Technical Report

Department of Computer Science
and Engineering
University of Minnesota
4-192 Keller Hall
200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 01-008

Minimizing the total projection of a set of vectors, with applications
to Layered Manufacturing

Man Chung Hon, Ravi Janardan, Jorg Schwerdt, Michiel Smid

February 1, 2001

Minimizing the total projection of a set of vectors,
with applications to Layered Manufacturing

Man Chung Hon* Ravi Janardan*' Jorg Schwerdt?®
Michiel Smid*

February 1, 2001

Abstract

In Layered Manufacturing, a three-dimensional polyhedral solid is
built as a stack of two-dimensional slices. Each slice (a polygon) is
built by filling its interior with a sequence of parallel line segments (of
some small non-zero width), in a process called hatching. A critical
step in hatching is choosing a direction which minimizes the number
of segments. In this paper, this problem is approximated as the prob-
lem of finding a direction which minimizes the total projected length
of a certain set of vectors. Efficient algorithms are proposed for the
latter problem, using techniques from computational geometry. Exper-
imental and theoretical analyses show that this approach yields results
that approximate closely the optimal solution to the hatching prob-
lem. Extensions of these results to several related problems are also
discussed.

1 Introduction

This paper addresses a geometric problem motivated by Layered Manufac-
turing (LM), which is an emerging technology that allows the construction of

*Department of Computer Science & Engineering, University of Minnesota, Minneapo-
lis, MN 55455, U.S.A. {hon, janardan}@cs.umn.edu . Research supported, in part, by NSF
grant CCR-9712226.

fPortions of this work were done when RJ visited the University of Magdeburg, Ger-
many under a joint grant from NSF and DAAD for international research.

tFakultat fiir Informatik, Otto-von-Guericke-Universitiat Magdeburg, D-39106 Magde-
burg, Germany. {schwerdt,michiel}@isg.cs.uni-magdeburg.de .

$Portions of this work were done when MS and JS visited the University of Minnesota
under a joint grant from DAAD and NSF for international research.

Figure 1: Hatching a polygonal slice

physical prototypes of three-dimensional parts directly from their computer
representations, using a “3D printer” attached to a personal computer. LM
provides an additional level of physical verification by allowing the designer
to “feel and touch” the model, and makes possible the detection of design
flaws that may have otherwise gone unnoticed. It is used extensively in the
automotive, aerospace, and medical industries, among others [5].

The basic idea behind LM is very simple. A direction is first chosen to
orient the computer model suitably. The model is then sliced with a set
of equally spaced horizontal planes, resulting in a stack of 2-dimensional
polygons. Starting from the bottom, each slice is sent to the LM machine
and built on top of the layers below it. There are several different ways
how this process is carried out physically. One particular implementation is
through a process called Stereolithography [5]. Here the model is built in a
vat of liquid which hardens when exposed to light. A laser is used to trace
the boundary of each slice and then fill in its interior via a series of parallel
line segments (Fig. 1); this process is called hatching. Another process called
Fused Deposition Modeling hatches the slices by depositing fine strands of
molten plastic via a nozzle [6].

The hatching process in LM influences the process cost and build time
quite significantly. For instance, in Stereolithography, the number of times
the laser’s path hits the slice boundary is proportional to the number of line
segments. It is important to keep this quantity small since it determines
how often the laser has to decelerate and stop, change direction, and then
accelerate; frequent starts and stops are time-consuming and reduce the life
of the laser. The number of line segments can be kept small by picking a
suitable hatching direction. We define this problem formally in the next

g
Ll
il
Al
- d
.
.
.
.

Figure 2: H(d) = 10. Notice that both lines ¢; and #; contribute 1 segment.

section.

1.1 The hatching problem and its approximation

A slice is a simple polygon P (possibly with holes) in the 2-dimensional
plane. Let § be the width of the “tool-tip” (e.g., the laser in Stereolithog-
raphy or the nozzle in Fused Deposition Modeling). Let d be a unit vector
in the plane, and £y(d) be the line through the origin with direction d; d is
the hatching direction. Let L£(d) be the set of all lines that are parallel to
/y(d) and whose distances to £o(d) are multiples of §. The intersection of
any line £ in £(d) with polygon P is either empty, or consists of a collection
of points and/or disjoint line segments of non-zero length. We denote by
Sy the set consisting of the line segments in the intersection between ¢ and
P. Each segment in Sy is a hatching segment and £ is the centerline of the
segment. We define H(d) to be the sum of the cardinalities of the sets Sy,
taken over all the lines £ in £(d) (Fig. 2). That is,

H(d)=) IS

teL(d)
The optimization problem can be stated as follows:

Problem 1 (Optimum hatching) Given a simple n-vertez polygon P (pos-
sibly with holes), compute a hatching direction d such that H(d) is mini-
mized.

Length of projection of edge e
perpendicularto d .

Figure 3: d is the hatching direction. The number of times a tool with an
infinitesimally small tip runs into an edge e is proportional to the length of
e’s projection perpendicular to d.

Suppose that the width § of the tool-tip is infinitesimally small. Then,
given any hatching direction d, the number of times a centerline runs into
an edge e of P is proportional to the length of e’s projection perpendicular
to d. Thus the solution to the hatching problem can be approximated by
finding a direction which minimizes the total length of the projections of the
edges of P onto a line perpendicular to this direction. (Fig. 3.) Clearly the
smaller ¢ is, the better is the approximation.

In this setting, the length of the projection of an edge is equal to the
absolute value of the dot product of the outer normal of the edge with d,
where the normal has the same length as the edge and is translated to the
origin. (Fig. 4.) It will be convenient to work with these normals rather
than the edges of P. The use of normals also facilitates the generalization of
our discussion later to higher dimensions. Therefore, as an approximation
to the original hatching problem, we have:

Problem 2 (Minimum projection) Let P be an n-vertez simple polygon
(possibly with holes). Let n, be the outer normal of each edge e of P, where
n. has the same length as e and begins at the origin. Let S be the set of these
outer normals. Find a unit vector d such that Y, cs|n. - d| is minimized.

Note that Problem 2 depends only on the lengths and orientations of the
edges of the original polygon, and not how they connect to each other in
the polygon. This implies that, if we have an algorithm for Problem 2, then

Projection Line

Figure 4: A simple polygon and the corresponding set of outer normals
translated to the origin.

we can also use it to find a globally optimal hatching direction for all the
layers: we project onto the plane the normals corresponding to the edges
from all layers and run our algorithm on them.

1.2 Contributions

We present two algorithms to solve Problem 2 in O(nlogn) time and O(n)
space. The first algorithm (Section 2) constructs a new convex polygon
whose edges consist of the normals of §. The direction sought in Problem 2
turns out to be the direction which minimizes the width of this convex
polygon, which can be found efficiently. The second algorithm (Section 3)
sidesteps explicit construction of the convex polygon. Instead it identifies n
candidates for the optimal direction, examines them in turn, and computes
the total projection for each using an efficient incremental update scheme.
This algorithm has the advantage that it works on any set of vectors, not
just those corresponding to the edge normals of a simple polygon; we will
use this fact in Section 6. Moreover, this algorithm can be generalized easily
to higher dimensions.

Our algorithms for Problem 2 yield an approximate solution to Prob-
lem 1. We investigate the quality of this approximation both theoretically
and experimentally. Our theoretical analysis, presented in Section 4, shows
that, under reasonable assumptions, the number of hatching segments pro-
duced by the approximation algorithm is only a constant times more than
the minimum number of hatching segments. We have also implemented the

algorithm of Section 3 and experimented with it on real-world LM models
obtained from industry. These results, presented in Section 5, show that our
algorithm is significantly faster than an exact algorithm [11] for Problem 1,
and yet generates only a slightly larger number of hatching segments.

As discussed in Section 6, our algorithm for Problem 2 also yields efficient
solutions to several related problems in LM. These include approximation
algorithms for (i) a weighted version of Problem 1, (ii) optimal hatching
along two directions, and (iii) hatching to minimize the so-called stair-step
error in a slice (similar to antialiasing in computer graphics). We also dis-
cuss, in Section 7, the generalization and solution of Problem 2 in higher
dimensions.

1.3 Related Work

To evaluate the performance of our approximation algorithm, we have de-
signed and implemented an algorithm which solves Problem 1 exactly; this
work is reported in a companion paper [11]. In essence, this algorithm works
by performing a rotational sweep of the polygon and dynamically maintain-
ing the value of H(d) during the sweep. Although conceptually simple, the
algorithm involves extensive case analysis. (To keep the present paper to a
reasonable length, we omit a detailed discussion of the exact algorithm here
and refer the reader to [11]. However, a brief comparison of the performance
of the exact and approximation algorithms is given in Section 5.)

We note that an algorithm similar to our first algorithm in Section 2
was discovered independently by Sarma [10] in the context of planning an
optimal path for milling machines.

2 Minimizing the total projected length of a sim-
ple polygon

Recall that our goal is to solve Problem 2. We first replace the vectors in
S that point in the same direction by their sum. We then sort the vectors
in circular order around the origin and walk through this list. During the
walk we maintain a chain of vectors; we initialize this chain to empty at the
beginning of the walk. When we encounter a vector in § during the walk,
we put it onto the chain, with its tail at the head of the old chain (Fig. 5).

It is easy to see that), n. is zero, since P is closed. Indeed, we can
“vectorize” each edge of P by tracing its boundary so that the interior of P
is always to the left of the boundary. Each edge ¢ is assigned a vector, v,

Where we are now

Starting Point of Walk \ /

The chain of vectors
encountered so far

Figure 5: Doing a circular walk to construct a convex polygon.

whose direction is parallel to e, and whose length is the same as that of e.
The outward normal n, of e is equal to T'(v,), where T is the linear operator
0 1
-1 0
Yene=>..T(ve) =T(>,ve) since T is linear. Since P is closed, we have
Y. Ve = 0. (That is, we always return to where we started when we trace
out the boundary of a closed polygon.) This implies that >°, n. = 7'(0) = 0.

Since the vectors in the set S sum to zero, we will get a polygon, Q, at
the end of our walk. Moreover, Q is convex because we visited the vectors
in the sorted order of the slopes of the corresponding edges of P. (This
approach was discovered independently in [10].)

Now, for any n, € S, |n, - d| is the length of n, projected in the direction
perpendicular to d. Let H and L be the two extreme vertices of Q in
direction d. These vertices partition the boundary of Q into two chains
(Fig. 6). Note that when Chain 1 is projected in the direction perpendicular
to d, no two of its edges overlap, except at their endpoints; similarly for
Chain 2. Consider the lines through H and L that are perpendicular to
d and enclose Q; the distance between these lines is called the width of Q
perpendicular to d.

From the preceding discussion, it follows that >°, |n. - d| is just twice the
width of Q in the direction perpendicular to d, for any direction d. There-
fore, the minimizing direction in Problem 2 can be found by determining
the direction that minimizes the width of Q. We can compute the minimum
width of Q by using the algorithm given in [4, 12], which takes O(nlogn)
time and uses O(n) space.

which turns vectors 90 degrees clockwise; i.e., T' = . Therefore,

Chain 1

Starting Point of Walk H

Chain 2

Width in the direction
perpendicular to d

Figure 6: A set of vectors and the resulting convex polygon. The sum of the
absolute values of the dot products of the vectors with respect to direction
d is twice the width of the convex polygon in the direction perpendicular to
d.

Theorem 1 Problem 2 can be solved in O(nlogn) time using O(n) space.

As noted in the discussion leading up to Problem 2 in Section 1.1, the
direction d in Theorem 1 can be used as an approximation to the optimal
hatching direction sought in Problem 1.

3 An alternative algorithm

The algorithm in Section 2 is efficient, but it is very difficult to generalize
to higher dimensions. In the plane, we construct a convex polygon with
edge orientations and lengths specified by the original polygon. In higher
dimensions, a similar approach would require the construction of a convex
polytope with prescribed facet orientations and areas. Such a polytope
always exists by a beautiful theorem of H. Minkowski [2]. However, we are
not aware of any combinatorial algorithm that explicitly constructs such a
polytope efficiently.

In this section, we present another approach to Problem 2, which does
not require the construction of the convex polygon. It has the advantage
that it can be generalized easily to arbitrary dimensions, as we will see in
Section 7. Moreover, it also works for more general sets of vectors than

8

positive negative

Every vector in the
right half-planeis
reflected through the origin

Figure 7: Picking a candidate direction, d, and reflecting vectors.

those derived from the edge normals of a simple polygon a fact we will use
in Section 6.

Therefore, in this section, we will assume that S is a set of n arbitrary
vectors in the plane, where each vector begins at the origin. We wish to com-
pute a direction d such that), cs|v - d| is minimized. We pick an arbitrary
unit vector d as a candidate direction and draw a line perpendicular to d
through the origin. This line cuts the plane into two half-planes. The vectors
v € S that point “upward” (i.e., those that are in the same closed half-plane
as d) generate a non-negative dot product with d. However, those pointing
“downward” (i.e. those lying in the complement of the above half-plane),
generate a negative dot product with d. Since we are interested in the sum
of the absolute values of the dot products, we must correct the dot products
of the latter vectors with a minus sign. This corresponds to reflecting these
vectors through the origin. Therefore, we replace the downward-pointing
vectors with their reflected copies (Fig. 7). We call this new set of vectors
S.

All the vectors v in &S lie in the same closed half-plane as d. Therefore
> oves |V -d| reduces to 3. s (v-d). (Note that we no longer need to use
absolute value signs in the sum.) Furthermore, > . _s(v-d) = (Z\‘reé \7) -d.

In other words, we sum the vectors in S and take the dot product of the

Figure 8: Vectors and their associated perpendicular cutting lines. Crossing
the point 5, where the cutting line of vector 5 cuts the unit circle, requires
that we flip vector 5 from its current direction to the opposite one.

resulting vector, > s v, with d. If no vector of S ison the cutting line, then
nothing prevents us from rotating d away from . _s v, thereby decreasing
the dot product) ;.5 Vv makes with d. We can keep doing this until one
of the vectors v is on the cutting line perpendicular to d. Now any further
movement of d will cause v to go to the other side of the cutting line.
Thereafter, the contribution of (the reflection of) v will cause the total dot
product to increase. Thus, the position of the cutting line that coincides
with one of the input vectors must be a local minimum for the total dot
product.

We can update >_ s v efficiently if we visit the vectors in a circular order.
Specifically, each vector v has associated with it two regions, separated by
the line perpendicular to v (Fig. 8). In our walk, whenever we pass this line,
we know that the associated vector’s contribution to the sum changes sign.
If v; is the associated vector, we subtract 2v; from) s v: one copy to take it
off from the sum, and another copy to insert it back in with a negative sign.
(With this approach, it is sufficient to walk around half the circle, from d to
—d.) At each event, we use the newly updated vector sum to re-calculate
the total dot product. Since the update can be done in O(1) time, we can
find the minimum in O(n) time given the circular list of vectors. The total
running time is dominated by the time to prepare the list itself, in this case
the O(nlogn) time for sorting. The space requirement is O(n). This yields
the following result, which generalizes Theorem 1.

Theorem 2 Let S be a set of n arbitrary vectors in the plane, where each
vector begins at the origin. A direction d which minimizes Y. cs|v -d| can

10

be computed in O(nlogn) time using O(n) space.

4 Analyzing the quality of the approximation

We investigate how well our solutions to Problem 2 approximate the solution
to Problem 1.

As before, let n be the number of edges in P, e any edge of P, d any
direction (unit vector) in the plane, and § > 0 the width of each hatching
segment (i.e., the distance between adjacent centerlines). Additionally, we
define the following;:

Proj.(d') : the length of the projection of e onto the
line perpendicular to d,

Proj(d") : ¥, Proj.(d"),

Cut.(d) : the number of times e is cut by centerlines
in direction d,

Cut(d) : the total number of cuts made by centerlines

on the boundary of P.

Note that Cut(d) is not necessarily equal to)", Cut.(d); if a centerline
passes through a vertex, it is counted only once, in Cut(d), for the two edges
that share the vertex.

We have

(Cuto(d) — 1) < Proje(dt) < (Cut.(d) + 1) 6. (1)

The lower bound in the above inequality occurs if there are centerlines
that go through the two vertices of e. The upper bound occurs if the cen-
terlines just miss the two vertices (Fig. 9).

Thus,

Proj.(d*) Proje(d™")
))
Summing inequality (2) over all n edges, we get

3 (P 1) 5w < 30 (P 1),

e

—1 < Cute(d) < +1. (2)

ie.,
Proy(dl
5

L
—-n< ZCut Pr%(d)—i-n. (3)

11

Figure 9: (a) Edge e; is cut by four centerlines and both of e’s vertices are
on the centerlines. The projected length of e;, in direction d, is exactly 34;
this corresponds to the lower bound in inequality (1). (b) Edge e; is also
cut by four centerlines. Its projected length is more than 34, but less than
50; this corresponds to the upper bound in inequality (1).

Clearly Cut(d) < Y, Cut.(d), since every cut that contributes to Cut(d)
has to cut some edge, and thus gets counted in Y, Cut.(d). However, it
may also happen that every vertex gets cut by a centerline, so this cut gets
counted twice in Y, Cut.(d). Therefore, we have

Cut(d) <) Cute(d) < Cut(d) + n. (4)
Combining inequalities (3) and (4), we have, for any d,
Proj(d* Proj(d*
7740'75() _ 2n < Cut(d) < 7740'75() +n,
or N
Proj(d
—2n < Cut(d) — % < n. (5)

Let d. be the direction d which minimizes Cut(d), and let d, be the
direction d which minimizes Proj(dt). Note that Cut(d,) > Cut(d.), by
definition of d. and d,. Thus,

0 < Cut(dy) — Cut(d,) = (Cut(dp)P Toﬂé(dpl)> N
Proj(dpl) Proj(d})
5 a 5 -

12

(Cut(dc) _ %(#)) .

Since inequality (5) applies to any direction d, the first and the third
terms on the right-hand side above can be combined to give:

Proj(d,) Proj(d}
OSC’ut(dp)—Cut(dc)<3n+< 7“”-75(p) _ 7“0.75(C)>7

ie.,

0 < Cut(dy) — Cut(d.) < 3n, (6)

since Proj(df;) — Proj(d}) < 0 by definition of d. and d,.

From inequality (6), it follows that

< Cut(dy) <14 3n ‘
Cut(d,.) Cut(d,.)

If the number of cuts is too small, features will be lost and the model
will not be a faithful replica of the original. Realistically, it is reasonable to
assume that Cut(d.) > kn, where k > 1. This is true if, for instance, many
edges of the polygon are cut at least £ times. In this case,

Cut(d,) 3
<— <1+ —.
S Cui@d) S TR

If we further assume that in directions d, and d. each edge is cut in its
interior only, then Cut(d.) is twice the minimum number of hatching seg-
ments and Cut(d,) is twice the number of the hatching segments generated
by our algorithm. (Thus, d. and d, are the directions sought in Problem 1
and Problem 2, respectively.) Therefore, the number of hatching segments
generated by our algorithm is less than 1 4 3/k times the minimum number
of hatching segments. That is,

=

| H(dy)

1 —.
SH@) "

™

Indeed, if the latter assumption holds, then the above inequality can be
strengthened to 1 < H(d,)/H(d.) <1+ 2/k. This is because we now have
Cut(d) = Y, Cut.(d). Substituting this into inequality (3) and simplifying
as above gives the stated bound.

13

| model | z (inches) | #vertices | computed dir.

daikin_trt321 0.039 o7 72.9°
2.769 662 110.6°
4.329 o975 32.7°
impeller 0.579 208 59.1°
1.489 412 178.3°
2.799 405 150.0°
mj 0.029 32 12.2°
1.509 92 78.8°
2.029 64 93.1°

Table 1: Single-layer runs on some polyhedral models. The computed di-
rection is measured in degrees, counterclockwise from the positive z-axis.
The running time in all the models was less than 0.01 seconds on a Sun
UltraSparclli workstation with a 440 MHz CPU and 256 MB of RAM.

5 Experimental Results

We implemented our algorithm from Section 3 in C+4++, and tested it on
slices generated from real-world polyhedral models we obtained from Strata-
sys, Inc., a Minnesota-based world-leader in LM. The models were given in
the STL format, which is an unordered list of facets, each specified by its
three vertices and outward-directed unit-normal. We used the QuickSlice!
program provided by Stratasys to slice each model, with layer-to-layer dis-
tance chosen to be 0.01 inch. Each such layer was identified by its z coordi-
nate and represented by its contour cycles, which were given as sequences of
vertices. We ran our program on layers chosen at certain heights z. Table 1
shows our results and Figure 10 shows some sample layers.

To evaluate the performance of our algorithm, we also designed and im-
plemented, in [11], an exact algorithm for Problem 1. The exact algorithm is
conceptually simple but involves extensive case analysis (as many as seventy-
two cases). We tested both algorithms extensively on slices generated from
real-world polyhedral models. In our experiments, our approximation al-
gorithm generated at most fourteen percent more hatching segments than
the exact algorithm. This suggests that the analysis in Section 4 might be
too conservative. Our approximation algorithm also ran significantly faster
than the exact one. We refer the reader to [11] for more details.

We remark that our approach also works, without any changes, on poly-

'QuickSlice is a registered trademark of Stratasys, Inc.

14

7] b —
daikin_trt321 at z=2.769 impeller at z=1.489 mj at z=2.029

Figure 10: Screen shots of our algorithm running on a single layer, for
different models. The long lines shown inside each window is the resulting
hatching direction. The sum of the lengths of projections of the edges onto
the line perpendicular to the hatching direction is minimal. The results are
displayed using the LEDA C++ library [8].

‘ model ‘ #layers ‘ computed dir. ‘ time (sec.) ‘
daikin_trt321 515 22.5° 2.28
frame_29 555 180.0° 1.77
impeller 374 146.9° 1.10
mj 322 90.0° 0.14
myspeedo 323 0.3° 0.55
nose(2 457 86.3° 0.22
rd_yelo 338 135.0° 0.06
sa600280 529 90.0° 1.61
tod21 795 146.2° 1.74

Table 2: All-layers runs on some polyhedral models.

The computed di-

rection is measured in degrees, counter-clockwise from the positive z-axis.
Experiments were done on a Sun UltraSparclls, with a 440 MHz CPU and
256 MB of RAM.

15

daikin_trt321 frame_29 impeller

E:U FI o
= | T, | [T
0 ol
mj myspeedo nose02

= ==l Ea=-T
o
rd_yelo sa600280 tod21

Figure 11: Screen shots of our algorithm running on all layers of different
models. The viewpoint is from the positive z direction.

16

gons with holes. This is because we only need information about the orien-
tation and lengths of the edges; we do not need information about how the
edges connect to each other.

We also implemented the idea discussed at the end of Section 1.1 to
compute a globally optimal direction for the entire model. Table 2 shows
some of our results, and Figure 11 shows some of our models, as viewed
along the positive z direction. The actual running time was very small; the
computation seldom took more than 2 seconds.

6 Other applications in LM

We describe some related problems in LM that can be solved with our ap-
proach.

6.1 Weighted hatching

During hatching it may be desirable to protect certain edges of the polygon
‘P from being hit too often by the tool, as these edges may be critical to the
appearance or function of the part. We can accomplish this by assigning a
non-negative weight, we, to each edge e, with higher weights on the more
critical edges. Using the notation in Section 1.1, let

H(d)= Y WS,
teL(d)

where W, is the sum of the weights, w,, of the edges e¢ that are hit by line /.
This yields a weighted version of Problem 1, where the goal is to find a direc-
tion d which minimizes H(d). The corresponding weighted approximation
problem is similar to Problem 2, except that the function to be minimized
is

Z we N - d| .

ne.€S

Since this function is equal to 3, s |(wen.) - d|, we can solve the ap-
proximation problem using the algorithm of Section 3, after we scale each
vector n, by w.. (Recall that this algorithm works for any set of vectors.)
This yields a direction which approximates the optimal direction sought in
the weighted version of the hatching problem.

Theorem 3 The weighted version of Problem 2, with objective function
Y on.es We [ne - d|, can be solved in O(nlogn) time using O(n) space.

17

dl

d

Figure 12: The slice is built by hatching along two directions that make an
angle of 6, 0 < 6 < 90°, with each other.

6.2 Hatching along two prescribed directions

To improve the strength of the manufactured part, the polygon can be
hatched in a weave-like pattern; i.e. each layer is hatched in not one but
two independent directions d and d’ [5]. We assume the two directions
make some fixed angle 0, 0 < § < 90°, with each other (Fig. 12). This yields
a “2-directional” version of Problem 1, where the goal is to find directions
d and d’, as above, so that the function

Yo IS+ Y IS
reL(d) teL(d’)
is minimized.
The corresponding approximation problem is similar to Problem 2, ex-
cept that the objective function is
Z (Ine - d| + |n. - d']).
n.eS
As in Section 2, we can construct a convex polygon Q from the normal
vectors. However, instead of finding the minimum width of this polygon,
our problem now becomes:

Problem 3 (Minimum bounding parallelogram) Given a convex poly-
gon Q, with n vertices, find a bounding parallelogram of minimum perimeter,
whose adjacent sides make an angle 0 with each other, 0 < 6 < 90°.

18

Figure 13: Every piece of the perimeter of the bounding parallelogram is
associated with an edge of the convex polygon.

Consider any bounding parallelogram of Q, where the adjacent edges of
the parallelogram make an angle 6 with each other. We associate pieces of
the boundary of this parallelogram with the edges of Q, as follows: Let u
and v be unit vectors in the same directions as the two non-parallel edges
of the bounding parallelogram. (Without loss of generality, assume that v
is 6 degrees counterclockwise from u.) Each edge e of Q can be perceived
as having two components: a projection, e,, along direction v onto a line
parallel to direction u, and a projection, e,, along direction u onto a line
parallel to direction v. (Fig. 13.) It is easy to see that the sum of the lengths
of these projections over all the edges is the perimeter of the bounding
parallelogram.

Let e be a vector along edge e, with the same length as e and oriented so
that the polygon is to its left. We can write e in terms of the basis vectors
u and v as:

e =au + bv. (7)

Then e, is given by |a| and e, by |b|. Let u' (resp. v') be u (resp. v)
rotated 90° counterclockwise. Taking the dot product with u™ on both sides
of Equation (7) gives:

e-ul:()—l—bv-ul:b(v-ul).

Taking the dot product with v' on both sides of Equation (7) gives:

e-vL:au-vl—I—Oza(u-vl).
Therefore
‘e-vl‘ ‘e-ul‘
€u+€U:|a‘+|b|:|u.vL‘ ‘v-uL|-

19

m,

Figure 14: Associating pieces of the boundary of the bounding parallelogram
with edges of the convex polygon. We rotate m, clockwise by 6 degrees to
get m’, so that ||e,|| = jm. - d| and ||e,|| = |m. - d|.

Note that ‘u . vl‘ = ‘v . ul‘ = sin A, which is a constant over the entire class
of parallelograms whose adjacent edges make an angle §. We now have:
1

eu+eU:sin9 (‘e-vl‘—i—‘e-ul‘). (8)

We represent the orientation of the parallelogram by the vector u, which
we rename as d. Let us denote by m, the outer normal of edge e of Q; m, has
the same length as e and begins at the origin. Note that ‘e : ul‘ = |m, - d|.

But what about the other dot product in Equation (8)? We can take care of
this by inserting a new vector m/, which is m, rotated 6 degrees clockwise.

(Fig. 14.) It is not difficult to see that ‘e : vl‘ = |m. - d|. The advantage of

introducing m,, is that we can now write e, + e, in terms of a single direction
d. Specifically,
m'e-d\+\me-d|). (9)

€y + €y =
S

—
inf
We will henceforth ignore the constant factor 1/sinf in Equation (9).
We duplicate each normal m, and rotate it 0 degrees clockwise. Using our
algorithm of Section 2 or Section 3 on this enlarged set of vectors we get a
direction d which minimizes the sum of the absolute values of the dot prod-
ucts in Equation (9). The bounding parallelogram with one side parallel to
the computed direction d and the other rotated 8 degrees counterclockwise
from d is the one which minimizes the perimeter among all bounding par-
allelograms of Q whose adjacent sides make the prescribed angle 6. This
solves the approximate version of the 2-directional hatching problem.
Constructing Q from P takes O(nlogn) time, due to the sorting of the
normals n, of P. Since Q is convex, its normals, m,, are already sorted in

20

circular order. The 6-degree rotations, m, of these normals are in sorted
order, too. Therefore, in O(n) time, we can merge the two sets of vectors
and obtain the 2n normals sorted in circular order. The rest of the algorithm
takes O(n) time and O(n) space.

Theorem 4 The 2-directional version of Problem 2, with objective func-
tion 3., cs (Ine - d| + [n. - d'[), can be solved in O(nlogn) time using O(n)
space. (Here directions d and d' make a prescribed angle 6 with each other,
0<6<90°.)

If we are given a convex polygon Q to begin with (as opposed to con-
structing it from a simple polygon P) and wish to solve just Problem 3,
then O(n) time and O(n) space suffice, since we can dispense with the ini-
tial sorting step. Indeed, we can solve Problem 3 in O(n) time and O(n)
space even if Q is not convex, since we can replace it by its convex hull in

O(n) time [9].

6.3 Hatching to minimize stair-step error

Due to the non-zero width of the tool-tip, the hatching process cannot al-
ways produce an exact replica of the original polygon P; rather, P gets
approximated by a sequence of rectangular strips, i.e., the hatching seg-
ments. The resulting polygon has a stair-stepped appearance, where each
edge is approximated as a sequence error-triangles (Fig. 15); this is similar
to the phenomenon of antialiasing in computer graphics. We quantify the
stair-step error for P as the sum of the heights of all the error-triangles.
Clearly, the stair-step error is a function of the hatching direction. The
problem we wish to solve is:

Problem 4 (Minimum stair-step error) Given a simple n-vertex poly-
gon P (possibly with holes), find a hatching direction which minimizes the
stair-step error for P.

We note that the notion of stair-step error has been considered previously
for LM in [1, 7]. However, the focus there was on finding a direction to
build the three-dimensional model that minimized the stair-step error on
the facets. Here we consider the problem in two dimensions and give a more
efficient algorithm.

We convert this problem to a form where our algorithm from Section 3
can be applied. Let d be a candidate hatching direction; without loss of

21

error-triangle

Figure 15: The polygon is approximated by a sequence of hatching segments,
which results in a stair-stepped appearance. The shaded region is an error-
triangle. The total height of all the error triangles for this polygon is 4h +

4hy + 3hy + hs.
l
v&e d
A

Figure 16: The height h of the triangle is |v. - d|, where ||v.| = 1/2.

generality, assume that d points upwards. Consider (say) edge e; in Fig-
ure 15. It is easy to see, by a simple similarity argument, that the sum of
the heights of all the error-triangles for e; equals the height Hy of the larger
triangle shown. Let [be the length of e¢; and let 8 be the angle e; makes
with the horizontal. Then H; = lcosfsinf = (I/2)sin26. This suggests
the following approach: For every edge e € P, we create a vector v, at the
origin, whose length is half that of e and which makes an angle 26 with
the horizontal (Fig. 16). The sum of the heights of all the error-triangles
of e equals |v, - d|. Therefore, our problem is to find a direction d which
minimizes) ,cp |Ve - d|. We can use the algorithm of Section 3 to solve this
problem (recall that this algorithm works for any set of vectors).

Theorem 5 Problem 4 can be solved in O(nlogn) time using O(n) space.

22

7 Higher dimensions

We explore the generalization of our algorithm from Section 3 to higher
dimensions. Specifically, we wish to solve the following problem:

Problem 5 (Minimum k-dimensional projection) Given a finite set,
S, of n vectors in k-dimensional space, each beginning at the origin, find a
unit vector d such that 3, cs|v - d| is minimized.

We pick an initial direction d and reflect through the origin all vectors
that generate a negative dot product with d. We then consolidate those
vectors that have the same direction into a single vector. Analogous to
Section 3, we argue that the minimizing direction must be simultaneously
orthogonal to at least £ — 1 vectors in S. Specifically, let d be a candidate
unit vector and let

Sg={v|veSandv-d>0}U{-v|veSandv- d<0}.

The vector d defines a hyperplane Pgq = {v € R* | v-d =0} through
the origin. All the vectors v in Sq are on the same side of Pq as d. We have

Yovedf=) (ved)=| > v|-d

veS {,Egd "}Egd

Note that we can rotate Pq about the origin such that the composition
of the set Sq does not change and still reduce the quantity (ng \7) -d. We

can do this until Pgq contains some vector of Sd. Next we can rotate Pgq
about this vector without changing Sq and continue to reduce (ng \7) -d

until Pgq contains a second vector of Sd. And so on until Pg contains some
k — 1 independent vectors of Sq. At this point Py is completely constrained,
since any k — 1 independent vectors of Sq uniquely determine a hyperplane
through the origin, and Pgq cannot be rotated further without changing Sq.
It follows that a necessary condition for d to be a minimizing direction is
that it should be perpendicular to at least k — 1 vectors of Sq.

The algorithm in higher dimensions is best understood by first consider-
ing the problem in three dimensions. Let S = {vq,vg,...,v,}. Eachv; € §
determines a unique great circle C; = {s € S? | s-v; = 0} on the unit sphere
S2. Every vector on Cj is orthogonal to v;. From the discussion above, it
suffices to examine only the intersections of any 3 — 1 = 2 such C;’s. We
fix a C;, compute its intersection with each Cj, j # 4, and sort these in

23

circular order on C;. We pick an arbitrary intersection point as our first
candidate direction d. As in Section 3, we reflect through the origin any
vector whose dot product with d is negative. Starting from d we walk on
the half-circle of C; (it does not matter which half) between d and —d, visit
the intersection points in circular order, and update our vector sum. If the
current intersection point is the intersection of C; and Cj;, we update the
vector sum by adding —2v; to it. We compute the new dot product and
update the minimum if we now have a smaller dot product. We do this for
every v; in S.

Note that in the above computation for v;, we would have obtained the
same result if we had first projected all the vectors in & onto the plane
containing Cj, rotated the plane to make it coincide with the z-y plane,
and then used our 2-dimensional algorithm from Section 3. Viewing the
process this way allows us to design an algorithm that handles arbitrary di-
mensions by systematically reducing the problem’s dimension: to solve the
k-dimensional problem, we break it up into n subproblems in (k —1) dimen-
sions, one per vector v;. The running time for a k-dimensional problem is
thus n times that of a (k—1)-dimensional one. Since the 2-dimensional prob-
lem takes O(nlogn) time, this gives a total running time of O(n*~'logn).
However, the space requirement is still O(n). The algorithm is also highly
parallelizable.

We can devise a slightly faster algorithm at the expense of more space.
Again, it is easiest to first discuss the approach in three dimensions. We
first compute the arrangement of all the C;’s on the unit sphere, i.e., the
subdivision of the unit sphere determined by the C;’s. This arrangement can
be computed in O(n?) time and space [3]. We visit all the intersection points
(on, say, the upper hemisphere) by following the edges (circular arcs) of the
arrangement, update incrementally the quantity) s v, and compute its dot
product with the current direction. In more detail, suppose that we have just
arrived at an intersection I following a circular arc. This arc belongs to the
great circle C; of some vector v;. Let I be the intersection between C; and
some other great circle C;. We update) v by adding —2v; to it and then
take the dot product of the resulting vector with the direction represented by
1. The advantage of using the arrangement is that we avoid the n instances
of circular sorting needed in the previous approach. However, the entire
arrangement needs to be kept in memory while we search through it. This
increases the space requirement to O(n?) in three dimensions, while the
running time reduces to O(n?). In k-dimensions, the running time becomes
O(n*~1) at the expense of O(n*~1) space.

24

model | #facets | computed dir. | time (sec.) |

daikin_trt321 19402 | (-0.47, 0.88, -0.00) 1393.96
frame_29 67056 | (0, 0, -1) 3656.13
impeller 30896 | (-0.75, 0.66, -0.00) 4206.27
mj 2832 | (0.00, 1, -0.00) 17.34
myspeedo 16720 | (0.00, -0.00, -1) 627.39
nose(2 5090 | (0.06, 1.00, -0.00) 17.92
rd_yelo 396 | (0.00, 0.00, -1) 0.0
sa600280 74346 | (-0, 0.71, -0.71) 34076.10
fod21 1128 | (0, 0, -1) 0.17

Table 3: Results from running the 3-dimensional algorithm on normals de-
rived from polyhedral models. The computed direction is given as an (z, y, 2)
triple. Experiments were done on a Sun UltraSparclli, with a 440 MHz CPU
and 256 MB of RAM.

Theorem 6 Problem 5 can be solved in k dimensions in time O(n*~!logn)
time using O(n) space, or in O(nF=1) time using O(n*~1) space.

We implemented the first algorithm above in C++4 for £ = 3. We ran it
on the polyhedral models described in Table 2 of Section 5 (specifically, we
used as input to our algorithm the outer normals of the facets of these poly-
hedra). Table 3 shows some of the results. As one might expect from Theo-
rem 6, this algorithm was slower than the ones in Section 5. For instance, on
the largest model, sa600280, with about 74,000 facets, the algorithm took
about nine hours.

8 Conclusions and future work

In this paper, we have seen the role of the projection minimization problem
(Problem 2) in unifying seemingly different geometric problems in LM under
a single framework, leading to efficient solutions to all of them in one fell
swoop. The algorithms are very fast to moderately fast in dimensions two
and three, which is where the current applications of interest seem to lie.
In higher dimensions, the algorithms are probably too slow to be of much
practical use. One approach to improving upon the latter result is to design
an efficient approximation algorithm for the projection minimization prob-
lem in higher dimensions. Another direction is to establish a lower bound
for the problem. We leave these problems to future investigation.

25

Acknowledgements

We thank Stratasys, Inc. for providing us with test models and for access to
their software front-end, QuickSlice, to slice these models.

References

1]

[10]

[11]

M. Bablani and A. Bagchi. Quantification of errors in rapid proto-
typing processes and determination of perferred orientation of parts.
In Transactions of the 23rd North American Manufacturing Research
Conference, 1995.

M. Berger. Geometry (vols. 1-2). Springer-Verlag, 1987.

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry: Algorithms and Applications.
Springer-Verlag, Berlin, 1997.

M. E. Houle and G. T. Toussaint. Computing the width of a set. IEEE
Trans. Pattern Anal. Mach. Intell., PAMI-10(5):761 765, 1988.

P. Jacobs. Rapid Prototyping € Manufacturing: Fundamentals of Stere-
olithography. McGraw-Hill, 1992.

C.C. Kai and L.K. Fai. Rapid Prototyping: Principles and applications
in manufacturing. John Wiley & Sons, New York, 1997.

J. Majhi, R. Janardan, M. Smid, and P. Gupta. On some geometric op-
timization problems in layered manufacturing. Comput. Geom. Theory
Appl., 12:219-239, 1999.

K. Mehlhorn and S. Naher. LEDA: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, Cambridge, UK,
1999.

F. P. Preparata and M. I. Shamos. Computational Geometry: An In-
troduction. Springer-Verlag, 3rd edition, October 1990.

S. E. Sarma. The crossing function and its application to zig-zag tool
paths. Comput. Aided Design, 31:881-890, 1999.

J. Schwerdt, M. Smid, M. Hon, and R. Janar-
dan. Computing an optimal hatching direction in

26

Layered Manufacturing. Manuscript, January 2001.
http://isgwww.cs.uni-magdeburg.de/~michiel/hatching.ps.gz.

[12] G. T. Toussaint. Solving geometric problems with the rotating calipers.
In Proc. IEEE MELECON ’83, pages A10.02/1 4, 1983.

27

	cover_tr01-008
	01-008

