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Minimizing the total projetion of a set of vetors,with appliations to Layered ManufaturingMan Chung Hon� Ravi Janardan�y J�org ShwerdtzxMihiel SmidzxFebruary 1, 2001AbstratIn Layered Manufaturing, a three-dimensional polyhedral solid isbuilt as a stak of two-dimensional slies. Eah slie (a polygon) isbuilt by �lling its interior with a sequene of parallel line segments (ofsome small non-zero width), in a proess alled hathing. A ritialstep in hathing is hoosing a diretion whih minimizes the numberof segments. In this paper, this problem is approximated as the prob-lem of �nding a diretion whih minimizes the total projeted lengthof a ertain set of vetors. EÆient algorithms are proposed for thelatter problem, using tehniques from omputational geometry. Exper-imental and theoretial analyses show that this approah yields resultsthat approximate losely the optimal solution to the hathing prob-lem. Extensions of these results to several related problems are alsodisussed.1 IntrodutionThis paper addresses a geometri problem motivated by Layered Manufa-turing (LM), whih is an emerging tehnology that allows the onstrution of�Department of Computer Siene & Engineering, University of Minnesota, Minneapo-lis, MN 55455, U.S.A. fhon,janardang�s.umn.edu . Researh supported, in part, by NSFgrant CCR{9712226.yPortions of this work were done when RJ visited the University of Magdeburg, Ger-many under a joint grant from NSF and DAAD for international researh.zFakult�at f�ur Informatik, Otto-von-Guerike-Universit�at Magdeburg, D-39106 Magde-burg, Germany. fshwerdt,mihielg�isg.s.uni-magdeburg.de .xPortions of this work were done when MS and JS visited the University of Minnesotaunder a joint grant from DAAD and NSF for international researh.1



Figure 1: Hathing a polygonal sliephysial prototypes of three-dimensional parts diretly from their omputerrepresentations, using a \3D printer" attahed to a personal omputer. LMprovides an additional level of physial veri�ation by allowing the designerto \feel and touh" the model, and makes possible the detetion of designaws that may have otherwise gone unnotied. It is used extensively in theautomotive, aerospae, and medial industries, among others [5℄.The basi idea behind LM is very simple. A diretion is �rst hosen toorient the omputer model suitably. The model is then slied with a setof equally spaed horizontal planes, resulting in a stak of 2-dimensionalpolygons. Starting from the bottom, eah slie is sent to the LM mahineand built on top of the layers below it. There are several di�erent wayshow this proess is arried out physially. One partiular implementation isthrough a proess alled Stereolithography [5℄. Here the model is built in avat of liquid whih hardens when exposed to light. A laser is used to traethe boundary of eah slie and then �ll in its interior via a series of parallelline segments (Fig. 1); this proess is alled hathing. Another proess alledFused Deposition Modeling hathes the slies by depositing �ne strands ofmolten plasti via a nozzle [6℄.The hathing proess in LM inuenes the proess ost and build timequite signi�antly. For instane, in Stereolithography, the number of timesthe laser's path hits the slie boundary is proportional to the number of linesegments. It is important to keep this quantity small sine it determineshow often the laser has to deelerate and stop, hange diretion, and thenaelerate; frequent starts and stops are time-onsuming and redue the lifeof the laser. The number of line segments an be kept small by piking asuitable hathing diretion. We de�ne this problem formally in the next2
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Figure 2: H(d) = 10. Notie that both lines `1 and `2 ontribute 1 segment.setion.1.1 The hathing problem and its approximationA slie is a simple polygon P (possibly with holes) in the 2-dimensionalplane. Let Æ be the width of the \tool-tip" (e.g., the laser in Stereolithog-raphy or the nozzle in Fused Deposition Modeling). Let d be a unit vetorin the plane, and `0(d) be the line through the origin with diretion d; d isthe hathing diretion. Let L(d) be the set of all lines that are parallel to`0(d) and whose distanes to `0(d) are multiples of Æ. The intersetion ofany line ` in L(d) with polygon P is either empty, or onsists of a olletionof points and/or disjoint line segments of non-zero length. We denote byS` the set onsisting of the line segments in the intersetion between ` andP. Eah segment in S` is a hathing segment and ` is the enterline of thesegment. We de�ne H(d) to be the sum of the ardinalities of the sets S`,taken over all the lines ` in L(d) (Fig. 2). That is,H(d) = X`2L(d) jS`j :The optimization problem an be stated as follows:Problem 1 (Optimum hathing) Given a simple n-vertex polygon P (pos-sibly with holes), ompute a hathing diretion d suh that H(d) is mini-mized. 3
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Figure 3: d is the hathing diretion. The number of times a tool with anin�nitesimally small tip runs into an edge e is proportional to the length ofe's projetion perpendiular to d.Suppose that the width Æ of the tool-tip is in�nitesimally small. Then,given any hathing diretion d, the number of times a enterline runs intoan edge e of P is proportional to the length of e's projetion perpendiularto d. Thus the solution to the hathing problem an be approximated by�nding a diretion whih minimizes the total length of the projetions of theedges of P onto a line perpendiular to this diretion. (Fig. 3.) Clearly thesmaller Æ is, the better is the approximation.In this setting, the length of the projetion of an edge is equal to theabsolute value of the dot produt of the outer normal of the edge with d,where the normal has the same length as the edge and is translated to theorigin. (Fig. 4.) It will be onvenient to work with these normals ratherthan the edges of P. The use of normals also failitates the generalization ofour disussion later to higher dimensions. Therefore, as an approximationto the original hathing problem, we have:Problem 2 (Minimum projetion) Let P be an n-vertex simple polygon(possibly with holes). Let ne be the outer normal of eah edge e of P, wherene has the same length as e and begins at the origin. Let S be the set of theseouter normals. Find a unit vetor d suh that Pne2S jne � dj is minimized.Note that Problem 2 depends only on the lengths and orientations of theedges of the original polygon, and not how they onnet to eah other inthe polygon. This implies that, if we have an algorithm for Problem 2, then4
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Figure 4: A simple polygon and the orresponding set of outer normalstranslated to the origin.we an also use it to �nd a globally optimal hathing diretion for all thelayers: we projet onto the plane the normals orresponding to the edgesfrom all layers and run our algorithm on them.1.2 ContributionsWe present two algorithms to solve Problem 2 in O(n logn) time and O(n)spae. The �rst algorithm (Setion 2) onstruts a new onvex polygonwhose edges onsist of the normals of S. The diretion sought in Problem 2turns out to be the diretion whih minimizes the width of this onvexpolygon, whih an be found eÆiently. The seond algorithm (Setion 3)sidesteps expliit onstrution of the onvex polygon. Instead it identi�es nandidates for the optimal diretion, examines them in turn, and omputesthe total projetion for eah using an eÆient inremental update sheme.This algorithm has the advantage that it works on any set of vetors, notjust those orresponding to the edge normals of a simple polygon; we willuse this fat in Setion 6. Moreover, this algorithm an be generalized easilyto higher dimensions.Our algorithms for Problem 2 yield an approximate solution to Prob-lem 1. We investigate the quality of this approximation both theoretiallyand experimentally. Our theoretial analysis, presented in Setion 4, showsthat, under reasonable assumptions, the number of hathing segments pro-dued by the approximation algorithm is only a onstant times more thanthe minimum number of hathing segments. We have also implemented the5



algorithm of Setion 3 and experimented with it on real-world LM modelsobtained from industry. These results, presented in Setion 5, show that ouralgorithm is signi�antly faster than an exat algorithm [11℄ for Problem 1,and yet generates only a slightly larger number of hathing segments.As disussed in Setion 6, our algorithm for Problem 2 also yields eÆientsolutions to several related problems in LM. These inlude approximationalgorithms for (i) a weighted version of Problem 1, (ii) optimal hathingalong two diretions, and (iii) hathing to minimize the so-alled stair-steperror in a slie (similar to antialiasing in omputer graphis). We also dis-uss, in Setion 7, the generalization and solution of Problem 2 in higherdimensions.1.3 Related WorkTo evaluate the performane of our approximation algorithm, we have de-signed and implemented an algorithm whih solves Problem 1 exatly; thiswork is reported in a ompanion paper [11℄. In essene, this algorithm worksby performing a rotational sweep of the polygon and dynamially maintain-ing the value of H(d) during the sweep. Although oneptually simple, thealgorithm involves extensive ase analysis. (To keep the present paper to areasonable length, we omit a detailed disussion of the exat algorithm hereand refer the reader to [11℄. However, a brief omparison of the performaneof the exat and approximation algorithms is given in Setion 5.)We note that an algorithm similar to our �rst algorithm in Setion 2was disovered independently by Sarma [10℄ in the ontext of planning anoptimal path for milling mahines.2 Minimizing the total projeted length of a sim-ple polygonReall that our goal is to solve Problem 2. We �rst replae the vetors inS that point in the same diretion by their sum. We then sort the vetorsin irular order around the origin and walk through this list. During thewalk we maintain a hain of vetors; we initialize this hain to empty at thebeginning of the walk. When we enounter a vetor in S during the walk,we put it onto the hain, with its tail at the head of the old hain (Fig. 5).It is easy to see that Pe ne is zero, sine P is losed. Indeed, we an\vetorize" eah edge of P by traing its boundary so that the interior of Pis always to the left of the boundary. Eah edge e is assigned a vetor, ve,6
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PSfrag replaementsd Figure 5: Doing a irular walk to onstrut a onvex polygon.whose diretion is parallel to e, and whose length is the same as that of e.The outward normal ne of e is equal to T (ve), where T is the linear operatorwhih turns vetors 90 degrees lokwise; i.e., T =  0 1�1 0 !. Therefore,Pe ne =Pe T (ve) = T (Pe ve) sine T is linear. Sine P is losed, we havePe ve = 0. (That is, we always return to where we started when we traeout the boundary of a losed polygon.) This implies thatPe ne = T (0) = 0.Sine the vetors in the set S sum to zero, we will get a polygon, Q, atthe end of our walk. Moreover, Q is onvex beause we visited the vetorsin the sorted order of the slopes of the orresponding edges of P. (Thisapproah was disovered independently in [10℄.)Now, for any ne 2 S, jne � dj is the length of ne projeted in the diretionperpendiular to d. Let H and L be the two extreme verties of Q indiretion d. These verties partition the boundary of Q into two hains(Fig. 6). Note that when Chain 1 is projeted in the diretion perpendiularto d, no two of its edges overlap, exept at their endpoints; similarly forChain 2. Consider the lines through H and L that are perpendiular tod and enlose Q; the distane between these lines is alled the width of Qperpendiular to d.From the preeding disussion, it follows thatPe jne � dj is just twie thewidth of Q in the diretion perpendiular to d, for any diretion d. There-fore, the minimizing diretion in Problem 2 an be found by determiningthe diretion that minimizes the width of Q. We an ompute the minimumwidth of Q by using the algorithm given in [4, 12℄, whih takes O(n logn)time and uses O(n) spae. 7
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Figure 6: A set of vetors and the resulting onvex polygon. The sum of theabsolute values of the dot produts of the vetors with respet to diretiond is twie the width of the onvex polygon in the diretion perpendiular tod.Theorem 1 Problem 2 an be solved in O(n logn) time using O(n) spae.As noted in the disussion leading up to Problem 2 in Setion 1.1, thediretion d in Theorem 1 an be used as an approximation to the optimalhathing diretion sought in Problem 1.3 An alternative algorithmThe algorithm in Setion 2 is eÆient, but it is very diÆult to generalizeto higher dimensions. In the plane, we onstrut a onvex polygon withedge orientations and lengths spei�ed by the original polygon. In higherdimensions, a similar approah would require the onstrution of a onvexpolytope with presribed faet orientations and areas. Suh a polytopealways exists by a beautiful theorem of H. Minkowski [2℄. However, we arenot aware of any ombinatorial algorithm that expliitly onstruts suh apolytope eÆiently.In this setion, we present another approah to Problem 2, whih doesnot require the onstrution of the onvex polygon. It has the advantagethat it an be generalized easily to arbitrary dimensions, as we will see inSetion 7. Moreover, it also works for more general sets of vetors than8
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Figure 7: Piking a andidate diretion, d, and reeting vetors.those derived from the edge normals of a simple polygon|a fat we will usein Setion 6.Therefore, in this setion, we will assume that S is a set of n arbitraryvetors in the plane, where eah vetor begins at the origin. We wish to om-pute a diretion d suh thatPv2S jv � dj is minimized. We pik an arbitraryunit vetor d as a andidate diretion and draw a line perpendiular to dthrough the origin. This line uts the plane into two half-planes. The vetorsv 2 S that point \upward" (i.e., those that are in the same losed half-planeas d) generate a non-negative dot produt with d. However, those pointing\downward" (i.e. those lying in the omplement of the above half-plane),generate a negative dot produt with d. Sine we are interested in the sumof the absolute values of the dot produts, we must orret the dot produtsof the latter vetors with a minus sign. This orresponds to reeting thesevetors through the origin. Therefore, we replae the downward-pointingvetors with their reeted opies (Fig. 7). We all this new set of vetors~S. All the vetors ~v in ~S lie in the same losed half-plane as d. ThereforePv2S jv � dj redues to P~v2 ~S (~v � d). (Note that we no longer need to useabsolute value signs in the sum.) Furthermore, P~v2 ~S(~v �d) = �P~v2 ~S ~v� �d.In other words, we sum the vetors in ~S and take the dot produt of the9
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PSfrag replaementsdFigure 8: Vetors and their assoiated perpendiular utting lines. Crossingthe point 5, where the utting line of vetor 5 uts the unit irle, requiresthat we ip vetor 5 from its urrent diretion to the opposite one.resulting vetor,P~v2 ~S ~v, with d. If no vetor of ~S is on the utting line, thennothing prevents us from rotating d away from P~v2 ~S ~v, thereby dereasingthe dot produt P~v2S ~v makes with d. We an keep doing this until oneof the vetors ~v is on the utting line perpendiular to d. Now any furthermovement of d will ause ~v to go to the other side of the utting line.Thereafter, the ontribution of (the reetion of) ~v will ause the total dotprodut to inrease. Thus, the position of the utting line that oinideswith one of the input vetors must be a loal minimum for the total dotprodut.We an updateP ~S ~v eÆiently if we visit the vetors in a irular order.Spei�ally, eah vetor ~v has assoiated with it two regions, separated bythe line perpendiular to ~v (Fig. 8). In our walk, whenever we pass this line,we know that the assoiated vetor's ontribution to the sum hanges sign.If ~vi is the assoiated vetor, we subtrat 2~vi fromP ~S ~v: one opy to take ito� from the sum, and another opy to insert it bak in with a negative sign.(With this approah, it is suÆient to walk around half the irle, from d to�d.) At eah event, we use the newly updated vetor sum to re-alulatethe total dot produt. Sine the update an be done in O(1) time, we an�nd the minimum in O(n) time given the irular list of vetors. The totalrunning time is dominated by the time to prepare the list itself, in this asethe O(n log n) time for sorting. The spae requirement is O(n). This yieldsthe following result, whih generalizes Theorem 1.Theorem 2 Let S be a set of n arbitrary vetors in the plane, where eahvetor begins at the origin. A diretion d whih minimizes Pv2S jv � dj an10



be omputed in O(n logn) time using O(n) spae.4 Analyzing the quality of the approximationWe investigate how well our solutions to Problem 2 approximate the solutionto Problem 1.As before, let n be the number of edges in P, e any edge of P, d anydiretion (unit vetor) in the plane, and Æ > 0 the width of eah hathingsegment (i.e., the distane between adjaent enterlines). Additionally, wede�ne the following:Proje(d?) : the length of the projetion of e onto theline perpendiular to d,Proj(d?) : Pe Proje(d?),Cute(d) : the number of times e is ut by enterlinesin diretion d,Cut(d) : the total number of uts made by enterlineson the boundary of P.Note that Cut(d) is not neessarily equal to PeCute(d); if a enterlinepasses through a vertex, it is ounted only one, in Cut(d), for the two edgesthat share the vertex.We have (Cute(d)� 1) Æ � Proje(d?) < (Cute(d) + 1) Æ: (1)The lower bound in the above inequality ours if there are enterlinesthat go through the two verties of e. The upper bound ours if the en-terlines just miss the two verties (Fig. 9).Thus, Proje(d?)Æ � 1 < Cute(d) � Proje(d?)Æ + 1: (2)Summing inequality (2) over all n edges, we getXe  Proje(d?)Æ � 1! <Xe Cute(d) �Xe  Proje(d?)Æ + 1! ;i.e., Proj(d?)Æ � n <Xe Cute(d) � Proj(d?)Æ + n: (3)11
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(a) (b)Figure 9: (a) Edge e1 is ut by four enterlines and both of e's verties areon the enterlines. The projeted length of e1, in diretion d, is exatly 3Æ;this orresponds to the lower bound in inequality (1). (b) Edge e2 is alsout by four enterlines. Its projeted length is more than 3Æ, but less than5Æ; this orresponds to the upper bound in inequality (1).ClearlyCut(d) �PeCute(d), sine every ut that ontributes to Cut(d)has to ut some edge, and thus gets ounted in PeCute(d). However, itmay also happen that every vertex gets ut by a enterline, so this ut getsounted twie in PeCute(d). Therefore, we haveCut(d) �Xe Cute(d) � Cut(d) + n: (4)Combining inequalities (3) and (4), we have, for any d,Proj(d?)Æ � 2n < Cut(d) � Proj(d?)Æ + n;or �2n < Cut(d)� Proj(d?)Æ � n: (5)Let d be the diretion d whih minimizes Cut(d), and let dp be thediretion d whih minimizes Proj(d?). Note that Cut(dp) � Cut(d), byde�nition of d and dp. Thus,0 � Cut(dp)� Cut(d) =  Cut(dp)� Proj(d?p )Æ !+ Proj(d?p )Æ � Proj(d? )Æ !�12



 Cut(d)� Proj(d? )Æ ! :Sine inequality (5) applies to any diretion d, the �rst and the thirdterms on the right-hand side above an be ombined to give:0 � Cut(dp)�Cut(d) < 3n+  Proj(d?p )Æ � Proj(d? )Æ ! ;i.e., 0 � Cut(dp)� Cut(d) < 3n; (6)sine Proj(d?p )� Proj(d? ) � 0 by de�nition of d and dp.From inequality (6), it follows that1 � Cut(dp)Cut(d) < 1 + 3nCut(d) :If the number of uts is too small, features will be lost and the modelwill not be a faithful replia of the original. Realistially, it is reasonable toassume that Cut(d) � kn, where k � 1. This is true if, for instane, manyedges of the polygon are ut at least k times. In this ase,1 � Cut(dp)Cut(d) < 1 + 3k :If we further assume that in diretions dp and d eah edge is ut in itsinterior only, then Cut(d) is twie the minimum number of hathing seg-ments and Cut(dp) is twie the number of the hathing segments generatedby our algorithm. (Thus, d and dp are the diretions sought in Problem 1and Problem 2, respetively.) Therefore, the number of hathing segmentsgenerated by our algorithm is less than 1+3=k times the minimum numberof hathing segments. That is,1 � H(dp)H(d) < 1 + 3k :Indeed, if the latter assumption holds, then the above inequality an bestrengthened to 1 � H(dp)=H(d) � 1 + 2=k. This is beause we now haveCut(d) =PeCute(d). Substituting this into inequality (3) and simplifyingas above gives the stated bound. 13



model z (inhes) #verties omputed dir.daikin trt321 0.039 57 72:9Æ2.769 662 110:6Æ4.329 575 32:7Æimpeller 0.579 208 59:1Æ1.489 412 178:3Æ2.799 405 150:0Æmj 0.029 32 12:2Æ1.509 52 78:8Æ2.029 64 93:1ÆTable 1: Single-layer runs on some polyhedral models. The omputed di-retion is measured in degrees, ounterlokwise from the positive x-axis.The running time in all the models was less than 0.01 seonds on a SunUltraSparIIi workstation with a 440 MHz CPU and 256 MB of RAM.5 Experimental ResultsWe implemented our algorithm from Setion 3 in C++, and tested it onslies generated from real-world polyhedral models we obtained from Strata-sys, In., a Minnesota-based world-leader in LM. The models were given inthe STL format, whih is an unordered list of faets, eah spei�ed by itsthree verties and outward-direted unit-normal. We used the QuikSlie1program provided by Stratasys to slie eah model, with layer-to-layer dis-tane hosen to be 0.01 inh. Eah suh layer was identi�ed by its z oordi-nate and represented by its ontour yles, whih were given as sequenes ofverties. We ran our program on layers hosen at ertain heights z. Table 1shows our results and Figure 10 shows some sample layers.To evaluate the performane of our algorithm, we also designed and im-plemented, in [11℄, an exat algorithm for Problem 1. The exat algorithm isoneptually simple but involves extensive ase analysis (as many as seventy-two ases). We tested both algorithms extensively on slies generated fromreal-world polyhedral models. In our experiments, our approximation al-gorithm generated at most fourteen perent more hathing segments thanthe exat algorithm. This suggests that the analysis in Setion 4 might betoo onservative. Our approximation algorithm also ran signi�antly fasterthan the exat one. We refer the reader to [11℄ for more details.We remark that our approah also works, without any hanges, on poly-1QuikSlie is a registered trademark of Stratasys, In.14



daikin trt321 at z=2.769 impeller at z=1.489 mj at z=2.029Figure 10: Sreen shots of our algorithm running on a single layer, fordi�erent models. The long lines shown inside eah window is the resultinghathing diretion. The sum of the lengths of projetions of the edges ontothe line perpendiular to the hathing diretion is minimal. The results aredisplayed using the LEDA C++ library [8℄.
model #layers omputed dir. time (se.)daikin trt321 515 22:5Æ 2.28frame 29 555 180:0Æ 1.77impeller 374 146:9Æ 1.10mj 322 90:0Æ 0.14myspeedo 323 0:3Æ 0.55nose02 457 86:3Æ 0.22rd yelo 338 135:0Æ 0.06sa600280 529 90:0Æ 1.61tod21 795 146:2Æ 1.74Table 2: All-layers runs on some polyhedral models. The omputed di-retion is measured in degrees, ounter-lokwise from the positive x-axis.Experiments were done on a Sun UltraSparIIi, with a 440 MHz CPU and256 MB of RAM. 15



daikin trt321 frame 29 impeller

mj myspeedo nose02

rd yelo sa600280 tod21Figure 11: Sreen shots of our algorithm running on all layers of di�erentmodels. The viewpoint is from the positive z diretion.16



gons with holes. This is beause we only need information about the orien-tation and lengths of the edges; we do not need information about how theedges onnet to eah other.We also implemented the idea disussed at the end of Setion 1.1 toompute a globally optimal diretion for the entire model. Table 2 showssome of our results, and Figure 11 shows some of our models, as viewedalong the positive z diretion. The atual running time was very small; theomputation seldom took more than 2 seonds.6 Other appliations in LMWe desribe some related problems in LM that an be solved with our ap-proah.6.1 Weighted hathingDuring hathing it may be desirable to protet ertain edges of the polygonP from being hit too often by the tool, as these edges may be ritial to theappearane or funtion of the part. We an aomplish this by assigning anon-negative weight, we, to eah edge e, with higher weights on the moreritial edges. Using the notation in Setion 1.1, let~H(d) = X`2L(d)W` jS`j ;where W` is the sum of the weights, we, of the edges e that are hit by line `.This yields a weighted version of Problem 1, where the goal is to �nd a dire-tion d whih minimizes ~H(d). The orresponding weighted approximationproblem is similar to Problem 2, exept that the funtion to be minimizedis Xne2S we jne � dj :Sine this funtion is equal to Pne2S j(wene) � dj, we an solve the ap-proximation problem using the algorithm of Setion 3, after we sale eahvetor ne by we. (Reall that this algorithm works for any set of vetors.)This yields a diretion whih approximates the optimal diretion sought inthe weighted version of the hathing problem.Theorem 3 The weighted version of Problem 2, with objetive funtionPne2S we jne � dj, an be solved in O(n log n) time using O(n) spae.17
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d0 �Figure 12: The slie is built by hathing along two diretions that make anangle of �, 0 < � � 90Æ, with eah other.6.2 Hathing along two presribed diretionsTo improve the strength of the manufatured part, the polygon an behathed in a weave-like pattern; i.e. eah layer is hathed in not one buttwo independent diretions d and d0 [5℄. We assume the two diretionsmake some �xed angle �, 0 < � � 90Æ, with eah other (Fig. 12). This yieldsa \2-diretional" version of Problem 1, where the goal is to �nd diretionsd and d0, as above, so that the funtionX`2L(d) jS`j+ X`2L(d0) jS`jis minimized.The orresponding approximation problem is similar to Problem 2, ex-ept that the objetive funtion isXne2S �jne � dj+ ��ne � d0��� :As in Setion 2, we an onstrut a onvex polygon Q from the normalvetors. However, instead of �nding the minimum width of this polygon,our problem now beomes:Problem 3 (Minimum bounding parallelogram) Given a onvex poly-gon Q, with n verties, �nd a bounding parallelogram of minimum perimeter,whose adjaent sides make an angle � with eah other, 0 < � � 90Æ.18



PSfrag replaements eeu ev uv
Figure 13: Every piee of the perimeter of the bounding parallelogram isassoiated with an edge of the onvex polygon.Consider any bounding parallelogram of Q, where the adjaent edges ofthe parallelogram make an angle � with eah other. We assoiate piees ofthe boundary of this parallelogram with the edges of Q, as follows: Let uand v be unit vetors in the same diretions as the two non-parallel edgesof the bounding parallelogram. (Without loss of generality, assume that vis � degrees ounterlokwise from u.) Eah edge e of Q an be pereivedas having two omponents: a projetion, eu, along diretion v onto a lineparallel to diretion u, and a projetion, ev, along diretion u onto a lineparallel to diretion v. (Fig. 13.) It is easy to see that the sum of the lengthsof these projetions over all the edges is the perimeter of the boundingparallelogram.Let e be a vetor along edge e, with the same length as e and oriented sothat the polygon is to its left. We an write e in terms of the basis vetorsu and v as: e = au+ bv: (7)Then eu is given by jaj and ev by jbj. Let u? (resp. v?) be u (resp. v)rotated 90Æ ounterlokwise. Taking the dot produt with u? on both sidesof Equation (7) gives:e � u? = 0 + bv � u? = b �v � u?� :Taking the dot produt with v? on both sides of Equation (7) gives:e � v? = au � v? + 0 = a �u � v?� :Therefore eu + ev = jaj+ jbj = ���e � v?���ju � v?j + ���e � u?���jv � u?j :19
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Figure 14: Assoiating piees of the boundary of the bounding parallelogramwith edges of the onvex polygon. We rotate me lokwise by � degrees toget m0e, so that keuk = jm0e � dj and kevk = jme � dj.Note that ���u � v?��� = ���v � u?��� = sin �, whih is a onstant over the entire lassof parallelograms whose adjaent edges make an angle �. We now have:eu + ev = 1sin � ����e � v?���+ ���e � u?���� : (8)We represent the orientation of the parallelogram by the vetor u, whihwe rename as d. Let us denote byme the outer normal of edge e ofQ;me hasthe same length as e and begins at the origin. Note that ���e � u?��� = jme � dj.But what about the other dot produt in Equation (8)? We an take are ofthis by inserting a new vetor m0e, whih is me rotated � degrees lokwise.(Fig. 14.) It is not diÆult to see that ���e � v?��� = jm0e � dj. The advantage ofintroduingm0e is that we an now write eu+ev in terms of a single diretiond. Spei�ally, eu + ev = 1sin � ���m0e � d��+ jme � dj� : (9)We will heneforth ignore the onstant fator 1= sin � in Equation (9).We dupliate eah normal me and rotate it � degrees lokwise. Using ouralgorithm of Setion 2 or Setion 3 on this enlarged set of vetors we get adiretion d whih minimizes the sum of the absolute values of the dot prod-uts in Equation (9). The bounding parallelogram with one side parallel tothe omputed diretion d and the other rotated � degrees ounterlokwisefrom d is the one whih minimizes the perimeter among all bounding par-allelograms of Q whose adjaent sides make the presribed angle �. Thissolves the approximate version of the 2-diretional hathing problem.Construting Q from P takes O(n log n) time, due to the sorting of thenormals ne of P. Sine Q is onvex, its normals, me, are already sorted in20



irular order. The �-degree rotations, me, of these normals are in sortedorder, too. Therefore, in O(n) time, we an merge the two sets of vetorsand obtain the 2n normals sorted in irular order. The rest of the algorithmtakes O(n) time and O(n) spae.Theorem 4 The 2-diretional version of Problem 2, with objetive fun-tion Pne2S (jne � dj+ jne � d0j), an be solved in O(n logn) time using O(n)spae. (Here diretions d and d0 make a presribed angle � with eah other,0 < � � 90Æ.)If we are given a onvex polygon Q to begin with (as opposed to on-struting it from a simple polygon P) and wish to solve just Problem 3,then O(n) time and O(n) spae suÆe, sine we an dispense with the ini-tial sorting step. Indeed, we an solve Problem 3 in O(n) time and O(n)spae even if Q is not onvex, sine we an replae it by its onvex hull inO(n) time [9℄.6.3 Hathing to minimize stair-step errorDue to the non-zero width of the tool-tip, the hathing proess annot al-ways produe an exat replia of the original polygon P; rather, P getsapproximated by a sequene of retangular strips, i.e., the hathing seg-ments. The resulting polygon has a stair-stepped appearane, where eahedge is approximated as a sequene error-triangles (Fig. 15); this is similarto the phenomenon of antialiasing in omputer graphis. We quantify thestair-step error for P as the sum of the heights of all the error-triangles.Clearly, the stair-step error is a funtion of the hathing diretion. Theproblem we wish to solve is:Problem 4 (Minimum stair-step error) Given a simple n-vertex poly-gon P (possibly with holes), �nd a hathing diretion whih minimizes thestair-step error for P.We note that the notion of stair-step error has been onsidered previouslyfor LM in [1, 7℄. However, the fous there was on �nding a diretion tobuild the three-dimensional model that minimized the stair-step error onthe faets. Here we onsider the problem in two dimensions and give a moreeÆient algorithm.We onvert this problem to a form where our algorithm from Setion 3an be applied. Let d be a andidate hathing diretion; without loss of21
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h4h5 H1e1e1e2e3e4e5 Æ dFigure 15: The polygon is approximated by a sequene of hathing segments,whih results in a stair-stepped appearane. The shaded region is an error-triangle. The total height of all the error triangles for this polygon is 4h1 +4h2 + 3h4 + h5.PSfrag replaementsve lh� � dFigure 16: The height h of the triangle is jve � dj, where kvek = l=2.generality, assume that d points upwards. Consider (say) edge e1 in Fig-ure 15. It is easy to see, by a simple similarity argument, that the sum ofthe heights of all the error-triangles for e1 equals the height H1 of the largertriangle shown. Let l be the length of e1 and let � be the angle e1 makeswith the horizontal. Then H1 = l os � sin � = (l=2) sin 2�. This suggeststhe following approah: For every edge e 2 P, we reate a vetor ve at theorigin, whose length is half that of e and whih makes an angle 2� withthe horizontal (Fig. 16). The sum of the heights of all the error-trianglesof e equals jve � dj. Therefore, our problem is to �nd a diretion d whihminimizesPe2P jve � dj. We an use the algorithm of Setion 3 to solve thisproblem (reall that this algorithm works for any set of vetors).Theorem 5 Problem 4 an be solved in O(n logn) time using O(n) spae.22



7 Higher dimensionsWe explore the generalization of our algorithm from Setion 3 to higherdimensions. Spei�ally, we wish to solve the following problem:Problem 5 (Minimum k-dimensional projetion) Given a �nite set,S, of n vetors in k-dimensional spae, eah beginning at the origin, �nd aunit vetor d suh that Pv2S jv � dj is minimized.We pik an initial diretion d and reet through the origin all vetorsthat generate a negative dot produt with d. We then onsolidate thosevetors that have the same diretion into a single vetor. Analogous toSetion 3, we argue that the minimizing diretion must be simultaneouslyorthogonal to at least k � 1 vetors in S. Spei�ally, let d be a andidateunit vetor and let~Sd = fv j v 2 S and v � d � 0g [ f�v j v 2 S and v � d < 0g.The vetor d de�nes a hyperplane Pd = fv 2 Rk j v � d = 0g throughthe origin. All the vetors ~v in ~Sd are on the same side of Pd as d. We haveXv2S jv � dj = X~v2 ~Sd (~v � d) = 0�X~v2 ~Sd ~v1A � d:Note that we an rotate Pd about the origin suh that the ompositionof the set ~Sd does not hange and still redue the quantity �P ~Sd ~v� �d. Wean do this until Pd ontains some vetor of ~Sd. Next we an rotate Pdabout this vetor without hanging ~Sd and ontinue to redue �P ~Sd ~v� � duntil Pd ontains a seond vetor of ~Sd. And so on until Pd ontains somek�1 independent vetors of ~Sd. At this point Pd is ompletely onstrained,sine any k � 1 independent vetors of ~Sd uniquely determine a hyperplanethrough the origin, and Pd annot be rotated further without hanging ~Sd.It follows that a neessary ondition for d to be a minimizing diretion isthat it should be perpendiular to at least k � 1 vetors of ~Sd.The algorithm in higher dimensions is best understood by �rst onsider-ing the problem in three dimensions. Let S = fv1;v2; : : : ;vng. Eah vi 2 Sdetermines a unique great irle Ci = fs 2 S2 j s �vi = 0g on the unit sphereS2. Every vetor on Ci is orthogonal to vi. From the disussion above, itsuÆes to examine only the intersetions of any 3 � 1 = 2 suh Ci's. We�x a Ci, ompute its intersetion with eah Cj , j 6= i, and sort these in23



irular order on Ci. We pik an arbitrary intersetion point as our �rstandidate diretion d. As in Setion 3, we reet through the origin anyvetor whose dot produt with d is negative. Starting from d we walk onthe half-irle of Ci (it does not matter whih half) between d and �d, visitthe intersetion points in irular order, and update our vetor sum. If theurrent intersetion point is the intersetion of Cj and Ci, we update thevetor sum by adding �2~vj to it. We ompute the new dot produt andupdate the minimum if we now have a smaller dot produt. We do this forevery vi in S.Note that in the above omputation for vi, we would have obtained thesame result if we had �rst projeted all the vetors in S onto the planeontaining Ci, rotated the plane to make it oinide with the x-y plane,and then used our 2-dimensional algorithm from Setion 3. Viewing theproess this way allows us to design an algorithm that handles arbitrary di-mensions by systematially reduing the problem's dimension: to solve thek-dimensional problem, we break it up into n subproblems in (k�1) dimen-sions, one per vetor vi. The running time for a k-dimensional problem isthus n times that of a (k�1)-dimensional one. Sine the 2-dimensional prob-lem takes O(n logn) time, this gives a total running time of O(nk�1 log n).However, the spae requirement is still O(n). The algorithm is also highlyparallelizable.We an devise a slightly faster algorithm at the expense of more spae.Again, it is easiest to �rst disuss the approah in three dimensions. We�rst ompute the arrangement of all the Ci's on the unit sphere, i.e., thesubdivision of the unit sphere determined by the Ci's. This arrangement anbe omputed in O(n2) time and spae [3℄. We visit all the intersetion points(on, say, the upper hemisphere) by following the edges (irular ars) of thearrangement, update inrementally the quantity P ~S ~v, and ompute its dotprodut with the urrent diretion. In more detail, suppose that we have justarrived at an intersetion I following a irular ar. This ar belongs to thegreat irle Ci of some vetor vi. Let I be the intersetion between Ci andsome other great irle Cj . We update P ~S ~v by adding �2vj to it and thentake the dot produt of the resulting vetor with the diretion represented byI. The advantage of using the arrangement is that we avoid the n instanesof irular sorting needed in the previous approah. However, the entirearrangement needs to be kept in memory while we searh through it. Thisinreases the spae requirement to O(n2) in three dimensions, while therunning time redues to O(n2). In k-dimensions, the running time beomesO(nk�1) at the expense of O(nk�1) spae.24



model #faets omputed dir. time (se.)daikin trt321 19402 (-0.47, 0.88, -0.00) 1393.96frame 29 67056 (0, 0, -1) 3656.13impeller 30896 (-0.75, 0.66, -0.00) 4206.27mj 2832 (0.00, 1, -0.00) 17.34myspeedo 16720 (0.00, -0.00, -1) 627.39nose02 5090 (0.06, 1.00, -0.00) 17.92rd yelo 396 (0.00, -0.00, -1) 0.05sa600280 74346 (-0, 0.71, -0.71) 34076.10tod21 1128 (-0, 0, -1) 0.17Table 3: Results from running the 3-dimensional algorithm on normals de-rived from polyhedral models. The omputed diretion is given as an (x; y; z)triple. Experiments were done on a Sun UltraSparIIi, with a 440 MHz CPUand 256 MB of RAM.Theorem 6 Problem 5 an be solved in k dimensions in time O(nk�1 logn)time using O(n) spae, or in O(nk�1) time using O(nk�1) spae.We implemented the �rst algorithm above in C++ for k = 3. We ran iton the polyhedral models desribed in Table 2 of Setion 5 (spei�ally, weused as input to our algorithm the outer normals of the faets of these poly-hedra). Table 3 shows some of the results. As one might expet from Theo-rem 6, this algorithm was slower than the ones in Setion 5. For instane, onthe largest model, sa600280, with about 74,000 faets, the algorithm tookabout nine hours.8 Conlusions and future workIn this paper, we have seen the role of the projetion minimization problem(Problem 2) in unifying seemingly di�erent geometri problems in LM undera single framework, leading to eÆient solutions to all of them in one fellswoop. The algorithms are very fast to moderately fast in dimensions twoand three, whih is where the urrent appliations of interest seem to lie.In higher dimensions, the algorithms are probably too slow to be of muhpratial use. One approah to improving upon the latter result is to designan eÆient approximation algorithm for the projetion minimization prob-lem in higher dimensions. Another diretion is to establish a lower boundfor the problem. We leave these problems to future investigation.25
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