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Abstract

Two schemes for computing moments of free-form objects are developed and analyzed. In the first scheme, we assume that the boundary of
the analyzed object is represented using parametric surfaces. In the second scheme, we represent the boundary of the object as a constant set
of a trivariate function. These schemes rely on a pre-computation step which allows fast re-evaluation of the moments when the analyzed
object is modified. Both schemes take advantage of a representation that is based on the B-spline blending functions. © 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Moments of objects are intrinsic to their shape. Thus, the
ability to compute moments is necessary in a vast range of
applications. Moments of inertia are used in mechanical
design and analysis. For example, in the design of aircraft,
ships, and automobiles the computation of moments of iner-
tia (and products of inertia) are employed toward the deter-
mination of the dynamics of the vehicle. Moreover, in these
application areas, B-spline surfaces are now the standard
representation used in design.

Moments of inertia are even used in animation of
human characters [7,8]. In Refs. [7,8], control systems
for human characters that perform several motion opera-
tions such as running, bicycling, or vaulting are consid-
ered. The animation processes require several successive
re-evaluations of parameters that are described by equa-
tions, taking into account the moments of inertia of
different body parts [8]. Moreover, in Ref. [7] the
authors describe algorithms for automatically adapting
existing simulated behaviors to new characters and
require moments of inertia of the different body parts
toward this end as well. A metamorphosis animation
from a man to a woman was performed by creating
intermediate models and relying on linear interpolation
of the moments of inertia of the simulated body parts.
Another useful application of moments can be found,
for example, in optical character recognition systems
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[1]. Being intrinsic, moments of inertia can clearly be
used in other object recognition applications; see Ref.
[15] for a survey.

The literature on the computation of moments is vast.
Work that deals with the problem of fast computation of
moments in different models can be found, for example
[10,14,18]. In Ref. [14], the authors describe a model in
which the volume of solids bounded by subdivision surfaces
can be approximated. They sketch an extension to the
evaluation of higher-order moments as well. However, in
Ref. [14] the stress is on the subdivision process that the
authors manage toward the volume estimation technique
and its complexity.

In Ref. [10], the authors define the (p + ¢ + r)-th order
moment as

-1 N-1N—-1

N
mp,q,r = Z Z Z xpyqzrf(x’ Vs .X),
s y=0 2z=0

=0
where N X N X N is the size of the 3D volume of voxels, and

1 if (x,y,z) is in the object

[ y,2) ={

0 otherwise

Ref. [10] only deals with uniform density objects that are
represented in uniform resolutions. A computation model is
presented in which moments are evaluated with no need for
multiplications, given uniform density objects and uniform
resolution. The trivariate expressions of x’y?z", required in
the moments definition, are computed in a pre-processing

scheme. In order to compute m,,,., one is required to
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compute all the moments m, . Where p'=p ¢ =q
r' = r. Ref. [10] presents a sequential algorithm, a parallel
one, and a VLSI chip design which performs the computa-
tion. There is no generalization to the computation of
moments of objects in higher dimension, although it is
possible.

In Ref. [18], the authors use a variant of the discrete
divergence theorem that is featured in Ref. [4]. The
computation is based on discretization of spels (space
elements) of the domain of an implicit function which
describes the boundary of the object. The authors admit
that this method is sensitive to noise and discretization
errors. The algorithm assumes a pre-computation stage
that performs surface tracking. The input of the surface
tracking algorithm consists of a point on the surface.
Moreover, due to the surface tracking stage, the
proposed algorithm assumes that the input objects
have no holes. An O(N*) complexity algorithm is
claimed for convex objects. As in Ref. [10], in order
to compute m one is required to compute all the

P.a.r?
moments m,, ,» where p' <p, ¢' =g, ¥’ = r. This algo-

,q .
rithm can tfqueneralized for higher dimension objects.

Other related results are Refs. [5] and [2]. In Ref. [5], the
authors assume that the input is a free-form object bounded
by parametric surfaces. They employ the Stokes theorem [4]
to transform the computation of moments using integrals on
volumes to integrals on the surface boundaries, of the input
objects. In Ref. [2], the author reformulates the computation
of the area/volume of an object enclosed by a parametric
B-spline curve/surface as a bi-linear/tri-linear form. This
computation is also based on the Stokes theorem.

In this work, we propose two schemes toward the compu-
tation of moments of objects represented in (1) free-form
polynomial or rational surface geometry or (2) via constant
sets of trivariate polynomial or rational volumetric func-
tions. We will refer to the first scheme as the surface scheme
and to the second as the volumetric scheme. In the surface
scheme, we assume that the input object is bounded by a set
of parametric B-spline surfaces, whereas in the volumetric
scheme we assume that the boundary of the object is defined
as a constant set of a trivariate B-spline function. For both
representations, a major portion of the computation could be
performed a priori, allowing efficient re-evaluations of
moment during actual use.

B-spline blending functions are widely used in geometric
modeling [3]. These polynomial or rational functions offer
many attractive properties such as refinement and subdivi-
sions operations, and local support. Given an object that is
represented using parametric B-spline surfaces, there exists
some work that deals with the computation of volumes [2].
Objects represented using parametric Bernstein—Bézier
forms are considered in Ref. [5]. The results in Ref. [5]
could be improved and extended with the proposed pre-
computation that is suggested in this work, following
ideas from Ref. [2].

The presented surface scheme has the advantage that

one can employ non-uniform B-spline functions with
different orders in any direction and several resolutions,
thus, the presented surface scheme is more general than
the models known in the literature until now. The
presented volumetric scheme is mostly usable in the
context of uniform knot sequences, while the ability
to employ non-uniform knot sequences is available at
extra computational cost. Interestingly enough, the volu-
metric scheme allows one to compute the moments of
objects with varying densities. In the case of uniform B-
spline blending functions and coefficients along a
uniform three-dimensional grid, the computational
demands could be greatly decreased and significant
portions of the computation could be made a priori.

This paper is organized as follows. Section 2 reviews
the concept of zero moments, defines the notation used
for B-spline functions, and contains a description of the
approach that we develop in the following sections.
Section 3 lays down the algorithmic approach that we
take toward the computation of moments for objects
bounded by free-form parametric surfaces. The approach
toward the computation of moments of objects bounded
by constant sets of trivariate functions is described in
Section 4. In Section 5, we go into the details of the
implementation of the volumetric scheme for uniform
B-spline functions. In Section 6, we present some exam-
ples and a comparison between the results computed by
our algorithms and values that were derived discretely
as well as analytically, for different objects. Finally, we
conclude in Section 7.

2. Background

Let B;; .(t) be the i-th B-spline blending function of
order k (degree k—1) defined over knot sequence 7. Here-
after, we will simply employ B;(t) or B;;(¢) to denote
By (1). Given surface S(u,v) =2;>; P;Bii (WB;; (v),
Pi,(xi,,y,-j,zi,), the direction of the normal, 4", of S(u,v) =
(x(u, v), y(u, v), z(u, v)) is:

mz(ﬂﬂ_ﬂ% gz ox _

0z ox &x&y_r?x&y)
u v v du’ du v

v v d du
(€))

having N = (A", A, A"). Following Ref. [5], the
signed zero moment .#,, or the volume V, enclosed by
the parametric surface S(u, v) equals,

My=V = J AN (u, v)dudy
U

:J Z(ﬁﬁ - ﬁ&)dudv 2)
v \du dv v du

where U is the parametric domain of S(u, v). In Ref.
[2], the author derives Eq. (2) for B-spline surfaces as
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follows:

V= J N (u, v)dudv
U

0. 0.
=JU%IZsz,,1 By i, (WB 1k(V)( x&y ;:gyu)d dv

= J Z ZZl,,,l‘,Blu,ku(U)Bl‘,,kv(v)
UL

(Z leu i, zl, k., (M)Bl‘k (V)Z Zyju Jo Pk (M)B] k, (V)

—Z Zx,, ,k(u>B,k<v)Z D Vi Bl (0B, (v)dudy

Iy

=5 3 E Sai S o [, B s

iy Ju v

(B}, + WB; 1 (B, 1 WB],; (v)

B; ;. (WB] « (WB] ; (B, 4 (v))dudv.

This reformulation of the volumes allows one to rewrite
Eq. (2) as a tri-linear form in x; ;, y;_j, and z; ;. Let

=By i, B, x,(v)
(B + W)B; 1 B, 1 0B ; (v)

=B, 1, B} 1 WB] « WB; ; (), (3)

d’t sy (U V)

and let

0 _ 0
DPi i jody = JU Birivsjiriosly (o V)dudy.

Then, with the assumption of a pre-computation of the
values of CD, ivjuind,, that solely depends on the func-
tion space containing S(u, v), one can re-evaluate the
volume of surface S(u, v) as a tri-linear product of the
coefficients of the surface, P;:

V= Z ZZI,,I Z sz iy Z zyjujl

iy Ju v

by Jusdvslusly® “)

As long as the function space of S(u, v) is fixed, i.e. the
same knot sequences and orders, @?u,i‘,’jijlwlv remains
the same. Moreover, a change in a few control points
amounts to the re-evaluation of Eq. (4), for the modified
coefficients and terms only.

We will employ a similar scheme to compute moments of

higher orders, in the following sections. Expanding /", in

Eq. (1), we have,

Ox dy _ 9x dy

u dv v du

= Z szu - Zy],, (Bl 1, 0B (V)B; 1 (B} 1 (v)

Ju v

—B, ;. (WB} ; VB) ; (W)B; ; (v))

- Z Z ’u iy Z Zy]u Jy lp’u iysfus ]»( V) (5)

N (u,v) =

where,
i i wv) =B}, B ; VB, ;. WB] ; (v)
— B, ;. (WB] 1 WB] ; (WB; 4 (v).

0
Moreover, ¢; ;i j, j,4,.4,U: V) = Bj i @By D ;. ;. ;. (1, )
(see Eq. (3)).

3. Moments of free-form surface geometry

In Subsection 3.1, first order moments will be considered,
whereas in Subsection 3.2 second order moments are
discussed. The extension to higher order moments is fairly
simple and follows similar guidelines.

3.1. Computation of first order moments

Following Ref. [5], the first order moments of an object
enclosed by parametric surface S(u, v) can be expressed as:

( M ZJ xz A dudy,
U

1 My =J vz A" dudv, and (6)
U

2
My = J ¥ dud.
\ U 2 -

Then, by substituting .4 (u,v) from Eq. (5) into Eq. (6),

My = J Z Zxm,,,m\»Bmu,ku(”)Bmv,k‘,(V)

my, m,

Z Z 21,.4,B1, 5, (WB; 1, (V)
L
Z leu iy z Zy/“ Jy lﬂlu iysJusdy (u V)dl/ldv

Ju v

= Z meu,m Z Zzlul Z th Sy Z Zyjuj‘
m, m, iy

i, Jo v
JU B,y i, (B, (VB 1 (WB; i Vi ;i i (u,v)dudy

EDDEEDIDILIDIDIED I I s
Jn

my, oy, iy oy Ju
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where Then,
I ] %11 - J Z Z Ny Ny, n“,k (M)Bn k, (V)
Diy iy fuivludymom, = J U Birvi funioddyamyam, (s V)AUAY, M My
DD X Bk, @Bk ) D" D 2,1, By i, 0By 1 (V)
m, m L L
and
Z Z Ky Z Zy/m/l Wiyiysjonsy, (s v)dudy
4’}“,iv,.iu,j,.,zu,lv,ml,,m,,(”, V) = By i By, 1 (VB g 0B D, i . (1, V). el
=2 D g, D D K, Z Zzl ! Z Z Ty D D Vi
n, n, my m, Ju v

Following the computation of .#, the values .#, and .4,
can be similarly derived as,

_ 1
Mo = Z Zymm Z ZZ/,,J\, Z fo,,,fr Z Zij./y Diy i ok,

m,m, L i iy Ju Wi i g, (s v)dudy

and - nz: Zx"“’n" Z ZXm”’mV Z Zzl“’l Z Z lw Z nyu Jv

n, m, m,

JU ot (B, o, VB k. By, 1 VB i )By i (v)

M= 33 S i DIDITIDID AP I N s Dby,

m, m, i Iy Ju v
where
djusjudidm,m, €an be pre-computed, once the function o )
space of the surface S(u, v) is determined. That is, the sy undolisly Mo o1, JU Bkl o, o, (U V)AUdy

knot sequences and the orders of the surface are set. q
an

2
. ¢ sy dusdysbusly Ty, myn ,n,-(u’ V)
3.2. Computation of second order moments e e

. . B u)B DY u,v
Following Ref. [5], the second moments of an object ok OBk VB, (45 V)

enclosed by parametric surface S(u, v) can be expressed B, 4 (0B, 1 VB, 1 0By s (VBy 1 By 1 W+ .+ (1, V)
as:
Similarly, the values of %12’ <ﬂ|3, <%22, %23, and %33
My = J ¥z dudv, can be evaluated into:
v z
'/%12 - Z an gy Z Zym,(m Z ZZI g, Z Z z Sy Z Zyj,‘h

My = J xyz AN dudv,
U

Tustys JusJushasly T Tty T 1y >

2
X 1
eﬂl3 = JUXE'/‘/ZdeV’ '/%]3 = E Z zxn“,nv z szu,m\ Z Zzlul z Z Xi i, Z Zy/“ v

noony . m, Ly Ju v

Tystys Jusolies by Ty 10y Ty 571, 2

%22 - Z Zyn,,n\ Z Zymt,m\ Z Zzl,,l Z le Wy Z Zyj”]‘

n,oony ny Ju v

Moy = J y2z N dudv,
U

2
<
My = JUY 5 A dudv, Pl o

1
and %23 = E Z Zyn,l,n\. Z Z“Zm,l,mL Z zzl 1, Z Z t,, i, Z nyu Jv

n, n, m, m, 1, i, i, Ju

3
Z .
My = JU y 3 N dudy. d)lz'miwjmjwlu,lvmmmwnmnv’
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and

f///33 =

EDI) PIDILNIDIDREDIPRED I I

n, n,
sty Jusdvshusly M1y 1y

The computation of the @' functions demands the abil-
ity to compute products and integrals of B-spline basis
functions. See Refs. [9,13] for several ways to evaluate
these operators in the B-spline domain.

4. Moments of trivariate based geometry

In Subsection 4.1, we will introduce several key
results that will be employed in Subsection 4.2 toward
the computation of the moments. That is, they are inte-
grals on products of B-spline blending functions with
monomials.

4.1. Integration of products of B-spline blending functions
with monomials

Assume [t,,,t,+1) is the last nontrivial interval of some
B-spline function, and denote by x' the i-th power of x while
x denotes the i-th derivative of x.

Proposition 4.1. The following identities hold:

| Bustoar = Z (0, )

J B, (t)dt =

( Z k10 — ; k+2(f)z (ZHI,?_:_ 1 )
®)

Proof. Eq. (7) is proved in Ref. [9]. We will prove the
identity (8) here.
The derivative of a B-spline basis function equals [3]:

Biy(t) = (k — 1)[ tBi”‘“(t) _ Bir1y—1(0) ]

i+k—1 — L Livk — liv1

It follows that

L

+k—1 i+k—1
By 1) = lk—lBlk(l) + 143141,%1(0,
Ltk = litq
or
Livg = 8 Livg = 8
Biy(t) = "Bl (1) + ——"—B (0. (9
i+k+1 ikl

Multiplying both sides of Eq. (9) by ¢ and integrating, we

have,

lig —
JtB,»,k(t)dt = Jr%B

Ly — L
+ JILBHLk(t)dt
Livk+1 — it

a1 (0t

= t*"T J’tB re(ndt

A
4 ik JtB,-JrLk(t)dt.

Livk+1 — Lit1

Applying Eq. (9) successively while i < m, one obtains,

J tB; (Hdt =

Z JtBij(t)dt

lisg — 1
+ ki Jth,k(t)dt.

In+k — I

Multiplying Eq. (9) by ¢ and integrating for the last non-
trivial domain [#,,, %, ;) we have

toir — 1
Jth’k(t)dt = J t%Bﬁn’kﬂa)dr

and hence,

JtBl (Ddr = Z J;Bj w1 (Ddt. (10)

Integrating Eq. (10) by parts,

ti _ t[ m m
JtBi,k(odr = % (Z 1Bjji1(t) = > JBj,kH(r)).
j=i j=i

Using Eq. (7) one obtains:

< Liktl — 1 <
Bjys1(t) = ) ——/—— ZB;Hz(f) .

L [
JzB,»,k(t)dt— T (Zt T

J=i J=i

Therefore,

I 1By (1di =

(rZB,kH(z) ZB,MO)Z ”,ﬁ;'; )

proving Eq. (8)..0

Recall that x” denotes the i-th derivative of x. Let Opy =
(te1y — t)/y. Then,



534 0. Soldea et al. / Computer-Aided Design 34 (2002) 529-539

Theorem 4.2.

1 m
[ 7B = 00 Y 0P Y By

j=0 So=i

Y

SJI

Z 851 kit Z 53, k+1>

s1=i

for any i, k, [ = 0.

Proof. We prove that Eq. (11) holds for any i, k =0 by
induction on [ = 0. In all stages of the proof we take into
account that i, k = 0 but do not write it explicitly.

From Proposition 4.1 Egs. (7) and (8) hold. These equal-
ities are special cases of Eq. (11) where /=0 and /=1,
respectively.

Let [ > 0. Assume Eq. (11) holds for [—1. We will prove
that Eq. (11) holds for 1.

Multiply both sides of Eq. (9) by ¢ and integrate. We
have:

J B, (Hdt = J 118, 4B] g1 (1)dt
tir, — L
+ Jt’LBMk(t)dt
Livg+1 — it
= 8x | 'Blisri(ndt
Liyp — 1

+ Jlei+1,k(t)df-

Livk+1 — Lt

As in the proof of Ref. [8], one can successively apply Eq.
(9) while i < m and obtain

| B = 5, Z [ Bty o

to, — t:
4+ itk i J’tle,k(t)dt.

Itk = U

For the last nontrivial domain we have,

J tle,k(t)dt = J t] Sm,kB:n,k+ 1 (t)dt,

or

m

| #Biuores = B3 | 7B (12)

Integrating Eq. (12) by parts,

Jt’Bi,k(t)dt =) (Z 1B g1 (1) — Z Jlt 'B ,kﬂ(t)dt)
=

From the inductive hypothesis, Eq. (11) holds for /—1. Thus,

m -1
sz,kmdt—8,k(ZrB,k+1<z> 12(2( PP 804

Jj=i j=i \p=0

m S Sp—1
Z By ke p+2(0) ZO Os, ktpr1™™ Z 5sp,k+2))

So=J s1=j Sp=J
=8,-,k(Zr k+1(r)+(2< 1>p(r)@2 ace1 X Boygeep1 (1)
J=i J=i 80=J

So Sp—2
dipt O By e
1= Sp—1=J

Z 8&[ k+p
= i (Z GRS (Z( 1y H? ZBAO k+,,+1<t>Z 1
J=i

So= _]l

So Sp-2
51 5 Z asp,l,k+2
1= Sp—1=J

Z 651 k+p
= ik (Z 1'Bjpii (1) + (Z( 1y y® Z By kipi1(®) Z 8yyktp

J=i =1 so= 5=

Z jk+1° z ayz k+p

S| Sp—2
ktp D O k2
=] Sp—1=J

= 6i,k(2rl a0+ (Z( DP(e® ZBS(,WH@)
j=i

p=1 So=1i

o Sp—1
Z 851,k+p : Z 8}, 1k+2 Z jk+1 .

s1=i Sp—1=i

Thus,

JrB,kmdt = 6,k(2< P (H? Z By iipi1(0)

so=i

S0 Sp—2 Sp—1
Z 8s],k+p"' Z 6& _1k+2 Z 8 k+1

s =i Sp—1=i

or Eq. (11) holds for 1..J

Corollary 4.3. The following equality holds as a particular
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case of Theorem 4.2 for [ = 2:

( Z e 1() = 20> Bjgio(d)
J=i

J B (Hdr =

J
Z Lstit1 —
— k+1 —
s=i p=i

(13)

We will employ the results of Eqgs. (7), (8), and (13) in the
coming section.

4.2. Computation of moments of trivariate based geometry

Let dm be a differential element of mass. In our system,
the mass distribution is defined as:

f,v,w) =" p; jBi(u)B;(v)By(w),
i,j,l

where p; ;; is the (i, j, [)-th scalar coefficient of the trivariate
function f.

The computation of the zero moment assumes the evalua-
tion of the integral

=] Lo

whereas the first order moments can be obtained from the
values

= =[] f

The computation of the principal axes of inertia assumes the
evaluation of the following integrals:

I, :J J J (y2 + zz)dm,lyy :J J J (x2 + zz)dm,
xJyJz xJyJz

I, :J J J(x2 +yP)dm, I, =J J J xydm, (14)
xJyJz xJyJz

I, :,[ J J xzdm, and I, :J J J yzdm.
rJyJz xJyJz

Thus, any of the values of I, I, I, I, L, Ly, L., Ly, I,
and I, could be computed with the aid 0f Egs. (7), (8), and
(13). For example,

= L LJ Z:pi,j),(v2 + wz)B,-(u)Bj(v)B,(w)dudvdw

Vi jl

=>pi j,,(J Bi(u)duj szj(v)va B)(w)dw

iyl
+J' Bi(”)dMJ Bj(V)dVJ sz,(w)dw>.

Any one of the integrals of Eq. (14) can be similarly

~ Iprk+1 — 1y
5 49 k+3(t) Litit2 — L P .
DR

decomposed, computing all the moments of inertia. In
order to evaluate these volume integrals, one can use the
identities of Proposition 4.1.

5. Implementation details

We have implemented the computation of moments for
trivariate uniform B-spline blending functions with floating
end conditions. The assumption of the uniformity of the
knots allows us significant simplifications in the computa-
tions. Assume t;; =1; + y for any i € N.

Proposition 5.1. Given a uniform knot sequence, the
following equalities hold:

®

tivi+k litk
J B,-+1,k<z)dr=J By (hdr,

ity f

(ii)

Titk

Titi+k Titk
J 1Bt (Ndt = J 1B (dr + ’YZJ B (n)dt,
L

titi 4

and (iii)

Titi+k ) livk 2 livk
J 2B (Ddt = J £B, (Ddt + 2le
t t

titi

1B, (1)dt

i

Titk
+ P J B, (t)dr.
1

Proof. Since the blending functions are uniform,
B; (1) = B;j14(t + yl), and (i) holds. Moreover,

tivi+k li+k
j 1By (1)t = j (t + VDB 1t + Yt
L

vt

- r”(r + YDB(1)d1

1,

Titk Titk
= J B, (H)dt + ylj B, (t)dt
t; 1
and thus (ii) holds. Similarly,
Livivk 2 livk 2
[ 2B = [+ Bt + i

Ly 14

tivk
= J (t + YI)*B;(Hde
t;
Titk
= J’ B, (Hdt
4

Titk Titk
+2sz 1B, ((1)dt + yzzzj B, ((r)dt
1 t,

i

and thus (iii) holds.[]
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Y

X

Fig. 1. The moments of the hull of the presented ship are computed in Table 1. This part is centered around its center of mass, computed using the presented

algorithm.

We have symbolically computed the values of

1 in 3
J Bo,k(t)dt,J 1B, (1)dt, andJ tzBO,k(t)dt, (15)

Ty Ty Iy

for specific orders in the Maple symbolic manipulation
environment [11]. Now, with the aid of the formulas of
Proposition 5.1, one can efficiently recompute the integrals
(15) for all discrete domains #; to #;44, recursively.

Let .# be the mass of the object and let I, be the
moment of inertia along the axis Ox when the center
mass, (x., Y., Z.), of the object is in general position.
Further, let I, be the same moment of inertia when the
center mass is at the origin. I, is known as the cano-
nical moment. We will relate to Iy, I, 1,11, I,
I, I, I, and I, in a similar fashion. The parallel axis
theorems, (see Ref. [12]), provide the relations between
the values of I, Iy, I, Iy, I.;, I, and I, Ly, I, Ly,
I,;, and I,.. From the parallel axis theorems, I, = I, +
/%(y% + zg) and similar equations hold for all the other
values. We only consider canonical moments in the
examples and tables of Section 6.

In order to avoid numerical computation errors due to
the fact that I, could be much larger than I, we proceed
as follows. After the pre-computation of Eq. (15), we

Table 1
Moments of a ship hull shown in Fig. 1

shift the parametric domain of the object so that its
center mass is as close as possible to the origin. Denote
by {#}, {#/}, and {#} the knot sequences corresponding
to the directions of x, y, and gz, respectively. Let
(., tjvc ,ti) = (| x.}, [yl lz.)). Finally, compute the moments
of the objects around (¥, — £,y — 1,z — 1) In
Section 6, we refer to the computation of the integrals
in Eq. (15) as pre-computation or table construction as it
could be conducted off-line and to all other operations as
the computation of the moments, that are conducted in
real time.

6. Experimental results

We have computed the moments of several free-form
surfaces as well as trivariate based geometry. We have
employed the Irit [6] modeling environment in our imple-
mentation and experiments that are presented in this section.
We have analyzed the behavior of our algorithms on trivari-
ate objects such as a human head, and primitive trivariate
shapes such as spheres, as well as bivariate geometry such
as a ship hull.

We have computed the first and second order moments of
inertia of a ship hull, see Refs. [16,17] for the data set. This

Mass L I, I, L, I Iy,
6325.3 667.49 297.11 6286.8 —3.3276x 107" 5.2063%x 107" 17,442
Table 2
Trivariate methods based, discrete, and analytic computations of moments of a sphere
r Patch Trivariate Discrete Analytic

Mass Ly=1,=1, Time (s) Mass L.=1,=1, Time (s) Mass Iy=1,=1,
12 243 111.30 400.9 0.066 111.30 396.3 0.01 113.10 407.2
172 48° 112.79 406.5 0.518 112.79 405.3 0.064 113.10 407.2
12 96° 112.98 406.7 4.082 112.98 406.4 0.545 113.10 407.2
1/8 128° 266.73 1712 10.44 266.73 1701 1.338 268.08 1716
1/4 1283 2141.6 54,360 10.54 2141.6 54,771 1.327 2144.7 54,903
12 128° 17,155 1757 x 10° 10.41 17,155 1756 x 10° 1.35 17,157 1757 x 10°




Table 3

Trivariate methods based, discrete, and analytic computations of moments of a cylinder

Analytic

Discrete

Trivariate

Patch

h

Ly

Mass

Time (s)

I xx

Mass

Time (s)

Yy

I)\X

Mass

402.1

201.06 4490

0.012

364.7

387.9

397.6
6157

2028 x 102

4109
4325

189.98

0.074

372.6

389.9

398.1
6189

189.98 4117
2030 x 10?

162X 64
322x 128

172

402.1

4490
4490
20,374

6520 % 102

201.06

0.079

196.70
199.5
780.61
6359.9
51,195

0.614

4327
4423
19,244

6359 % 10?

196.70

172

402.1
6434

2059 x 10?

201.06

0.655

4422
19,211

6356 % 10°

4.901
20.85

199.53

642 % 256
128% % 256
1282 % 256
1282 256

1
1/4

172
1/8
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804.25

6434
51,472

2.641

780.61
6359.9
51,195

2.612

20.98

172

1/4

6588 x 10°

2086 x 10*

6543 % 10° 2.604

2061 x 10*

6546 % 10° 21.10

2061 x 10*

1

172

surface was modeled as a bicubic B-spline surface of size
8 X 8 mesh. The surface has a fixed thickness set to it
(2 inches thick for a total length of shown part of 384 feet).

The computation consisted of two steps. First, we
computed the volume and the first order moments, and
translated the center of mass of the ship hull into the origin.
In the second step we computed the moments of second
order.

Fig. 1 shows the surface of a ship hull centered at the
origin. Table 1 presents the mass and the second order
computed moments. I, and I, are virtually zero due to the
symmetry of the shape.

We have also computed the moments of inertia with
the presented trivariate based method, of several primi-
tives such as spheres and cylinders, as well as complex
volumetric data such as a medical scan of a human head
and a human knee. The results were compared to the
straightforward discrete computation approach, in which
we computed the moments of the objects by summing
up over all the voxels and taking into account the
distances of the voxels to the origin. Moreover, our
results were compared to the analytic solution, when-
ever available. This comparison allows us to analyze the
accuracy of our model. Moreover, as will be shortly
shown, not only have we been able to evaluate the
moments directly from the trivariate, but the trivariate
based methods provide a better approximation, as
compared to the discrete approach.

We have executed our program on a SUN Ultra-Enter-
prise E4500. The pre-processing stage time is bounded by
0.19 ms for the most complex patch, that consists of
128 X 128 X 256 scalar values.

In the following tables, the spheres and the cylinders are
characterized by radius r and height 4. All the trivariate
patches of the spheres and cylinders are cubes with a unit
size.

In Table 2, the moments of inertia of six different spheres
are compared. Here, we have that I,, =I,=1I,=0. The
computation times of the algorithm based on trivariate
methods and the times required for the discrete method
are also provided in seconds.

In Table 3, the moments of inertia of six cylinders are
compared. Again, here we have that I,, = I,, = I,,= 0. The
computation times of the algorithm based on the introduced
trivariate methods and the times required for the discrete
method are also provided in seconds.

We also employ two real life examples—a human head
and a human knee. The scalar values that were provided in
these data sets were assumed to reflect the mass. While not
necessarily the case, one can always map these scalar values
that hint on the tissue type into the actual mass.

In Table 4, we employ the algorithm of the computations of
moments on a real scanned image of a human head (see Fig. 2).
While our algorithm needs 4.368 s to compute the moments,
the discrete algorithm needs 0.503 s for the same task. The
time required to modify one scalar coefficient and re-evaluate
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Table 4
Trivariate methods based computations of moments of a human head

Patch Mass I, I, I, I, I

128% % 54 2436 % 10* 3.920 x 10" 2.779 x 10" 5514 % 10" —1.837x 10° 7.137 % 107 —1.334x10°
Table 5

Trivariate methods based computations of moments of a human knee

Patch Mass Iy I, I, I, I,

128% X 63 3.853%x10° 6.607 x 10" 5.290x 10" 9.351x 10" —4.873 % 10° —2.341 % 10’ —4.296 % 10°

the new moments of the object as a result of this single coeffi-
cient change is 8.37 ms. In Table 5, we present the results of
computations on a human knee (see Fig. 3). While the trivari-
ate based method needs 4.94 s to compute the moments, the
discrete method requires 0.58 s for the same task.

Fig. 2. A human head of which moments are computed and shown in
Table 4.

7. Conclusions and future work

In the volumetric scheme, in order to compute a
certain moment we do not need to compute all the
lower order moments. Our experimental results in
Section 6 show that the proposed algorithms result in
a direct evaluation scheme of moments that is also more
robust and accurate, where the errors of computation for
several objects are presented in the tables of Section 6.
Moreover, the volumetric scheme is equally valid,
regardless of the existence of holes in the object or
even discontinuities or disjoint parts.

Finally, while in both schemes we have considered
mostly the computation of moments of second order,
the generalization for moments of arbitrary orders is
technical. Future work will also deal with the possibility
of the generalization to objects in higher dimensions.

Fig. 3. A human knee of which moments are computed and shown in
Table 5.
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