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Minimizing the total proje
tion of a set of ve
tors,with appli
ations to Layered Manufa
turingMan Chung Hon� Ravi Janardan�y J�org S
hwerdtzxMi
hiel SmidzxFebruary 1, 2001Abstra
tIn Layered Manufa
turing, a three-dimensional polyhedral solid isbuilt as a sta
k of two-dimensional sli
es. Ea
h sli
e (a polygon) isbuilt by �lling its interior with a sequen
e of parallel line segments (ofsome small non-zero width), in a pro
ess 
alled hat
hing. A 
riti
alstep in hat
hing is 
hoosing a dire
tion whi
h minimizes the numberof segments. In this paper, this problem is approximated as the prob-lem of �nding a dire
tion whi
h minimizes the total proje
ted lengthof a 
ertain set of ve
tors. EÆ
ient algorithms are proposed for thelatter problem, using te
hniques from 
omputational geometry. Exper-imental and theoreti
al analyses show that this approa
h yields resultsthat approximate 
losely the optimal solution to the hat
hing prob-lem. Extensions of these results to several related problems are alsodis
ussed.1 Introdu
tionThis paper addresses a geometri
 problem motivated by Layered Manufa
-turing (LM), whi
h is an emerging te
hnology that allows the 
onstru
tion of�Department of Computer S
ien
e & Engineering, University of Minnesota, Minneapo-lis, MN 55455, U.S.A. fhon,janardang�
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Figure 1: Hat
hing a polygonal sli
ephysi
al prototypes of three-dimensional parts dire
tly from their 
omputerrepresentations, using a \3D printer" atta
hed to a personal 
omputer. LMprovides an additional level of physi
al veri�
ation by allowing the designerto \feel and tou
h" the model, and makes possible the dete
tion of design
aws that may have otherwise gone unnoti
ed. It is used extensively in theautomotive, aerospa
e, and medi
al industries, among others [5℄.The basi
 idea behind LM is very simple. A dire
tion is �rst 
hosen toorient the 
omputer model suitably. The model is then sli
ed with a setof equally spa
ed horizontal planes, resulting in a sta
k of 2-dimensionalpolygons. Starting from the bottom, ea
h sli
e is sent to the LM ma
hineand built on top of the layers below it. There are several di�erent wayshow this pro
ess is 
arried out physi
ally. One parti
ular implementation isthrough a pro
ess 
alled Stereolithography [5℄. Here the model is built in avat of liquid whi
h hardens when exposed to light. A laser is used to tra
ethe boundary of ea
h sli
e and then �ll in its interior via a series of parallelline segments (Fig. 1); this pro
ess is 
alled hat
hing. Another pro
ess 
alledFused Deposition Modeling hat
hes the sli
es by depositing �ne strands ofmolten plasti
 via a nozzle [6℄.The hat
hing pro
ess in LM in
uen
es the pro
ess 
ost and build timequite signi�
antly. For instan
e, in Stereolithography, the number of timesthe laser's path hits the sli
e boundary is proportional to the number of linesegments. It is important to keep this quantity small sin
e it determineshow often the laser has to de
elerate and stop, 
hange dire
tion, and thena

elerate; frequent starts and stops are time-
onsuming and redu
e the lifeof the laser. The number of line segments 
an be kept small by pi
king asuitable hat
hing dire
tion. We de�ne this problem formally in the next2
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Figure 2: H(d) = 10. Noti
e that both lines `1 and `2 
ontribute 1 segment.se
tion.1.1 The hat
hing problem and its approximationA sli
e is a simple polygon P (possibly with holes) in the 2-dimensionalplane. Let Æ be the width of the \tool-tip" (e.g., the laser in Stereolithog-raphy or the nozzle in Fused Deposition Modeling). Let d be a unit ve
torin the plane, and `0(d) be the line through the origin with dire
tion d; d isthe hat
hing dire
tion. Let L(d) be the set of all lines that are parallel to`0(d) and whose distan
es to `0(d) are multiples of Æ. The interse
tion ofany line ` in L(d) with polygon P is either empty, or 
onsists of a 
olle
tionof points and/or disjoint line segments of non-zero length. We denote byS` the set 
onsisting of the line segments in the interse
tion between ` andP. Ea
h segment in S` is a hat
hing segment and ` is the 
enterline of thesegment. We de�ne H(d) to be the sum of the 
ardinalities of the sets S`,taken over all the lines ` in L(d) (Fig. 2). That is,H(d) = X`2L(d) jS`j :The optimization problem 
an be stated as follows:Problem 1 (Optimum hat
hing) Given a simple n-vertex polygon P (pos-sibly with holes), 
ompute a hat
hing dire
tion d su
h that H(d) is mini-mized. 3
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Figure 3: d is the hat
hing dire
tion. The number of times a tool with anin�nitesimally small tip runs into an edge e is proportional to the length ofe's proje
tion perpendi
ular to d.Suppose that the width Æ of the tool-tip is in�nitesimally small. Then,given any hat
hing dire
tion d, the number of times a 
enterline runs intoan edge e of P is proportional to the length of e's proje
tion perpendi
ularto d. Thus the solution to the hat
hing problem 
an be approximated by�nding a dire
tion whi
h minimizes the total length of the proje
tions of theedges of P onto a line perpendi
ular to this dire
tion. (Fig. 3.) Clearly thesmaller Æ is, the better is the approximation.In this setting, the length of the proje
tion of an edge is equal to theabsolute value of the dot produ
t of the outer normal of the edge with d,where the normal has the same length as the edge and is translated to theorigin. (Fig. 4.) It will be 
onvenient to work with these normals ratherthan the edges of P. The use of normals also fa
ilitates the generalization ofour dis
ussion later to higher dimensions. Therefore, as an approximationto the original hat
hing problem, we have:Problem 2 (Minimum proje
tion) Let P be an n-vertex simple polygon(possibly with holes). Let ne be the outer normal of ea
h edge e of P, wherene has the same length as e and begins at the origin. Let S be the set of theseouter normals. Find a unit ve
tor d su
h that Pne2S jne � dj is minimized.Note that Problem 2 depends only on the lengths and orientations of theedges of the original polygon, and not how they 
onne
t to ea
h other inthe polygon. This implies that, if we have an algorithm for Problem 2, then4
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Figure 4: A simple polygon and the 
orresponding set of outer normalstranslated to the origin.we 
an also use it to �nd a globally optimal hat
hing dire
tion for all thelayers: we proje
t onto the plane the normals 
orresponding to the edgesfrom all layers and run our algorithm on them.1.2 ContributionsWe present two algorithms to solve Problem 2 in O(n logn) time and O(n)spa
e. The �rst algorithm (Se
tion 2) 
onstru
ts a new 
onvex polygonwhose edges 
onsist of the normals of S. The dire
tion sought in Problem 2turns out to be the dire
tion whi
h minimizes the width of this 
onvexpolygon, whi
h 
an be found eÆ
iently. The se
ond algorithm (Se
tion 3)sidesteps expli
it 
onstru
tion of the 
onvex polygon. Instead it identi�es n
andidates for the optimal dire
tion, examines them in turn, and 
omputesthe total proje
tion for ea
h using an eÆ
ient in
remental update s
heme.This algorithm has the advantage that it works on any set of ve
tors, notjust those 
orresponding to the edge normals of a simple polygon; we willuse this fa
t in Se
tion 6. Moreover, this algorithm 
an be generalized easilyto higher dimensions.Our algorithms for Problem 2 yield an approximate solution to Prob-lem 1. We investigate the quality of this approximation both theoreti
allyand experimentally. Our theoreti
al analysis, presented in Se
tion 4, showsthat, under reasonable assumptions, the number of hat
hing segments pro-du
ed by the approximation algorithm is only a 
onstant times more thanthe minimum number of hat
hing segments. We have also implemented the5



algorithm of Se
tion 3 and experimented with it on real-world LM modelsobtained from industry. These results, presented in Se
tion 5, show that ouralgorithm is signi�
antly faster than an exa
t algorithm [11℄ for Problem 1,and yet generates only a slightly larger number of hat
hing segments.As dis
ussed in Se
tion 6, our algorithm for Problem 2 also yields eÆ
ientsolutions to several related problems in LM. These in
lude approximationalgorithms for (i) a weighted version of Problem 1, (ii) optimal hat
hingalong two dire
tions, and (iii) hat
hing to minimize the so-
alled stair-steperror in a sli
e (similar to antialiasing in 
omputer graphi
s). We also dis-
uss, in Se
tion 7, the generalization and solution of Problem 2 in higherdimensions.1.3 Related WorkTo evaluate the performan
e of our approximation algorithm, we have de-signed and implemented an algorithm whi
h solves Problem 1 exa
tly; thiswork is reported in a 
ompanion paper [11℄. In essen
e, this algorithm worksby performing a rotational sweep of the polygon and dynami
ally maintain-ing the value of H(d) during the sweep. Although 
on
eptually simple, thealgorithm involves extensive 
ase analysis. (To keep the present paper to areasonable length, we omit a detailed dis
ussion of the exa
t algorithm hereand refer the reader to [11℄. However, a brief 
omparison of the performan
eof the exa
t and approximation algorithms is given in Se
tion 5.)We note that an algorithm similar to our �rst algorithm in Se
tion 2was dis
overed independently by Sarma [10℄ in the 
ontext of planning anoptimal path for milling ma
hines.2 Minimizing the total proje
ted length of a sim-ple polygonRe
all that our goal is to solve Problem 2. We �rst repla
e the ve
tors inS that point in the same dire
tion by their sum. We then sort the ve
torsin 
ir
ular order around the origin and walk through this list. During thewalk we maintain a 
hain of ve
tors; we initialize this 
hain to empty at thebeginning of the walk. When we en
ounter a ve
tor in S during the walk,we put it onto the 
hain, with its tail at the head of the old 
hain (Fig. 5).It is easy to see that Pe ne is zero, sin
e P is 
losed. Indeed, we 
an\ve
torize" ea
h edge of P by tra
ing its boundary so that the interior of Pis always to the left of the boundary. Ea
h edge e is assigned a ve
tor, ve,6
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PSfrag repla
ementsd Figure 5: Doing a 
ir
ular walk to 
onstru
t a 
onvex polygon.whose dire
tion is parallel to e, and whose length is the same as that of e.The outward normal ne of e is equal to T (ve), where T is the linear operatorwhi
h turns ve
tors 90 degrees 
lo
kwise; i.e., T =  0 1�1 0 !. Therefore,Pe ne =Pe T (ve) = T (Pe ve) sin
e T is linear. Sin
e P is 
losed, we havePe ve = 0. (That is, we always return to where we started when we tra
eout the boundary of a 
losed polygon.) This implies thatPe ne = T (0) = 0.Sin
e the ve
tors in the set S sum to zero, we will get a polygon, Q, atthe end of our walk. Moreover, Q is 
onvex be
ause we visited the ve
torsin the sorted order of the slopes of the 
orresponding edges of P. (Thisapproa
h was dis
overed independently in [10℄.)Now, for any ne 2 S, jne � dj is the length of ne proje
ted in the dire
tionperpendi
ular to d. Let H and L be the two extreme verti
es of Q indire
tion d. These verti
es partition the boundary of Q into two 
hains(Fig. 6). Note that when Chain 1 is proje
ted in the dire
tion perpendi
ularto d, no two of its edges overlap, ex
ept at their endpoints; similarly forChain 2. Consider the lines through H and L that are perpendi
ular tod and en
lose Q; the distan
e between these lines is 
alled the width of Qperpendi
ular to d.From the pre
eding dis
ussion, it follows thatPe jne � dj is just twi
e thewidth of Q in the dire
tion perpendi
ular to d, for any dire
tion d. There-fore, the minimizing dire
tion in Problem 2 
an be found by determiningthe dire
tion that minimizes the width of Q. We 
an 
ompute the minimumwidth of Q by using the algorithm given in [4, 12℄, whi
h takes O(n logn)time and uses O(n) spa
e. 7
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Figure 6: A set of ve
tors and the resulting 
onvex polygon. The sum of theabsolute values of the dot produ
ts of the ve
tors with respe
t to dire
tiond is twi
e the width of the 
onvex polygon in the dire
tion perpendi
ular tod.Theorem 1 Problem 2 
an be solved in O(n logn) time using O(n) spa
e.As noted in the dis
ussion leading up to Problem 2 in Se
tion 1.1, thedire
tion d in Theorem 1 
an be used as an approximation to the optimalhat
hing dire
tion sought in Problem 1.3 An alternative algorithmThe algorithm in Se
tion 2 is eÆ
ient, but it is very diÆ
ult to generalizeto higher dimensions. In the plane, we 
onstru
t a 
onvex polygon withedge orientations and lengths spe
i�ed by the original polygon. In higherdimensions, a similar approa
h would require the 
onstru
tion of a 
onvexpolytope with pres
ribed fa
et orientations and areas. Su
h a polytopealways exists by a beautiful theorem of H. Minkowski [2℄. However, we arenot aware of any 
ombinatorial algorithm that expli
itly 
onstru
ts su
h apolytope eÆ
iently.In this se
tion, we present another approa
h to Problem 2, whi
h doesnot require the 
onstru
tion of the 
onvex polygon. It has the advantagethat it 
an be generalized easily to arbitrary dimensions, as we will see inSe
tion 7. Moreover, it also works for more general sets of ve
tors than8
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ements
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Figure 7: Pi
king a 
andidate dire
tion, d, and re
e
ting ve
tors.those derived from the edge normals of a simple polygon|a fa
t we will usein Se
tion 6.Therefore, in this se
tion, we will assume that S is a set of n arbitraryve
tors in the plane, where ea
h ve
tor begins at the origin. We wish to 
om-pute a dire
tion d su
h thatPv2S jv � dj is minimized. We pi
k an arbitraryunit ve
tor d as a 
andidate dire
tion and draw a line perpendi
ular to dthrough the origin. This line 
uts the plane into two half-planes. The ve
torsv 2 S that point \upward" (i.e., those that are in the same 
losed half-planeas d) generate a non-negative dot produ
t with d. However, those pointing\downward" (i.e. those lying in the 
omplement of the above half-plane),generate a negative dot produ
t with d. Sin
e we are interested in the sumof the absolute values of the dot produ
ts, we must 
orre
t the dot produ
tsof the latter ve
tors with a minus sign. This 
orresponds to re
e
ting theseve
tors through the origin. Therefore, we repla
e the downward-pointingve
tors with their re
e
ted 
opies (Fig. 7). We 
all this new set of ve
tors~S. All the ve
tors ~v in ~S lie in the same 
losed half-plane as d. ThereforePv2S jv � dj redu
es to P~v2 ~S (~v � d). (Note that we no longer need to useabsolute value signs in the sum.) Furthermore, P~v2 ~S(~v �d) = �P~v2 ~S ~v� �d.In other words, we sum the ve
tors in ~S and take the dot produ
t of the9
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PSfrag repla
ementsdFigure 8: Ve
tors and their asso
iated perpendi
ular 
utting lines. Crossingthe point 5, where the 
utting line of ve
tor 5 
uts the unit 
ir
le, requiresthat we 
ip ve
tor 5 from its 
urrent dire
tion to the opposite one.resulting ve
tor,P~v2 ~S ~v, with d. If no ve
tor of ~S is on the 
utting line, thennothing prevents us from rotating d away from P~v2 ~S ~v, thereby de
reasingthe dot produ
t P~v2S ~v makes with d. We 
an keep doing this until oneof the ve
tors ~v is on the 
utting line perpendi
ular to d. Now any furthermovement of d will 
ause ~v to go to the other side of the 
utting line.Thereafter, the 
ontribution of (the re
e
tion of) ~v will 
ause the total dotprodu
t to in
rease. Thus, the position of the 
utting line that 
oin
ideswith one of the input ve
tors must be a lo
al minimum for the total dotprodu
t.We 
an updateP ~S ~v eÆ
iently if we visit the ve
tors in a 
ir
ular order.Spe
i�
ally, ea
h ve
tor ~v has asso
iated with it two regions, separated bythe line perpendi
ular to ~v (Fig. 8). In our walk, whenever we pass this line,we know that the asso
iated ve
tor's 
ontribution to the sum 
hanges sign.If ~vi is the asso
iated ve
tor, we subtra
t 2~vi fromP ~S ~v: one 
opy to take ito� from the sum, and another 
opy to insert it ba
k in with a negative sign.(With this approa
h, it is suÆ
ient to walk around half the 
ir
le, from d to�d.) At ea
h event, we use the newly updated ve
tor sum to re-
al
ulatethe total dot produ
t. Sin
e the update 
an be done in O(1) time, we 
an�nd the minimum in O(n) time given the 
ir
ular list of ve
tors. The totalrunning time is dominated by the time to prepare the list itself, in this 
asethe O(n log n) time for sorting. The spa
e requirement is O(n). This yieldsthe following result, whi
h generalizes Theorem 1.Theorem 2 Let S be a set of n arbitrary ve
tors in the plane, where ea
hve
tor begins at the origin. A dire
tion d whi
h minimizes Pv2S jv � dj 
an10



be 
omputed in O(n logn) time using O(n) spa
e.4 Analyzing the quality of the approximationWe investigate how well our solutions to Problem 2 approximate the solutionto Problem 1.As before, let n be the number of edges in P, e any edge of P, d anydire
tion (unit ve
tor) in the plane, and Æ > 0 the width of ea
h hat
hingsegment (i.e., the distan
e between adja
ent 
enterlines). Additionally, wede�ne the following:Proje(d?) : the length of the proje
tion of e onto theline perpendi
ular to d,Proj(d?) : Pe Proje(d?),Cute(d) : the number of times e is 
ut by 
enterlinesin dire
tion d,Cut(d) : the total number of 
uts made by 
enterlineson the boundary of P.Note that Cut(d) is not ne
essarily equal to PeCute(d); if a 
enterlinepasses through a vertex, it is 
ounted only on
e, in Cut(d), for the two edgesthat share the vertex.We have (Cute(d)� 1) Æ � Proje(d?) < (Cute(d) + 1) Æ: (1)The lower bound in the above inequality o

urs if there are 
enterlinesthat go through the two verti
es of e. The upper bound o

urs if the 
en-terlines just miss the two verti
es (Fig. 9).Thus, Proje(d?)Æ � 1 < Cute(d) � Proje(d?)Æ + 1: (2)Summing inequality (2) over all n edges, we getXe  Proje(d?)Æ � 1! <Xe Cute(d) �Xe  Proje(d?)Æ + 1! ;i.e., Proj(d?)Æ � n <Xe Cute(d) � Proj(d?)Æ + n: (3)11



PSfrag repla
ements e1 e2Proje1(d?) Proje2(d?) dÆ
(a) (b)Figure 9: (a) Edge e1 is 
ut by four 
enterlines and both of e's verti
es areon the 
enterlines. The proje
ted length of e1, in dire
tion d, is exa
tly 3Æ;this 
orresponds to the lower bound in inequality (1). (b) Edge e2 is also
ut by four 
enterlines. Its proje
ted length is more than 3Æ, but less than5Æ; this 
orresponds to the upper bound in inequality (1).ClearlyCut(d) �PeCute(d), sin
e every 
ut that 
ontributes to Cut(d)has to 
ut some edge, and thus gets 
ounted in PeCute(d). However, itmay also happen that every vertex gets 
ut by a 
enterline, so this 
ut gets
ounted twi
e in PeCute(d). Therefore, we haveCut(d) �Xe Cute(d) � Cut(d) + n: (4)Combining inequalities (3) and (4), we have, for any d,Proj(d?)Æ � 2n < Cut(d) � Proj(d?)Æ + n;or �2n < Cut(d)� Proj(d?)Æ � n: (5)Let d
 be the dire
tion d whi
h minimizes Cut(d), and let dp be thedire
tion d whi
h minimizes Proj(d?). Note that Cut(dp) � Cut(d
), byde�nition of d
 and dp. Thus,0 � Cut(dp)� Cut(d
) =  Cut(dp)� Proj(d?p )Æ !+ Proj(d?p )Æ � Proj(d?
 )Æ !�12



 Cut(d
)� Proj(d?
 )Æ ! :Sin
e inequality (5) applies to any dire
tion d, the �rst and the thirdterms on the right-hand side above 
an be 
ombined to give:0 � Cut(dp)�Cut(d
) < 3n+  Proj(d?p )Æ � Proj(d?
 )Æ ! ;i.e., 0 � Cut(dp)� Cut(d
) < 3n; (6)sin
e Proj(d?p )� Proj(d?
 ) � 0 by de�nition of d
 and dp.From inequality (6), it follows that1 � Cut(dp)Cut(d
) < 1 + 3nCut(d
) :If the number of 
uts is too small, features will be lost and the modelwill not be a faithful repli
a of the original. Realisti
ally, it is reasonable toassume that Cut(d
) � kn, where k � 1. This is true if, for instan
e, manyedges of the polygon are 
ut at least k times. In this 
ase,1 � Cut(dp)Cut(d
) < 1 + 3k :If we further assume that in dire
tions dp and d
 ea
h edge is 
ut in itsinterior only, then Cut(d
) is twi
e the minimum number of hat
hing seg-ments and Cut(dp) is twi
e the number of the hat
hing segments generatedby our algorithm. (Thus, d
 and dp are the dire
tions sought in Problem 1and Problem 2, respe
tively.) Therefore, the number of hat
hing segmentsgenerated by our algorithm is less than 1+3=k times the minimum numberof hat
hing segments. That is,1 � H(dp)H(d
) < 1 + 3k :Indeed, if the latter assumption holds, then the above inequality 
an bestrengthened to 1 � H(dp)=H(d
) � 1 + 2=k. This is be
ause we now haveCut(d) =PeCute(d). Substituting this into inequality (3) and simplifyingas above gives the stated bound. 13



model z (in
hes) #verti
es 
omputed dir.daikin trt321 0.039 57 72:9Æ2.769 662 110:6Æ4.329 575 32:7Æimpeller 0.579 208 59:1Æ1.489 412 178:3Æ2.799 405 150:0Æmj 0.029 32 12:2Æ1.509 52 78:8Æ2.029 64 93:1ÆTable 1: Single-layer runs on some polyhedral models. The 
omputed di-re
tion is measured in degrees, 
ounter
lo
kwise from the positive x-axis.The running time in all the models was less than 0.01 se
onds on a SunUltraSpar
IIi workstation with a 440 MHz CPU and 256 MB of RAM.5 Experimental ResultsWe implemented our algorithm from Se
tion 3 in C++, and tested it onsli
es generated from real-world polyhedral models we obtained from Strata-sys, In
., a Minnesota-based world-leader in LM. The models were given inthe STL format, whi
h is an unordered list of fa
ets, ea
h spe
i�ed by itsthree verti
es and outward-dire
ted unit-normal. We used the Qui
kSli
e1program provided by Stratasys to sli
e ea
h model, with layer-to-layer dis-tan
e 
hosen to be 0.01 in
h. Ea
h su
h layer was identi�ed by its z 
oordi-nate and represented by its 
ontour 
y
les, whi
h were given as sequen
es ofverti
es. We ran our program on layers 
hosen at 
ertain heights z. Table 1shows our results and Figure 10 shows some sample layers.To evaluate the performan
e of our algorithm, we also designed and im-plemented, in [11℄, an exa
t algorithm for Problem 1. The exa
t algorithm is
on
eptually simple but involves extensive 
ase analysis (as many as seventy-two 
ases). We tested both algorithms extensively on sli
es generated fromreal-world polyhedral models. In our experiments, our approximation al-gorithm generated at most fourteen per
ent more hat
hing segments thanthe exa
t algorithm. This suggests that the analysis in Se
tion 4 might betoo 
onservative. Our approximation algorithm also ran signi�
antly fasterthan the exa
t one. We refer the reader to [11℄ for more details.We remark that our approa
h also works, without any 
hanges, on poly-1Qui
kSli
e is a registered trademark of Stratasys, In
.14



daikin trt321 at z=2.769 impeller at z=1.489 mj at z=2.029Figure 10: S
reen shots of our algorithm running on a single layer, fordi�erent models. The long lines shown inside ea
h window is the resultinghat
hing dire
tion. The sum of the lengths of proje
tions of the edges ontothe line perpendi
ular to the hat
hing dire
tion is minimal. The results aredisplayed using the LEDA C++ library [8℄.
model #layers 
omputed dir. time (se
.)daikin trt321 515 22:5Æ 2.28frame 29 555 180:0Æ 1.77impeller 374 146:9Æ 1.10mj 322 90:0Æ 0.14myspeedo 323 0:3Æ 0.55nose02 457 86:3Æ 0.22rd yelo 338 135:0Æ 0.06sa600280 529 90:0Æ 1.61tod21 795 146:2Æ 1.74Table 2: All-layers runs on some polyhedral models. The 
omputed di-re
tion is measured in degrees, 
ounter-
lo
kwise from the positive x-axis.Experiments were done on a Sun UltraSpar
IIi, with a 440 MHz CPU and256 MB of RAM. 15



daikin trt321 frame 29 impeller

mj myspeedo nose02

rd yelo sa600280 tod21Figure 11: S
reen shots of our algorithm running on all layers of di�erentmodels. The viewpoint is from the positive z dire
tion.16



gons with holes. This is be
ause we only need information about the orien-tation and lengths of the edges; we do not need information about how theedges 
onne
t to ea
h other.We also implemented the idea dis
ussed at the end of Se
tion 1.1 to
ompute a globally optimal dire
tion for the entire model. Table 2 showssome of our results, and Figure 11 shows some of our models, as viewedalong the positive z dire
tion. The a
tual running time was very small; the
omputation seldom took more than 2 se
onds.6 Other appli
ations in LMWe des
ribe some related problems in LM that 
an be solved with our ap-proa
h.6.1 Weighted hat
hingDuring hat
hing it may be desirable to prote
t 
ertain edges of the polygonP from being hit too often by the tool, as these edges may be 
riti
al to theappearan
e or fun
tion of the part. We 
an a

omplish this by assigning anon-negative weight, we, to ea
h edge e, with higher weights on the more
riti
al edges. Using the notation in Se
tion 1.1, let~H(d) = X`2L(d)W` jS`j ;where W` is the sum of the weights, we, of the edges e that are hit by line `.This yields a weighted version of Problem 1, where the goal is to �nd a dire
-tion d whi
h minimizes ~H(d). The 
orresponding weighted approximationproblem is similar to Problem 2, ex
ept that the fun
tion to be minimizedis Xne2S we jne � dj :Sin
e this fun
tion is equal to Pne2S j(wene) � dj, we 
an solve the ap-proximation problem using the algorithm of Se
tion 3, after we s
ale ea
hve
tor ne by we. (Re
all that this algorithm works for any set of ve
tors.)This yields a dire
tion whi
h approximates the optimal dire
tion sought inthe weighted version of the hat
hing problem.Theorem 3 The weighted version of Problem 2, with obje
tive fun
tionPne2S we jne � dj, 
an be solved in O(n log n) time using O(n) spa
e.17



PSfrag repla
ements d
d0 �Figure 12: The sli
e is built by hat
hing along two dire
tions that make anangle of �, 0 < � � 90Æ, with ea
h other.6.2 Hat
hing along two pres
ribed dire
tionsTo improve the strength of the manufa
tured part, the polygon 
an behat
hed in a weave-like pattern; i.e. ea
h layer is hat
hed in not one buttwo independent dire
tions d and d0 [5℄. We assume the two dire
tionsmake some �xed angle �, 0 < � � 90Æ, with ea
h other (Fig. 12). This yieldsa \2-dire
tional" version of Problem 1, where the goal is to �nd dire
tionsd and d0, as above, so that the fun
tionX`2L(d) jS`j+ X`2L(d0) jS`jis minimized.The 
orresponding approximation problem is similar to Problem 2, ex-
ept that the obje
tive fun
tion isXne2S �jne � dj+ ��ne � d0��� :As in Se
tion 2, we 
an 
onstru
t a 
onvex polygon Q from the normalve
tors. However, instead of �nding the minimum width of this polygon,our problem now be
omes:Problem 3 (Minimum bounding parallelogram) Given a 
onvex poly-gon Q, with n verti
es, �nd a bounding parallelogram of minimum perimeter,whose adja
ent sides make an angle � with ea
h other, 0 < � � 90Æ.18



PSfrag repla
ements eeu ev uv
Figure 13: Every pie
e of the perimeter of the bounding parallelogram isasso
iated with an edge of the 
onvex polygon.Consider any bounding parallelogram of Q, where the adja
ent edges ofthe parallelogram make an angle � with ea
h other. We asso
iate pie
es ofthe boundary of this parallelogram with the edges of Q, as follows: Let uand v be unit ve
tors in the same dire
tions as the two non-parallel edgesof the bounding parallelogram. (Without loss of generality, assume that vis � degrees 
ounter
lo
kwise from u.) Ea
h edge e of Q 
an be per
eivedas having two 
omponents: a proje
tion, eu, along dire
tion v onto a lineparallel to dire
tion u, and a proje
tion, ev, along dire
tion u onto a lineparallel to dire
tion v. (Fig. 13.) It is easy to see that the sum of the lengthsof these proje
tions over all the edges is the perimeter of the boundingparallelogram.Let e be a ve
tor along edge e, with the same length as e and oriented sothat the polygon is to its left. We 
an write e in terms of the basis ve
torsu and v as: e = au+ bv: (7)Then eu is given by jaj and ev by jbj. Let u? (resp. v?) be u (resp. v)rotated 90Æ 
ounter
lo
kwise. Taking the dot produ
t with u? on both sidesof Equation (7) gives:e � u? = 0 + bv � u? = b �v � u?� :Taking the dot produ
t with v? on both sides of Equation (7) gives:e � v? = au � v? + 0 = a �u � v?� :Therefore eu + ev = jaj+ jbj = ���e � v?���ju � v?j + ���e � u?���jv � u?j :19



PSfrag repla
ements e eu ev� �
mem0e d

Figure 14: Asso
iating pie
es of the boundary of the bounding parallelogramwith edges of the 
onvex polygon. We rotate me 
lo
kwise by � degrees toget m0e, so that keuk = jm0e � dj and kevk = jme � dj.Note that ���u � v?��� = ���v � u?��� = sin �, whi
h is a 
onstant over the entire 
lassof parallelograms whose adja
ent edges make an angle �. We now have:eu + ev = 1sin � ����e � v?���+ ���e � u?���� : (8)We represent the orientation of the parallelogram by the ve
tor u, whi
hwe rename as d. Let us denote byme the outer normal of edge e ofQ;me hasthe same length as e and begins at the origin. Note that ���e � u?��� = jme � dj.But what about the other dot produ
t in Equation (8)? We 
an take 
are ofthis by inserting a new ve
tor m0e, whi
h is me rotated � degrees 
lo
kwise.(Fig. 14.) It is not diÆ
ult to see that ���e � v?��� = jm0e � dj. The advantage ofintrodu
ingm0e is that we 
an now write eu+ev in terms of a single dire
tiond. Spe
i�
ally, eu + ev = 1sin � ���m0e � d��+ jme � dj� : (9)We will hen
eforth ignore the 
onstant fa
tor 1= sin � in Equation (9).We dupli
ate ea
h normal me and rotate it � degrees 
lo
kwise. Using ouralgorithm of Se
tion 2 or Se
tion 3 on this enlarged set of ve
tors we get adire
tion d whi
h minimizes the sum of the absolute values of the dot prod-u
ts in Equation (9). The bounding parallelogram with one side parallel tothe 
omputed dire
tion d and the other rotated � degrees 
ounter
lo
kwisefrom d is the one whi
h minimizes the perimeter among all bounding par-allelograms of Q whose adja
ent sides make the pres
ribed angle �. Thissolves the approximate version of the 2-dire
tional hat
hing problem.Constru
ting Q from P takes O(n log n) time, due to the sorting of thenormals ne of P. Sin
e Q is 
onvex, its normals, me, are already sorted in20




ir
ular order. The �-degree rotations, me, of these normals are in sortedorder, too. Therefore, in O(n) time, we 
an merge the two sets of ve
torsand obtain the 2n normals sorted in 
ir
ular order. The rest of the algorithmtakes O(n) time and O(n) spa
e.Theorem 4 The 2-dire
tional version of Problem 2, with obje
tive fun
-tion Pne2S (jne � dj+ jne � d0j), 
an be solved in O(n logn) time using O(n)spa
e. (Here dire
tions d and d0 make a pres
ribed angle � with ea
h other,0 < � � 90Æ.)If we are given a 
onvex polygon Q to begin with (as opposed to 
on-stru
ting it from a simple polygon P) and wish to solve just Problem 3,then O(n) time and O(n) spa
e suÆ
e, sin
e we 
an dispense with the ini-tial sorting step. Indeed, we 
an solve Problem 3 in O(n) time and O(n)spa
e even if Q is not 
onvex, sin
e we 
an repla
e it by its 
onvex hull inO(n) time [9℄.6.3 Hat
hing to minimize stair-step errorDue to the non-zero width of the tool-tip, the hat
hing pro
ess 
annot al-ways produ
e an exa
t repli
a of the original polygon P; rather, P getsapproximated by a sequen
e of re
tangular strips, i.e., the hat
hing seg-ments. The resulting polygon has a stair-stepped appearan
e, where ea
hedge is approximated as a sequen
e error-triangles (Fig. 15); this is similarto the phenomenon of antialiasing in 
omputer graphi
s. We quantify thestair-step error for P as the sum of the heights of all the error-triangles.Clearly, the stair-step error is a fun
tion of the hat
hing dire
tion. Theproblem we wish to solve is:Problem 4 (Minimum stair-step error) Given a simple n-vertex poly-gon P (possibly with holes), �nd a hat
hing dire
tion whi
h minimizes thestair-step error for P.We note that the notion of stair-step error has been 
onsidered previouslyfor LM in [1, 7℄. However, the fo
us there was on �nding a dire
tion tobuild the three-dimensional model that minimized the stair-step error onthe fa
ets. Here we 
onsider the problem in two dimensions and give a moreeÆ
ient algorithm.We 
onvert this problem to a form where our algorithm from Se
tion 3
an be applied. Let d be a 
andidate hat
hing dire
tion; without loss of21



error-triangle

PSfrag repla
ements

h1h1
h2h3

h4h5 H1e1e1e2e3e4e5 Æ dFigure 15: The polygon is approximated by a sequen
e of hat
hing segments,whi
h results in a stair-stepped appearan
e. The shaded region is an error-triangle. The total height of all the error triangles for this polygon is 4h1 +4h2 + 3h4 + h5.PSfrag repla
ementsve lh� � dFigure 16: The height h of the triangle is jve � dj, where kvek = l=2.generality, assume that d points upwards. Consider (say) edge e1 in Fig-ure 15. It is easy to see, by a simple similarity argument, that the sum ofthe heights of all the error-triangles for e1 equals the height H1 of the largertriangle shown. Let l be the length of e1 and let � be the angle e1 makeswith the horizontal. Then H1 = l 
os � sin � = (l=2) sin 2�. This suggeststhe following approa
h: For every edge e 2 P, we 
reate a ve
tor ve at theorigin, whose length is half that of e and whi
h makes an angle 2� withthe horizontal (Fig. 16). The sum of the heights of all the error-trianglesof e equals jve � dj. Therefore, our problem is to �nd a dire
tion d whi
hminimizesPe2P jve � dj. We 
an use the algorithm of Se
tion 3 to solve thisproblem (re
all that this algorithm works for any set of ve
tors).Theorem 5 Problem 4 
an be solved in O(n logn) time using O(n) spa
e.22



7 Higher dimensionsWe explore the generalization of our algorithm from Se
tion 3 to higherdimensions. Spe
i�
ally, we wish to solve the following problem:Problem 5 (Minimum k-dimensional proje
tion) Given a �nite set,S, of n ve
tors in k-dimensional spa
e, ea
h beginning at the origin, �nd aunit ve
tor d su
h that Pv2S jv � dj is minimized.We pi
k an initial dire
tion d and re
e
t through the origin all ve
torsthat generate a negative dot produ
t with d. We then 
onsolidate thoseve
tors that have the same dire
tion into a single ve
tor. Analogous toSe
tion 3, we argue that the minimizing dire
tion must be simultaneouslyorthogonal to at least k � 1 ve
tors in S. Spe
i�
ally, let d be a 
andidateunit ve
tor and let~Sd = fv j v 2 S and v � d � 0g [ f�v j v 2 S and v � d < 0g.The ve
tor d de�nes a hyperplane Pd = fv 2 Rk j v � d = 0g throughthe origin. All the ve
tors ~v in ~Sd are on the same side of Pd as d. We haveXv2S jv � dj = X~v2 ~Sd (~v � d) = 0�X~v2 ~Sd ~v1A � d:Note that we 
an rotate Pd about the origin su
h that the 
ompositionof the set ~Sd does not 
hange and still redu
e the quantity �P ~Sd ~v� �d. We
an do this until Pd 
ontains some ve
tor of ~Sd. Next we 
an rotate Pdabout this ve
tor without 
hanging ~Sd and 
ontinue to redu
e �P ~Sd ~v� � duntil Pd 
ontains a se
ond ve
tor of ~Sd. And so on until Pd 
ontains somek�1 independent ve
tors of ~Sd. At this point Pd is 
ompletely 
onstrained,sin
e any k � 1 independent ve
tors of ~Sd uniquely determine a hyperplanethrough the origin, and Pd 
annot be rotated further without 
hanging ~Sd.It follows that a ne
essary 
ondition for d to be a minimizing dire
tion isthat it should be perpendi
ular to at least k � 1 ve
tors of ~Sd.The algorithm in higher dimensions is best understood by �rst 
onsider-ing the problem in three dimensions. Let S = fv1;v2; : : : ;vng. Ea
h vi 2 Sdetermines a unique great 
ir
le Ci = fs 2 S2 j s �vi = 0g on the unit sphereS2. Every ve
tor on Ci is orthogonal to vi. From the dis
ussion above, itsuÆ
es to examine only the interse
tions of any 3 � 1 = 2 su
h Ci's. We�x a Ci, 
ompute its interse
tion with ea
h Cj , j 6= i, and sort these in23




ir
ular order on Ci. We pi
k an arbitrary interse
tion point as our �rst
andidate dire
tion d. As in Se
tion 3, we re
e
t through the origin anyve
tor whose dot produ
t with d is negative. Starting from d we walk onthe half-
ir
le of Ci (it does not matter whi
h half) between d and �d, visitthe interse
tion points in 
ir
ular order, and update our ve
tor sum. If the
urrent interse
tion point is the interse
tion of Cj and Ci, we update theve
tor sum by adding �2~vj to it. We 
ompute the new dot produ
t andupdate the minimum if we now have a smaller dot produ
t. We do this forevery vi in S.Note that in the above 
omputation for vi, we would have obtained thesame result if we had �rst proje
ted all the ve
tors in S onto the plane
ontaining Ci, rotated the plane to make it 
oin
ide with the x-y plane,and then used our 2-dimensional algorithm from Se
tion 3. Viewing thepro
ess this way allows us to design an algorithm that handles arbitrary di-mensions by systemati
ally redu
ing the problem's dimension: to solve thek-dimensional problem, we break it up into n subproblems in (k�1) dimen-sions, one per ve
tor vi. The running time for a k-dimensional problem isthus n times that of a (k�1)-dimensional one. Sin
e the 2-dimensional prob-lem takes O(n logn) time, this gives a total running time of O(nk�1 log n).However, the spa
e requirement is still O(n). The algorithm is also highlyparallelizable.We 
an devise a slightly faster algorithm at the expense of more spa
e.Again, it is easiest to �rst dis
uss the approa
h in three dimensions. We�rst 
ompute the arrangement of all the Ci's on the unit sphere, i.e., thesubdivision of the unit sphere determined by the Ci's. This arrangement 
anbe 
omputed in O(n2) time and spa
e [3℄. We visit all the interse
tion points(on, say, the upper hemisphere) by following the edges (
ir
ular ar
s) of thearrangement, update in
rementally the quantity P ~S ~v, and 
ompute its dotprodu
t with the 
urrent dire
tion. In more detail, suppose that we have justarrived at an interse
tion I following a 
ir
ular ar
. This ar
 belongs to thegreat 
ir
le Ci of some ve
tor vi. Let I be the interse
tion between Ci andsome other great 
ir
le Cj . We update P ~S ~v by adding �2vj to it and thentake the dot produ
t of the resulting ve
tor with the dire
tion represented byI. The advantage of using the arrangement is that we avoid the n instan
esof 
ir
ular sorting needed in the previous approa
h. However, the entirearrangement needs to be kept in memory while we sear
h through it. Thisin
reases the spa
e requirement to O(n2) in three dimensions, while therunning time redu
es to O(n2). In k-dimensions, the running time be
omesO(nk�1) at the expense of O(nk�1) spa
e.24



model #fa
ets 
omputed dir. time (se
.)daikin trt321 19402 (-0.47, 0.88, -0.00) 1393.96frame 29 67056 (0, 0, -1) 3656.13impeller 30896 (-0.75, 0.66, -0.00) 4206.27mj 2832 (0.00, 1, -0.00) 17.34myspeedo 16720 (0.00, -0.00, -1) 627.39nose02 5090 (0.06, 1.00, -0.00) 17.92rd yelo 396 (0.00, -0.00, -1) 0.05sa600280 74346 (-0, 0.71, -0.71) 34076.10tod21 1128 (-0, 0, -1) 0.17Table 3: Results from running the 3-dimensional algorithm on normals de-rived from polyhedral models. The 
omputed dire
tion is given as an (x; y; z)triple. Experiments were done on a Sun UltraSpar
IIi, with a 440 MHz CPUand 256 MB of RAM.Theorem 6 Problem 5 
an be solved in k dimensions in time O(nk�1 logn)time using O(n) spa
e, or in O(nk�1) time using O(nk�1) spa
e.We implemented the �rst algorithm above in C++ for k = 3. We ran iton the polyhedral models des
ribed in Table 2 of Se
tion 5 (spe
i�
ally, weused as input to our algorithm the outer normals of the fa
ets of these poly-hedra). Table 3 shows some of the results. As one might expe
t from Theo-rem 6, this algorithm was slower than the ones in Se
tion 5. For instan
e, onthe largest model, sa600280, with about 74,000 fa
ets, the algorithm tookabout nine hours.8 Con
lusions and future workIn this paper, we have seen the role of the proje
tion minimization problem(Problem 2) in unifying seemingly di�erent geometri
 problems in LM undera single framework, leading to eÆ
ient solutions to all of them in one fellswoop. The algorithms are very fast to moderately fast in dimensions twoand three, whi
h is where the 
urrent appli
ations of interest seem to lie.In higher dimensions, the algorithms are probably too slow to be of mu
hpra
ti
al use. One approa
h to improving upon the latter result is to designan eÆ
ient approximation algorithm for the proje
tion minimization prob-lem in higher dimensions. Another dire
tion is to establish a lower boundfor the problem. We leave these problems to future investigation.25
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