructed from the
Figure 12. Segmentation of a single view point single view

cloud

Figure 15. Solid object reconstructed from mul-
tiple views

Figure 14. Another view of the reconstructed
solid object

mentation of the corresponding data is shown in Figure 12. This is a single view data set, and so the
stitched model is incomplete. Compare figures viewed from the scanning direction (Figure 13) and an-
other slightly rotated view (Figure 14). The latter may look horrible, but it is a valid ACIS model. Of
course, if we start with a suitable multiple view point cloud representing the complete solid, the artifacts
disappear, as shown in Figure 15.

8. Conclusion

A methodology for reverse engineering conventional solid objects has been presented, producing
boundary representation solid models, which can be directly used in mechanical engineering CAD/CAM.
The complex nature of the procedure was illustrated by describing the consecutive algorithmic steps and
their links. The importance of reproducing the regularity of the objects — simple surfaces, translational

17

and rotational symmetries, constraints — cannot be overemphasised. The current prototype implemen-
tation shows that for reasonably dense and accurate measured data, solid reconstruction is possible with
minimal user interaction by setting only certain threshold and tolerance values which control the various
steps of the algorithm. Current and future efforts will be mainly directed towards reliably segmenting
complex multiple regions, automatically deriving constraints, constrained fitting and model beautifica-
tion.

9. Acknowledgements

The solid reconstruction project started in 1995 within the framework of an EU supported COPERNI-
CUS grant (RECCAD 1068). The authors highly appreciate the contribution of the GML research team,
including Géza Kds, Gabor Lukdcs, Péter Salvi and L4szl6 Andor from CADMUS Ltd.. This research
was also supported by the National Science Foundation of the Hungarian Academy of Sciences (OTKA,
No. 26203) and by the UK EPSRC (Grant GR/M 78267).

References

[1] L. Alboul and R. van Damme, “Polyhedral metrics in surface reconstruction: tight triangulations”,
In: The Mathematics of Surfaces VII, Eds: T. Goodman, R. R. Martin, Information Geometers Ltd,
1997, pp. 309-336

[2] C. Bajaj, F. Bernardini, J. Chen and D. Schikore, “Automatic reconstruction of 3D CAD models”,
In: Proc. Int. Cont. on Theory and Practice of Geometric Modeling 11, Eds: W. Strasser, R. Klein,
R. Rau, Blaubeuren, Germany, October 1996

[3] P.Benkd, G. Lukécs, R. R. Martin and T. Vérady, “Algorithms to create B-rep models from measured
point clouds”, Geometric Modelling Studies, GML1998/6, Computer and Automation Research
Institute, Budapest, 1998

[4] P.Benkd, L. Andor, G. K6s, R. R. Martin and T. Varady, “Constrained fitting in reverse engineering”,
submitted to Computer Aided Geometric Design, 2000

[5] R. Bergevin, M. Soucy, H. Gagnon and D. Laurendeau, “Towards a general multi-view registration
technique”, IEEE PAMI, Vol 18, No 5, 1996, pp. 540-547

[6] P.J. Besl, Surfaces in Range Image Understanding, Springer Verlag, 1988

[7] P.J. Besl and R. C. Jain, “Segmentation through variable-order surface fitting”, IEEE PAMI, Vol 10,
No 2, 1988, pp. 167-192

[8] R. M. Bolle and B. C. Vemuri, “On three-dimensional surface reconstruction methods”, IEEE PAMI,
Vol 13, No 1, 1991, pp. 1-13

[9] X. Chen and C. M. Hoffmann, “On editability of feature-based design”, Computer Aided Design,
Vol 27, No 12, 1995, pp. 905-914

18

[10] P. N. Chivate and A. G. Jablokow, “Solid-model generation from measured point data”, Computer
Aided Design, Vol 25, No 9, 1992, pp. 587-600

[11] J. Corney: 3D Modeling using the ACIS Kernel and Toolkit, John Wiley and Sons, Chichester,
1997

[12] C. Dorai, G. Wang, A. K. Jain and C. Mercer, “Registration and Integration of Multiple Object
Views for 3D Model Construction”, IEEE PAMI, Vol 20, No 1, 1998, pp. 83-89

[13] M. Eck and H. Hoppe, “Automatic reconstruction of B-spline surfaces of arbitrary topological
type”, Computer Graphics (SIGGRAPH 96), Vol 30, 1996

[14] H. Edelsbrunner and E. Miicke, “Three-dimensional alpha shapes”, ACM TOG, Vol 13, No 1,
1994, pp. 43-72

[15] O. D. Faugeras and M. Hebert, “The representation, recognition and locating of 3D objects”, Int.
J. Robotics Research, Vol 5, No 3, 1986, pp. 27-52

[16] A. W. Fitzgibbon, D. W. Eggert and R. B. Fisher, “High-level CAD model acquisition from range
images”, Computer-Aided Design, Vol 29, No 4, 1997, pp. 321-330

[17] G. Greiner and K. Hormann, “Interpolating and approximating scattered 3D data with hierarchical
tensor product B-splines”, In: Surface Fitting and Multiresolution Methods, Eds: A. Le Méhauté,
C. Rabut and L. L. Schumaker, Vanderbilt University Press, 1997, pp. 163-172

[18] B. Guo,J. Menon and B. Willette, “Surface reconstruction using alpha shapes”, Computer Graphics
Forum, Vol. 16, No. 4, 1997, pp. 177-190

[19] M. Hebert and J. Ponce, “A new method for segmenting 3D scenes into primitives”, Proc. 6th Intl.
Conf. on Pattern Recognition, (Miinchen), 1982, pp. 836-838

[20] P. S. Heckbert and M. Garland, “Survey of polygonal surface simplification algorithms”, Course
Notes, Course 25, SIGGRAPH 97, 1997

[21] A. Hoover, D. Goldgof and K. W. Bowyer, “Extracting a valid boundary representation from a
segmented range image”, IEEE PAMI, Vol 17, No 9, 1995, pp. 920-924

[22] A. Hoover et al., “An experimental comparison of range image segmentation algorithms”, IEEE
PAMI, Vol 18, No 7, 1996, pp. 673—-689

[23] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle, “Surface reconstruction from
unorganised points”, Computer Graphics (SIGGRAPH 92), Vol 26, 1992, pp. 71-78

[24] Reverse Engineering, Eds.: J. Hoschek and W. Dankwort, B. G. Teubner, Stuttgart, 1996
[25] Advanced Course on FAIRSHAPE, Eds.: J. Hoschek and P. Kaklis, B. G. Teubner, Stuttgart, 1996

[26] J. Hoschek, U. Dietz and W. Wilke, “A geometric concept of reverse engineering of shape: approx-
imation and feature lines”, In: Mathematical Methods for Curves and Surfaces 1I, Eds: M. Dahlen,
T. Lyche and L. L. Schumaker, Vanderbilt University Press, 1998, pp. 253-262

19

[27] G.Ko0s, R. R. Martin and T. Vérady, “Recovery of blend surfaces in reverse engineering”, Computer
Aided Geometric Design, Vol 17, 2000, pp. 127-160

[28] G. K6s, “An algorithm to triangulate surfaces in 3D using unorganised point clouds”, Geometric
Modelling Studies, GML1999/3, Computer and Automation Research Institute, Budapest, 1999 (to
appear in Computing, 2000)

[29] I. K. Lee, “Curve reconstruction from unorganised points”, Technical Report No. 55, Institut fiir
Geometrie, Technische Universitit Wien, 1998

[30] P. Krsek, T. Pajdla, V. Hlavd¢ and R. R. Martin, “Range image registration driven by a hierar-
chy of surface differential features”, Proc. 22nd Workshop of the Austrian Association for Pattern
Recognition, May 1998, pp. 175-183

[31] A. Leonardis, A. Jakli¢ and F. Solina, “Superquadrics for segmenting and modeling range data”,
IEEE PAMI Vol 19, No 11, 1997, pp. 1289-1295

[32] G. Lukécs, A. D. Marshall and R. R. Martin, “Faithful least-squares fitting of spheres, cylinders,
cones and tori for reliable segmentation”, In: Computer Vision—-ECCV 98, Lecture Notes in Com-
puter Science, Eds: H. Burkhardt and B. Neumann, Springer-Verlag, 1998

[33] A. D. Marshall, G. Lukdcs, R. R. Martin, “Robust segmentation of primitives from range data in
the presence of geometric degeneracy”, submitted to IEEE PAMI, 2000

[34] B. Parvin and G. Medioni, “B-rep from unregistered multiple range images”, Proc. Int. Conf.
Robotics and Automation, Nice, 1992, pp. 1602—-1607

[35] V. Pratt, “Direct least-squares fitting of algebraic surfaces”, Computer Graphics (SIGGRAPH 87),
Vol 21, No 4, 1987, pp. 145-152

[36] H. Pottmann and T. Randrup, “Rotational and helical surface approximation for reverse engineer-
ing”, Computing, 1998, pp. 307-322

[37] N. S. Sapidis and P. J. Besl, “Direct construction of polynomial surfaces from dense range images
through region growing”, ACM TOG, Vol 14, No 2, 1995, pp. 171-200

[38] T. Vérady, R. R. Martin and J. Cox, “Reverse engineering of geometric models — an introduction”,
Computer-Aided Design, Vol 29, No 4, 1997, pp. 255-268

[39] T. Varady and C. M. Hoffmann, “Vertex blending: problems and solutions”, In: Mathematical
Methods for Curves and Surfaces 11, Eds: M. D&hlen, T. Lyche and L. L. Schumaker, Vanderbilt
University Press, 1998, pp. 501-528

[40] T. Varady, P. Benkd and G. Kés, “Reverse engineering regular objects: simple segmentation and
surface fitting procedures”, Int. J. of Shape Modeling, Vol 4 (1998), pp. 127-141

[41] N. Werghi, R. Fisher, C. Robertson and A. Ashbrook, “Object reconstruction by incorporating
geometric constraints in reverse engineering”’, Computer-Aided Design, Vol 31, 1999, pp. 363-399

20

