
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/e p rin t/184 9/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Lan g b ein, F r a nk Cu r d , M a r s h all, Andr e w David a n d M a r tin, R alp h Rob e r t 2 0 0 4.

Choosing Consis t e n t Cons t r ain t s for Be a u tifica tion of Reve r s e E n gin e e r e d Geo m e t ric

Mo d els. Co m p u t e r-Aided Design 3 6 (3) , p p. 2 6 1-2 7 8. 1 0.1 0 1 6/S 00 1 0-

4 4 8 5(03)001 0 8-8

P u blish e r s p a g e:

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

Choosing Consistent Constraints for

Beautification of Reverse Engineered

Geometric Models

F. C. Langbein ∗ A. D. Marshall R. R. Martin

Department of Computer Science, Cardiff University, PO Box 916, 5 The Parade,

Cardiff, CF24 3XF, UK

Abstract

Boundary representation models reconstructed from 3D range data suffer from var-
ious inaccuracies caused by noise in the data and the model building software. Such
models can be improved in a beautification step, which finds geometric regularities
approximately present in the model and imposes a consistent subset of them on
the model. Methods to select regularities consistently such that they are likely to
represent the original, ideal design intent are presented. Efficiency during selection
is achieved by considering degrees of freedom to analyse the solvability of constraint
systems representing the regularities (without actually solving them). Priorities are
used to select regularities in case of inconsistencies. The selected set of constraints
is solved numerically and an improved model is rebuild from the solution. Experi-
ments show that the presented methods can beautify models by selecting consistent
regularities and enforcing major intended regularities.

Key words: Reverse Engineering; Beautification; Geometric Constraints; Degrees
of Freedom Analysis.

1 Introduction

Reverse engineering geometric models uses information from a physical object
to reconstruct a CAD model for applications like redesign, reproduction and
quality control. Our particular goal is to reconstruct a boundary representation

∗ Corresponding author.
Email adresses: F.C.Langbein@cs.cf.ac.uk (F. C. Langbein), A.D.Marshall@

cs.cf.ac.uk (A. D. Marshall), R.R.Martin@cs.cf.ac.uk (R. R. Martin).
.

Preprint submitted to Computer-Aided Design 28 April 2003

(B-rep) model which exhibits the exact geometric properties present in the
original, ideal design, using minimal human interaction, starting from 3D range
data. Such a system should provide a simple, high-level user interface for
inexperienced and non-engineering users, as well as engineers.

Introductions to reverse engineering are given by Várady et al. in [23,24].
Our approach starts with a data acquisition phase where multiple views of a
physical object are obtained using a 3D laser scanner. The views are registered
to form a single point set, which is then triangulated. Local properties derived
from the triangulation are used to segment the point set into subsets which
represent the natural surfaces of the object. To each of the subsets a surface
(or surfaces) of appropriate type is fitted separately [2,26]. The resulting faces
are stitched to create an initial B-rep model.

In this paper we consider engineering parts with only planar, spherical, cylin-
drical, conical and toroidal surfaces that either intersect at sharp edges or are
connected by fixed radius rolling ball blends. There are reliable surface fitting
methods available for these surfaces [2,26] and many realistic engineering ob-
jects can be generated using only these surface types [18,19]. We assume that
the blends have been identified in the model and are represented as edge and
vertex attributes. Hence, we ignore them in the rest of this paper.

State-of-the-art reverse engineering systems can create valid initial B-rep mod-
els approximating physical objects. However, these initial models suffer from
various inaccuracies resulting from sensing errors arising during data acqui-
sition as well as approximation and numerical errors in the reconstruction
process. Improving the precision of sensing techniques and numerical methods
may reduce the errors, but some errors will always remain. Other sources of
error may also be present, such as wear of the object and the particular man-
ufacturing method used to make it. Certain intended regularities, e.g. aligned
cylinder axes, are an important part of engineering designs. They must be
present for reverse engineered CAD models to have the greatest usefulness to
applications like redesign. To ensure their presence, they have to be enforced
at some stage of the reverse engineering process.

Previous approaches for enforcing regularities are based on constrained surface
fitting methods [1,25,27], which, for example, fit two planes simultaneously
under the constraint that they are orthogonal. Another approach is to drive the
segmentation and surface fitting phases using features like slots and pockets
whose approximate locations and types are provided by a user [22].

Our approach is to improve the initial model in a separate post-processing

step which we call beautification. Improving the model without further refer-
ence to the point data avoids the computational expense of constrained fitting.
The process consists of three main steps. First we analyse the initial model to
detect approximate geometric regularities, in terms of geometric constraints:

2

e.g. we look for approximately aligned cylinder axes. As these regularities are
only approximately present, the detected regularity set is likely to contain
inconsistencies. Hence, in a hypothesizer step we select an appropriate con-
sistent subset which represents the likely original design intent. Finally we
reconstruct an improved model based on the selected regularities.

In [10–12] we presented methods to detect approximate regularities based
on local relations in a B-rep model, such as parallel or orthogonal planes.
An overview of the regularities and how they are expressed using geometric
constraints is given below. Algorithms for processing global regularities such as
symmetries of a B-rep model are discussed in [5,16,17], and are not considered
here, but could be added to our beautification system without major changes.

To enforce a consistent subset of the potential regularities on the initial model,
we require algorithms to detect inconsistencies and resolve them intelligently
so that the resulting model is likely to represent the original design intent. This
paper concentrates on presenting an efficient method for detecting inconsis-
tencies between regularities. By representing the regularities as constraints,
we can detect inconsistencies by considering the solvability properties of con-
straint systems, using degrees of freedom analysis [8]. While many constraint
solving methods are available, most are aimed at finding the solution of well
constrained systems [3]. In our case many constraints contradict each other,
and relatively few are chosen for the final system. During regularity selec-
tion we are more interested in the solvability of a constrained system than a
solution.

In order to prefer likely regularities we prioritize the regularities and consec-
utively add them to a constraint system. We only accept a regularity if the
expanded constraint system remains solvable. The priorities are determined
by merit functions indicating the desirability and likelihood of the regularity
in the ideal design, and the accuracy to which the regularity is satisfied in
the initial model. This approach was first used in [9], where solvability of the
constraint system was decided by trying to solve it numerically using least-
squares optimization algorithms. This successfully created improved models
and the selected constraint systems were consistent up to a numerical toler-
ance. However, for each added regularity, the whole constraint system had to
be solved numerically, so the time required (many hours) to find a consistent
constraint system was too long for practical purposes.

In this paper we determine the solvability of a constraint system without
solving it. This dramatically reduces the computing time (to a few minutes at
most). It guarantees the consistency of the constraint system in a generic sense.
Certain special situations are not detected as will be explained later, but our
experiments show that this is not a problem for typical objects. By employing
priorities in combination with our solvability test, reverse engineered models
can be improved such that the major regularities are enforced exactly. Minor

3

regularities relating to the exact instance of the model, e.g. edge lengths, are
selected consistently, but due to uncertainty represented by tolerances in the
initial model, they may not exactly represent the original design.

We first overview the regularities we consider, how we find them, and how we
represent them with geometric constraints. Then we present the top level algo-
rithm for selecting regularities. The solvability test and priorities employed by
this algorithm are discussed in detail in the following sections. After explain-
ing the constraint selection process, we describe how we numerically solve the
constraint system and construct an improved model. Finally we present some
experimental results.

2 Geometric Regularities

We first give an overview of the geometric regularities used in this work and
how they can be expressed in terms of geometric constraints. This is a sum-
mary of earlier work on representing [9] and detecting regularities [10].

Approximate geometric regularities are defined in terms of similarities and reg-

ular arrangements which lead to efficient algorithms for detecting them [5,10–
12,16,17]. Reconstructed B-rep models are represented by elements like faces
and vertices together with information about the topology of the model. We
describe each of the elements by a type and a set of appropriate positional,
directional, length and angular features (here, features describe shape prop-
erties, not machining features like slots or pockets). E.g. an element of the
type spherical face is described by a positional (centre) and a length (radius)
feature. A feature is either a scalar or a 3D vector. Directions are always rep-
resented by unit vectors. There are basic features required to describe the
object (e.g. the centre, radii and direction for a torus) and extended features
dependent on other features for additional properties (e.g. the sum and the dif-
ference of the radii of a torus) as listed in Table 1. Polygonal loop root points
(extended features of planar faces) are the centroids of their edge loops. Reg-
ularities are detected as similarities between the features, e.g. approximately
parallel directions. We also look for regular arrangements such as symmetries
of positions or symmetrically arranged directions (using the Gaussian sphere).

We use auxiliary objects to describe certain regularities. E.g., for a set of
parallel directions, we constrain each element to be parallel to an auxiliary
direction rather than constraining them to be pairwise parallel. This avoids
the introduction of complex constraint types which are hard to handle during
the regularity selection. We have auxiliary lines, planes, cylinders, positions,
directions, angles and lengths with the same basic features as the correspond-
ing geometric objects from the model. Auxiliary objects do not have extended

4

Geometric Basic Features

Object Extended Features

Plane Position, direction

Polygonal loop root points

Sphere Position, radius

Cone Position, direction, semi-angle

Cylinder Position, direction, radius

Torus Position, direction, major radius, minor radius

Radii sum, radii difference

Straight Position, direction

Length

Circle Position, direction, radius

Circle segment angle

Ellipse Position, direction, major direction, major radius,
minor radius

Vertex Position

Table 1. Geometric Objects and Their Features.

features as we do not have regularities relating directly to them.

Regularities are described by sets of geometric constraints. They specify rela-
tions between geometric objects of the B-rep model, and the auxiliary objects.
Any regularities between geometric objects which can be expressed by con-
straint types in Table 2 can be handled by our system. Note that we do not
allow topological changes of the model in this paper—such changes will be
considered in a separate paper. We do, however, need to include constraints
describing the topology of the model, to ensure that, for instance, faces in-
tersect in a vertex. Hence, we have two classes of constraint sets: required
constraint sets, which (mainly) enforce the correct topology on the model,
and regularity constraint sets, which (mainly) determine the geometry of the
model.

2.1 Required Constraints

To impose the correct topology, we add constraints requiring each vertex to
lie on appropriate edges and faces. This does not fully specify the geometric
relation between adjacent faces, but only ensures the proper intersection of

5

Geometric Constraint Equation

Parallel directions d1, d2 dt
1d2 = 0

Constant angle α between two directions d1, d2 d1
td2 = cos(α)

Variable angle a between two directions d1, d2 d1
td2 = cos(a)

Equal positions p1, p2 ‖p1 − p2‖2 = 0

Constant distance l between two positions p1, p2 ‖p1 − p2‖2 = l

Distance between two position p1, p2 is a constant multiple
ν of a variable length l

‖p1 − p2‖2 = νl

Position p0 is the average of n positions pk np0 =
∑n

k=1 pk

Constant value α for angle/length parameter s s = α

Equal angle/length parameters s1, s2 s1 − s2 = 0

Linear relation between lengths/angles sk with constants αk
∑

k αksk = 0

Position p on geometric object O (surface/curve) p ∈ O

Table 2. Geometric Constraints.

faces at vertices of the model. In the case of two intersecting planes, two
vertices from a common edge are sufficient to ensure that a proper straight
line intersection exists. In other cases, e.g. the intersection of two cylinders,
this only ensures that the intersection is not empty (the vertices have to be in
it), but does not specify the type of the intersection.

Instead of adding inequality constraints or alternative systems to ensure proper
intersections, we use regularities. As the regularity detection phase considers
all possible relations between face features, at least one regularity is present
which specifies the exact relation between two adjacent faces. Thus, the reg-
ularities determine an exact relation between adjacent faces, e.g. constraining
a cylinder axis to be parallel to a plane normal. If every regularity specifying
a precise relation between a pair of adjacent faces is rejected, the relation is
determined indirectly from other regularities. In such cases the direct relation
between the face pair cannot be constrained without making the constraint
system unsolvable or over-constrained. In the constraint system we consider
edges of the model to be independent of the faces and they are only used to
express certain regularities. Note that it is possible to add additional posi-
tions to describe the topology, especially for cases where there are no natural
vertices, e.g. the intersection of a sphere with the top of a cylinder.

To enforce necessary dependencies between the basic and extended features,
we use various required constraints. Feature dependencies include constraints
setting the loop root points to be the centroid of the vertices in the loop, the
length of a straight line to be the distance between its end-points, the circle

6

Parallel directions Aligned axes

Symmetric directions Axis intersections

Orthogonal system Axes regularly on grid

Special angle between directions Axes equi-spaced on line

Equal positions Axes symmetrically on cylinder

Partially equal positions Special ratio between lengths/angles

Equal lengths/angles Special values for lengths/angles

Table 3. Geometric Regularities.

segment angle to be the angle between two auxiliary lines joining the centre
to two vertices on the circle, the major direction of an ellipse to be orthogonal
to the ellipse plane normal, and appropriate constraints for the radii sum and
difference of tori.

2.2 Regularity Constraints

The particular regularities we consider are listed in Table 3. In [11,12] we gave
various methods for detecting them. Regularities describing similar features
like approximately parallel directions are detected by a hierarchical cluster-
ing algorithm where each cluster represents a regularity. Using the clusters,
we seek regular arrangements of the features. Instead of setting maximum
tolerances, we only use two tolerances giving the minimum value for when
two angles or lengths should be considered as potentially different [10]. For
instance, we look for approximately equal lengths by creating a cluster hier-
archy, and also try to find possible special values (like an integer) close to the
average length of members of each cluster. The hierarchies are truncated by
detecting a large jump in the tolerance values between the clusters. In the
following we give a brief overview of the regularities. We indicate how they
can be expressed with constraint sets using the constraint types in Table 2
(for details see [9]).

The regularities in a cluster hierarchy are arranged in a tree. A regularity
can only be added to the constraint system if its children are also present.
Furthermore, we add dependencies requiring certain regularities to be present
before we can add a particular one, e.g. a parallel direction regularity must
be present before a corresponding aligned axes regularity is added. Separate
regularity hierarchies are used for parallel directions, equal positions, and equal
length and angle parameters. For each cluster of similar features we create a
corresponding auxiliary object, and constrain the features in the set to be
equal to this object. To handle hierarchies, we constrain the auxiliary object
for children to be equal to the auxiliary object for their parent.

7

Aligned axes and axis intersections can be found by clustering features where
a parallel direction cluster is used to determine if axes should be aligned or
intersect. For parallel aligned axes we further look for regular arrangements of
axes on grids, lines and cylinders. Auxiliary lines are used to add appropriate
constraints. For regular arrangements of axes we create additional auxiliary
objects. For instance, given some bolt holes arranged around a circle, we create
an auxiliary cylinder and require that the axes of the holes have directions
parallel to the cylinder’s axis. Auxiliary planes are constructed containing
the cylinder axis, with normals constrained to be orthogonal to the cylinder
axis. Angles between these planes are set to an appropriate integer multiple
of 2π/n. To enforce the symmetrical arrangement, the positions of the axes
are constrained to lie on one of these planes.

We recognise planar and conical cases of symmetrically arranged directions
(e.g. plane normals around a prism, and a pyramid). The first case comprises
a set of directions orthogonal to a direction d0. Angles between the directions
are integer multiples of π/n for n ∈ N. In the second case, the angle to the
direction d0 has some other fixed value, and the angles between the directions
projected onto the plane defined by d0 are integer multiples of 2π/n. We
create two orthogonal auxiliary directions d0, d1. For each direction in the set
we add a constraint requiring it to be orthogonal to d0 and with angle to d1

being a suitable integer multiple of π/n. In the conical case we have a list of
possible special values for the angle between the directions and d0. For each
of the special values we create a regularity specifying the angles between the
directions and d0 and d1.

We also look for cluster hierarchies of equal positions when projected onto
special planes (2D partially equal) and lines (1D partially equal) derived from
important directions in the model such as main axes and orthogonal systems.
Positions which are equal when projected on a plane lie on the same line.
We also have lists of special values for angles between individual directions.
Finally, there are regularities specifying special ratios between pairs of angle or
length features and special values for these features. For all these regularities
appropriate constraint sets and dependencies are created.

3 Choosing Consistent Regularities

Given a set of potential regularities, we wish to select a consistent subset
which can be used to improve the initial B-rep model so that it more closely
represents the original, ideal design intent. For this we add constraint sets
corresponding to regularities, in order of priority, to a constraint system. We
reject regularities which make the system generically unsolvable. The method
is summarised in Algorithm 1. It employs a method distribute to add a

8

Method select (R, T): Select and report a consistent subset of the prioritized
regularity set R with high priorities. T is the set of constraints describing the
model topology.
I. Create a constraint (hyper-)graph g from the set of regularities R and T.

Mark all regularities and constraints as inactive.
II. Detect multiple constraints between the same geometric objects in g:

1. Replace multiple identical constraints by a single constraint and appro-
priate references in the corresponding regularities.

2. Wherever inconsistent constraints exist between the same geometric ob-
jects, find the corresponding regularity with the highest priority and re-
move all other regularities from R.

III. Call distribute(t, g) for all constraints t in T to add them to g and mark
them as active.

IV. Repeat until R is empty:
1. Remove the regularity r from R with the highest priority, for which all

regularities it depends on are marked active.
2. Add all i in the set of inactive constraints I for r to the graph by calling

distribute(i, g) and check if the graph remains solvable:
a. If a constraint made the graph unsolvable, reject r by removing all

inactive constraints I from the graph and by removing all regularities
depending on r from R.

b. Otherwise, mark all inactive constraints I and r as active.
V. Report the active regularities / constraints as the set of selected, consistent

regularities.

Algorithm 1. Select Consistent, High Priority Regularities.

constraint to a constraint graph and a solvability test which are described in
Section 4. Priorities are used to determine the order in which the regularities
are checked, as discussed in Section 5.

Initially we have a list of potential regularities described by sets of constraints.
They are marked as inactive to indicate that they have not yet been added
to the constraint system. A regularity is marked active when it becomes one
of the regularities selected to improve the model. If it cannot be added to the
constraint system it is completely removed from the list.

We generate a (hyper-)graph representation of the constraints as described in
Section 4. The nodes are the geometric objects and the edges are the con-
straints on them. A constraint is marked active if it has been added to the
graph and inactive otherwise.

The constraint sets describing different regularities may contain several con-
straints between the same geometric objects. We detect these during graph
creation. If these constraints have the same constants, the related regularities
are consistent, so we replace them by a single constraint with a reference to it

9

from each involved regularity. If the constraints involve different constants, the
related regularities are mutually inconsistent and only one regularity can be
added to the constraint system. Only the regularity with the highest priority is
kept, and the others are discarded. This is justified in that if a constraint can-
not be added to a system without making it over-constrained or unsolvable,
then another constraint between the same objects with different constants
has the same property. Constants may exist for which the system is (non-
generically) solvable, but it will still be over-constrained. However, note that
the regularity with the highest priority may be rejected due to some incon-
sistency unrelated to the inconsistency between the constraints on the same
geometric objects. In this case it may still be possible to add one of the other
regularities. Such situations are unlikely, but not impossible. An algorithm
which checks if alternative regularities have to be reactivated is given in [9].

A more sophisticated algorithm could be employed to detect additional in-
consistencies in this pre-selection process. We could, for instance, detect cases
where distance constraints between points are limited by incidence constraints
between points, e.g. the distances between a point p0, and two other points
p1 and p2 which are constrained to be equal, have to be the same. This cre-
ates complex selection rules (see [9]). However, as such cases are subsumed
in the general cases which are detected by our symbolic solvability test, such
methods are not used here.

Following the creation of the constraint graph, we first add the constraints
describing the topology of the model to the graph. As we start with a valid
B-rep model, the resulting constraint system must be solvable, so we do not
need to check for solvability.

The next step selects the regularities. We take the regularity with the highest
priority from the list for which all regularities it depends on are already active.
The constraints for this regularity are added to the constraint graph unless
they were previously added as part of a regularity made active earlier. For
each added constraint we check if the resulting graph represents a generically
solvable constraint system. If this is not the case, the regularity is rejected,
and we remove all constraints newly added by the regularity to the graph.
Also, any regularity in the list of potential regularities which depends on the
rejected regularity is removed as well. These ideas are explained further in
Section 4.

The selection process ensures that in the case of inconsistencies, regularities
with the highest priorities are selected in preference to lower priority regular-
ities. It does not, however, maximize the priority sum of selected regularities.
Priorities are only used to compare the regularities in case of an inconsistency.
They are not absolute measures for quality or desirability.

10

4 Solvability of Geometric Constraint Systems

To choose between regularities, we must be able to detect inconsistencies. We
now present an efficient method to determine the solvability of a constraint
system, so that we can detect inconsistencies between already accepted, con-
sistent regularities and a new regularity.

We use a method which can decide if a given constraint system is solvable,
i.e. has at least one solution. While it is desirable to ensure that we have a
unique solution or a discrete set of solutions, we only check if a solution exists.
We also accept cases where there are infinitely many solutions. As we have an
initial model we can seek a solution close to it. Furthermore, the large number
of regularities we detect makes under-constrained systems very unlikely. Note
that the solvability test does not find a numerical solution to the constraint
system. This is done later (see Section 6).

Various methods exist for handling geometric constraints (see, for instance,
Brüderlin et al. [3]). Many of these methods are specific to 2D constraints and
cannot be easily generalised to 3D. Our approach is based on a topological ap-
proach to degrees of freedom analysis [8] and analysing dependencies between
geometric objects [14]. Its structure is similar to the dense algorithm [20], but
we do not aim to decompose the constraint system as do Hoffmann et al. [4,7].

A geometric constraint system can be expressed as a hyper-graph, from which
we can determine certain generic properties of the constraint system. To verify
if a constraint system is solvable we consecutively add constraints to the graph
and verify if the system remains solvable. The method for adding a constraint
to the graph and the solvability test are now considered.

Our geometric objects are fully described by a type and a set of basic features.
For unconstrained geometric objects, the values of the features can be chosen
freely. Adding a constraint limits the values the features can have simultane-
ously. As the domains of the features are infinite, we cannot use methods that
explicitly list the allowed values, but we can still list their domains. Geomet-
ric constraints usually limit the allowed values in these domains to subsets of
lower dimension. When adding multiple constraints, the solutions are repre-
sented by the intersection of all these subsets. By reasoning symbolically about
the properties of these intersections, especially their dimensions, we can deter-
mine the solvability properties of the constraint system. As we do not compute
the solution of the constraint system, we can only check for generic solvability.
Our experiments show that this does not cause problems for typical reverse
engineered models.

11

4.1 Distance Constraints Between Points

To illustrate the concepts of our method for determining solvability of con-
straint systems, let us consider systems only including constant distance con-
straints between points in 3D Euclidean space E

3. An unconstrained point in
E

3 can be at any location in space, i.e. its parameter domain is R
3. Consider a

distance constraint between two points p1, p2. It limits the allowed values the
two points can have at the same time. One way of enforcing this is by allowing
p1 to have an arbitrary value in R

3 and requiring that p2 is on a sphere of fixed
radius with centre p1. This means p2 can be described by a parameter on the
unit sphere S

2 in combination with the position of p1. Clearly, the role of p1

and p2 can be exchanged. Hence, we can interpret a distance constraint as a
reduction of the parameter space R

3 to S
2 for one of the two points involved.

This gives two choices for reducing the dimension of the parameter spaces.

A distance constraint is represented in the constraint graph by a directed edge
indicating which of the two points is constrained to S

2. To keep track of the
reductions, we label each point with its parameter space. We use an example
to illustrate what happens as further constraints are added. Consider the con-
straint graph for three points pl in R

3 shown in Figure 1. Initially all three
points are unconstrained and their domain is R

3 (Figure 1(a)). After adding
the first distance constraint dist1 between p1 and p2 we limit, for instance, p2 to
S

2 (Figure 1(b)). Next we add a constraint dist2 between p1 and p3 and decide
to limit p3 to S

2 (Figure 1(c)). Finally we add a constraint dist3 between p2

and p3. Again we have a choice to limit p2 or p3 to S
2. However, both points are

already reduced to S
2. If we choose to put p3 on another sphere, p3 has to be

in the intersection of two spheres. In the generic case two spheres intersect in a
circle, so p3 is now given by a parameter on the unit circle S

1 (Figure 1(d)). In
general the two spheres may also intersect in a point, not intersect at all, or be
equal (i.e. the intersection is a sphere). In the first case the distances between
the points must be specifically chosen such that the points are collinear. In
the second case the distances must satisfy d(p1, p2) > d(p1, p3)+d(p2, p3). The
third case corresponds to a coincidence constraint, not a distance constraint.
In all of these cases additional conditions are present which cannot be deter-
mined directly from the constraint graph. Hence, for the solvability test we
assume that we always have the generic case.

We add distance constraints to the graph by choosing one of the two points
constrained to S

2 and update the parameter domain by intersecting it with
S

2, assuming the generic case. We intersect S
2 with either R

3, S
2 or S

1. In
the generic case we assume that the intersection with R

3 gives S
2, with S

2

gives S
1 and with S

1 gives R
0. The intersection with S

1 can actually either
lead to a circle, an empty set or two points. In the generic case we get two
points and choose one of them, i.e. we get R

0. Having two points indicates that

12

p3/R
3

p1/R
3 p2/R

3

❞

❞ ❞

p3/R
3

p1/R
3 p2/S

2

dist1
>

❞

❞ ❞

p3/S
2

p1/R
3 p2/S

2

d
is

t 2

>

dist1
>

❞

❞ ❞

p3/S
1

p1/R
3 p2/S

2

d
is

t 2

>

dist1
>

di
st 3
�

�
�

�
>

❞

❞ ❞

(a) (b) (c) (d)

Figure 1. Distance Constraint Graph Between Three Points.

there are two discrete solutions. To distinguish between them we need another
constraint, e.g. an inequality constraint. As our improved model should be
close to the initial model, the assumption that we get a single point is justified
as we can take the solution which is closer to the initial model. We refer to
adding a constraint to a constraint graph using a directed edge as above as
distributing a constraint in the graph.

The dimensions of the domains of the points represent the degrees of freedom
of these objects (3 for 3D points). The reduction of these domains to lower-
dimensional subsets indicates the number of degrees of freedom removed by
a constraint (1 for distance constraints). Our approach is similar to degrees
of freedom analysis [8], but we interpret it in terms of the topology of the
involved parameter spaces and their dimensions.

Obviously, it is not always possible to distribute a new constraint in a given
constraint system. If both points involved in a distance constraint are already
R

0, we cannot intersect either of them with S
2. However, because each con-

straint can be added to the constraint graph in two ways, it may be possible
to choose a different distribution for some of the edges in the graph such that
we can add the constraint. Thus, we have to do a graph search starting at
the edge of the new constraint. We have the option of doing a depth-first or a
breadth-first search. The depth-first approach follows one particular path in
the graph backwards along the directed edges to its end before we consider any
other paths. A breadth-first search backwards along the directed edges is more
efficient as it finds the first edge which can be changed closest to the new edge.
In addition, we do not have to search all paths from the new constraint, but
only find the shortest paths to the edges which can be redistributed. Whenever
an edge can be redistributed, we redistribute the whole path to that edge. We
then have to repeat the breadth-first search until we can distribute the new
constraint, or all redistribution options have been exhausted.

Finding a redistribution path is similar to the distribute method used in
the dense algorithm [20]. In that method the constraint graph is converted
to a bipartite graph between nodes representing constraints and other nodes
representing geometric objects. Edges in this graph connect the constraint
nodes with the geometry nodes that they constrain. The graph is interpreted

13

as a flow network from a source (connected to constraint nodes) to a target
(connected to object nodes). The capacity of an edge from the source to the
constraint node indicates the degrees of freedom removed by the constraint.
The capacity of an edge from an object node to the target indicates the de-
grees of freedom of the object. The capacities of other edges are infinite. The
distribute method used by dense tries to distribute a new constraint in such
a flow network by finding a flow augmentation path to distribute the newly
added flow from the constraint. This is done in a similar way to searching for
the redistribution paths above. The different options we have for each edge
describe the different ways the flow can be distributed through the network.
Note that in our approach the algorithm on the graph is more closely linked
to the constraint system without considering a flow network.

However, a method to distribute a constraint does not reveal if the resulting
constraint system is solvable. We say that a system is solvable if there is at
least one solution under the assumption that the intersections are generic. If
the constraint cannot be distributed, the system is clearly unsolvable. The
opposite is not true.

For the solvability test consider the following simple example. If we want to
determine point p3 in the constraint system in Figure 1, we can do this by
setting an arbitrary location for p1, choose p2 on a sphere around p1 and then
determine p3 by choosing a parameter in S

1, using the locations of p1 and p2.
This specifies all three points up to location and orientation in E

3. As distance
constraints cannot specify a location or orientation of the point set we cannot
determine the points any further. Hence, in the general case there must always
be at least six degrees of freedom left. But note that for a zero-dimensional
point set, i.e. one point, we require only at least three degrees of freedom, and
for a one-dimensional point set, i.e. (two distinct) points on a line, we require
only at least five degrees of freedom.

The directions of the edges in a constraint graph define the dependencies
between the nodes. Given an arbitrary node n in the constraint graph and
an edge e directed towards it, we can follow edges backwards to determine
the sub-graph S(n, e) of all nodes on which n depends due to e. n and all
edges between n and the detected sub-graph are added to S(n, e), which we
call the dependency sub-graph of n due to e. In this sub-graph we change the
parameter space of n so that only the edges in S(n, e) are considered. The
resulting S(n, e) represents a solvable sub-graph if the sum of the remaining
degrees of freedom of the nodes in S(n, e) is at least six, five or three depending
on the dimensionality of the points involved.

We have to change the parameter space of n in S(n, e) to account for the
dependencies of n on other edges not in S(n, e). Each dependency sub-graph
represents a restriction of n. We assume that the intersection of these restric-
tions is generic and can be done. This is checked whenever we distribute an

14

p3/R
0

p1/R
3 p2/S

2

>

>
�

�
�

�
>

❞

❞ ❞

❆
❆
❆
❆

>

<

>

>
�

�
�

�
>

p5/R
3 p6/S

2

p7/S
1

>

�
�

�
�<

p4/R
0

❞ ❞

❞❞

Figure 2. Example Constraint Graph for Dependency Sub-Graphs for Point p4.

edge and compute the resulting degrees of freedom (each constraint removes
a generic number of degrees of freedom from a node; we do not remove more
degrees of freedom from a node than it has originally). At a node we bring
the geometric structures of the different dependency sub-graphs together to
form a single structure. This can be done if the structures described by the
sub-graphs have sufficient degrees of freedom left.

For example, consider the constraint graph in Figure 2. Node p4 has three
dependency sub-graphs. The first graph consists of the nodes p1, p2, p4 with p4

relabelled to S
2. This sub-graph has 7 degrees of freedom left, so it is solvable.

Without relabelling p4 it would only have 5 degrees of freedom which are not
sufficient. The second sub-graph consists of p4 and p5 with p4 relabelled to
S

2. Without relabelling p4 to S
2 in the second sub-graph the graph would not

be solvable (it would have 3 degrees of freedom, whereas two points on a line
require 5 degrees of freedom). The third sub-graph consists of p4, p7, p5, p6

with p4 relabelled to S
1, with 7 degrees of freedom.

When we successfully distribute a new constraint edge e in the graph, we must
test if the new graph is solvable; if distribution fails, we already know that
the constraint system is not solvable. To test for solvability we only have to
consider changes made during distribution. Let n be the node the constraint e
has been distributed to. We assert that the graph remains generically solvable
if the dependency sub-graph S(n, e) is solvable, i.e. it has sufficient degrees of
freedom left. However, note that there are special cases of lower dimensional
subsets embedded in E

3 which must be handled separately.

Suppose no redistributions are required to distribute e. In this case only the
node n is changed. The dependency sub-graphs which do not contain e did not
change. Thus, we only have to check S(n, e). Assuming that all intersections
are generic, we only have to check if there are sufficient degrees of freedom
in S(n, e). If redistributions are needed, we can consider each redistribution
separately. Assume an edge exists between two points n1 and n2 which initially
constrains n2. When we redistribute this edge, n1 is constrained by n2. The
degrees of freedom are moved from n1 to n2 and this is indicated by a change
of the dependency sub-graphs of the two nodes. Initially n2 had a dependency
sub-graph over n1 with sufficient degrees of freedom. This sub-graph is replaced
by a new one for n1 which includes n2. Due to moving the degrees of freedom,
this new sub-graph also has sufficient degrees of freedom.

15

Geometric Constraint Distribution

Parallel directions d1, d2 d1 or d2 in S
0

Constant angle α between two directions d1, d2 d1 or d2 in S
1

Variable angle a between two directions d1, d2 a in R
0 or

d1 or d2 in S
1

Equal positions p1, p2 p1 or p2 in R
0

Constant distance l between two positions p1, p2 p1 or p2 in S
2

Distance between two position p1, p2 is a constant multiple
ν of a variable length l

l in R
0 or

p1 or p2 in S
2

Position p0 is the average of n positions pk p0 or one pk in R
0

Constant value α for angle/length parameter s s in R
0

Equal angle/length parameters s1, s2 s1 or s2 in R
0

Linear relation between lengths/angles sk with constants αk One sk in R
0

Table 4. Distribution of Geometric Constraints.

4.2 Distributing Constraints

We now present the distribution algorithm for each constraint type in detail.
We describe the geometric objects in terms of positions, directions, lengths,
and angles. Constraints limit the allowed combinations of values for these
features. The domain for positions is R

3, for directions, S
2, for lengths, R

1
+

and for angles, S
1. Any constraint can be interpreted as selecting a lower-

dimensional subset of these domains. This may usually be done in more than
one way. We assume that all intersections are generic, as is usual in degrees
of freedom analysis.

In Table 4 we list the different options for distribution of constraints. Note
that we do not consider all possible distributions of the dimensions, but only
those which have a simple geometric meaning. E.g., for two parallel directions
we only consider the cases where one of the two directions is equal to the other
and thus fully determined. We do not allow both d1 and d2 to have one degree
of freedom. We distinguish between constraints with constant and variable
parameters, as only variable elements can be used during distribution, e.g., a
variable distance constraint between two positions with no degrees of freedom
left can also be distributed to the distance parameter, i.e. the fixed positions
set the value of the distance.

Constraints requiring positions to lie on a surface or curve are omitted from
Table 4. Surfaces and curves are usually described by a combination of po-

16

sitional, directional, angular and length features. In the constraint graph we
represent them by a single node. Constraints that only relate to one of the
features describing the surface can only be distributed using this particular
feature, e.g. making two planes parallel only constrains their directions. How-
ever, putting a vertex on a surface or curve means that any of the involved
features can be used, e.g. putting a point on a plane can restrict its position
as well as its normal.

Also note that positional features of surfaces are not always 3D positions. For
planes we only have a 1D position space (its distance from the origin), for
cylinders and straight lines we have a 2D position space (the position of the
axis). All other objects we consider have 3D position spaces.

We do not discuss the issues relating to faces in the constraint graph in detail,
but only enough to understand how they are handled by the distribution
algorithm. Whenever we put a position on a surface or curve we reduce the
dimension of one of the parameter spaces of the surface or curve, or of the
position, by one. We can choose any of the parameter spaces involved for the
distribution. The types of the parameter spaces may vary, and intersections
between them can be complicated. We assume that the intersections are always
generated by reducing the degrees of freedom by one.

Generically, if we have two subsets M and N of a d-dimensional space with
dimensions m and n respectively, the intersection is of dimension m + n − d.
This assumes that the intersection produces a real reduction of the dimensions,
i.e. M is not a subset of N nor is N a subset of M , the intersection of M and
N is not empty, and that m + n ≥ d. Note that for the labelling we only
indicate the topological type of the intersection which could be interpreted as
a parameter space for the intersection rather than the intersection itself.

Algorithm 2 is the overall constraint distribution algorithm. A constraint can
be distributed directly if one of the distribution options in Table 4 can be
applied using the previous reasoning without doing any redistribution (step
I). Otherwise, starting at the constraint which should be distributed, we do a
breadth-first search of the constraint graph until a constraint is found which
can be redistributed (steps II and III are initialization; step IV does the
search). The breadth-first search moves from edge to vertex to edge, and so on,
following directed edges backwards in the graph. By remembering the search
sequence with predecessor links, we can backtrack to the original constraint
to find the redistribution path, and apply the redistributions along the path
accordingly. We then try to distribute the new constraint directly in the graph.
If this is possible we do so and report success. Otherwise, we try to find an-
other redistribution path, i.e. we restart the search at the original edge in the
graph modified by the previous redistribution. This ensures that we always
find the redistribution option closest to the original edge. If we do not find a
path which allows the distribution of the original constraint, we report failure.

17

Method distribute (c,g): Try to distribute the constraint c in a constraint
graph g = (nodes, edges). g is updated according to the distribution, and
success or failure of distribution is reported.
I. If c can be distributed directly without redistribution, do so, and return

success.
II. Mark all nodes and edges as unvisited and set the predecessor for all nodes

and edges to empty.
III. Initialise a set activeE of edges (constraints) to c and a set activeN of

nodes (B-rep elements) to empty.
IV. While activeE is not empty:

A. Consecutively remove all constraints e from activeE:
1. Mark e as visited.
2. Add all unvisited nodes connected by e to activeN and set their

predecessors to e.
B. Consecutively remove nodes n from activeN, and for all constraints e

restricting n which have not yet been visited do:
1. Seek a redistribution r of e, which can be applied directly to the

graph, with n is less restricted than before. Remember the redistri-
bution R which gives the largest increase of degrees of freedom in n

over all e and n.
2. Add e to activeE and set the predecessor of e to n.
3. Mark n as visited

C. If R is not empty, a redistribution path has been found:
1. Apply the redistribution in R.
2. Follow the predecessor links and redistribute each constraint along

this path.
3. If c can be distributed directly, do it and return success.
4. Otherwise, reset all flags in g, set activeE to c and activeN to empty

and restart the search for a new redistribution path within the loop
of step IV.

V. No distribution has been found, return failure.

Algorithm 2. Constraint Distribution.

To see how this works, consider the constraint graph in Figure 3 linking four
points pl and one plane s. Graph (a) was created by adding an additional point
p4 to the graph in Figure 1 and adding three distance constraints from the
other points to p4. All new distance constraints can be distributed directly
such that p4 is now completely constrained. The plane s is described by a
distance and a direction indicated by R

1 and S
2 in the graph. In graph (b)

we add three constraints placing p1, p2 and p3 on the plane s. Each of these
constraints can be distributed directly and each time the degrees of freedom
of the plane are reduced by one. This means the plane is now completely
determined, i.e. it is labelled R

0×S
0. So far all the constraints could be added

by direct distribution.

18

p3/S
1

p1/R
3 p2/S

2

>

>
�

�
�

�
>

❞

❞ ❞

p4/R
0

❞

>

>

❅
❅

❅
❅>

❞
s/R

1 × S
2

p3/S
1

p1/R
3 p2/S

2

>

>
�

�
�

�
>

❞

❞ ❞

p4/R
0

❞

>

>

❅
❅

❅
❅>

❞
s/R

0 × S
0

✁
✁
✁
✁ >

❆
❆

❆
❆>

>

p3/R
0

p1/R
3 p2/S

2

>

>
�

�
�

�
>

❞

❞ ❞

p4/R
0

❞

>
>

❅
❅

❅
❅>

❞
s/R

0 × S
0

✁
✁
✁
✁ >

❆
❆

❆
❆>

>

<

(a) (b) (c)

Figure 3. Example Constraint Graph of Distances Between Four Points on a Plane.

In graph (c) we distribute a constraint placing p4 on s as well. We search for a
redistribution path in step IV of the algorithm starting at the new constraint
edge. Step IV.A adds s and p4 to activeN. In step IV.B we find three direct
redistribution options via p1, p2, p3 for s, two direct redistribution options
via p1, p2 for p4 and one additional path via p4 to p3. All the edges for these
options are added to activeE to continue the search. In step IV.C we choose
the redistribution with maximal increase of degrees of freedom for s or p4.
Here, this can be any of the constraints between s and p1, p2 or p3 or between
p4 and p1 or p2. We choose to redistribute the constraint between s and p3

initially reducing the degrees of freedom of s by one. We redistribute this edge
reducing the degrees of freedom of p3 by one and increasing the degrees of
freedom of s by one. Now the original edge can be distributed directly and we
report success with the distribution as shown in graph (c).

Any redistribution path which does not succeed in adding the new constraint
does not change the solvability properties of the constraint system. While the
redistribution changes the distribution of degrees of freedom in the graph, the
dependency sub-graphs still contain sufficient degrees of freedom. Only the
distribution of the edges in the graph changes. If the new constraint can be
distributed, the number of degrees of freedom changes, so we must check if
the system is still solvable as described next.

4.3 Solvability Test

The solvability criterion for the general case is similar to the one for the dis-
tance constraint example. A 3D object embedded in E

3 must have at least
six degrees of freedom for the system to be generically solvable. For zero-
dimensional points we must have three and for collinear points we must have
five degrees of freedom. When other types of geometric objects are present,
other special cases are possible. Constraints between directions only, for in-
stance, relate to arrangements on the unit sphere. For a zero-dimensional

19

direction set (i.e. one distinct direction) we have only two degrees of freedom.
The direction space is only 2D which means if only directions are involved, the
minimum number of degrees of freedom required for two or more directions is
three. Single surfaces and curves may also have less degrees of freedom.

We also have constraints setting values for variable angular and length param-
eters. The presence of variable scalar parameters does not affect the minimum
number of degrees of freedom in the 3D case.

After a constraint has been successfully distributed in the graph we must check
if the new graph still represents a solvable system. The new constraint is dis-
tributed amongst some nodes. If the dependency sub-graphs of these nodes
over the constraint have sufficient degrees of freedom we say the graph remains
solvable under the assumption that we only have generic intersections. The
dependency sub-graphs can be detected efficiently by a greedy algorithm fol-
lowing the directions of the edges backwards. To get the complete dependency
sub-graph we also have to relabel the start node (only for the sub-graph). For
this we collect all edges between the start node and the rest of the sub-graph
and compute the new degrees of freedom for the node considering only these
edges. We can then easily check the degrees of freedom in the sub-graph. Re-
call that special cases may arise where the constrained objects require less
than six degrees of freedom in order to be solvable.

If the solvability test is successful, the constraint can be added to the graph
without destroying the generic solvability of the constraint system. We only
check for generic solvability as we do not have any additional information
about non-generic cases and how the degrees of freedom are affected by them.

For example consider the graph in Figure 3(c), created by distributing the
constraint between p4 and s. We have to check the dependency sub-graph of s
over p4. This graph is identical with the complete graph and has five degrees
of freedom. In order for the graph to be solvable it has to have six degrees
of freedom, i.e. the constraint between s and p4 makes the system unsolvable.
(The constraints in Figure 3(b) already determine the four points and the
plane up to location and orientation.)

As already noted, there are many similarities between our method and the
successful dense algorithm [20]. Its main purpose is to detect solvable sub-
systems of a constraint system, to solve it symbolically. The constraint systems
it handles usually contain only a few over- or under-constrained cases. Our
method has to handle many cases where the system is over-constrained. It
creates a close relation between the constraint graph, the flow distribution
approach and the actual constraint system. We do not have a rigorous proof
to show that the solvability properties detected by the algorithm describe the
exact solvability properties of the constraint system under our assumptions.
The theoretical issues are still being investigated. However, we believe the

20

approach to be sound because of its close relation to the dense algorithm.
Furthermore, experiments (see Section 7) show that the method is successful
when applied to real (albeit simple) problems.

5 Prioritizing Geometric Regularities

To resolve inconsistencies between regularities, we use a mechanism to select
regularities more likely to be present in the original design [9]. This is based
on priorities computed using merit functions. Deciding which regularities to
choose is non-trivial and often there is more than one sensible choice.

The priority w(r) of a regularity r is computed by taking a weighted average of:
a measure we(r) of the numerical accuracy to which the regularity’s constraints
are satisfied in the initial model, a merit wq(r) for the quality or desirability
of the regularity depending on specific arrangements and constants involved,
and a constant wb(r) describing a minimum desirability for each regularity
type. This average is weighted by wc(r) indicating how common the regularity
is (determined by surveying a range of engineering components). Thus,

w(r) = wc(r) (cewe(r) + cqwq(r) + cbwb(r)) , (1)

where all constants and functions are in [0, 1] and cq+ce+cb = 1, e.g. ce = 3/6,
cq = 2/6, cb = 1/6. The maximum of w(r) is wc(r) and the minimum for an
undesirable regularity with high error is wc(r)wb(r)cb.

To find we(r), we combine the average angular error er and the average length
error el of the regularity’s constraints. we should be close to 1 for small errors
and drop quickly towards 0 when the errors become too large. We convert
angular errors to length units using the maximum length Lm in the model:

we(r) =
1

1 + cl(Lm sin(er) + el)
(2)

where cl is a constant indicating the base length unit for the model, e.g. cl = 1
or 2.54. Lm can be chosen to be the diagonal of the bounding box of the model,
or the maximum edge length.

wq(r) describes the desirability or quality of the regularity if enforced exactly
on the model, computed by considering the regularity type and geometric
objects, their arrangement and special values involved. We first define some
quality factors used to compute wq(r).

All special values involved in the regularities have the form v = ±(n/m)1/(r+1)b
with n, m, and r integers and b some base value like π or 1. We evaluate the

21

1.0

0.8

0.6

0.4

0.2

0 1000 2000 3000 4000 5000

1.0

0.8

0.6

0.4

0.2

0 2 4 6 8 10

(a) (b)

Figure 4. Graph of Quality Merit Functions for (a) Special Values of Denominators
wsv(m, 0, 1) over m and (b) Common Boundary Elements wa(X, 0.5) over n(X).

quality of special values using the function

wsv(m, r, b) =
3q(b)

3 + c0l + c1(m/MK − 1) + c2r
(3)

where q(b) is a constant in [0, 1] evaluating the desirability of the base value
b (e.g. q(π) = 1, q(π/180) = 0.8, q(1) = 1, . . .), M is the base used to
represent m (usually 10), l is one less than the number of digits required to
represent m in the base M , and K is the number of consecutive zeros in the
representation of m in base M starting with the lowest valued digit. c0 is a
constant indicating the importance of the length of the representation of m,
c1 is a constant indicating the importance of the non-zero part of m and c2

indicates the importance of the root r, e.g. c0 = 0.01, c1 = 0.005, c2 = 0.7.
The graph of wsv(m, 0, 1) is shown in Figure 4(a) for special values of the form
n/m. One can identify separate curves for values for m of the type p ∗ 1000,
p ∗ 100, p ∗ 10 and p for p ∈ N representing the non-zero part of m. Increasing
r moves these curves closer towards the m-axis. The formula for wsv has been
chosen to favour special values with a small non-zero part m/MK , small roots
r and short representations in the base M .

Another quality factor is the number n(X) in a set X of B-rep model elements
involved in the regularity which have a common boundary element. For in-
stance, symmetrically arranged directions relating to pyramidal or prismatic
arrangements of pairwise adjacent faces are favoured. It is computed as

wa(X, p) = exp (−(cw(p|X| − n(X)))cp) (4)

with user-defined constants cw and cp (e.g. cw = 0.11, cp = 4) where the
parameter p indicates the most desirable number of adjacent objects. We get
high priorities for adjacent arrangements close to the desirable arrangement

22

indicated by p. We can set X to the set of faces F which should share common
edges, the set of vertices V which should be connected by edges or all geometric
elements O which should have a common boundary element. p is 1 if we desire
arrangements of the elements in loops and 0.5 if we desire adjacent pairs.
Figure 4(b) shows the graph of wa(X, 0.5) for some X with 10 elements over
the number of elements n(X) with common boundary elements in X.

For regular arrangements of directions or axes we have a base distance which
is a special value (n/m)b. For symmetrically arranged directions and axes on a
cylinder with base angle π/m we have 2m different positions, and for axes on
a line we count the number of positions between the first and the last occupied
position. We prefer arrangements in which more of the possible positions are
occupied. If all consecutive positions are occupied, the quality factor wra(r) is
set to wsv(m, 1, b). Otherwise, we make a list of smallest integers k for which
all positions (starting at an arbitrary position) with the distance k(n/m)b
between them are occupied. For each k we add m/(kn)wsv(m/ gcd(m, kn), 1, b)
to wra. For axes arranged regularly on a grid we have two orthogonal directions;
for each direction we project the occupied positions in the grid onto a line and
proceed as for arrangements on a line. The average of the quality for both
lines gives the quality of the grid arrangement.

We also count the number c(t) of geometric objects of the same type t involved
in a regularity for the geometric objects O and compute the quality

wt(O) =
1

|O|

∑

t∈ObjectTypes

c(t) exp
(

−(tw(|O| − c(t)))tp
)

(5)

with constants tw and tp, e.g. tw = 0.05, tp = 2. The graph of wt(O) is similar
to wa(X, p) in Figure 4(b). It favours regularities having repeated objects of
the same geometric type.

We select appropriate quality factors and compute their weighted average to
give wq(r) for each type of regularity (see Table 5). E.g. for parallel direc-
tions the quality wsv(0, 1, π) of the parallel angle is most important, but we
also prefer regularities with objects of the same geometric type. For planar
symmetrically arranged directions, the main emphasis is on the number of
occupied positions and faces arranged in a loop as computed by wra(r) and
wa(F, 1), but we also consider the special angle value for the planar arrange-
ment and the geometric types involved. Table 5 also lists the values used for
wc and wb. These, and wq, were derived from a part survey estimating the fre-
quency of regularities in simple mechanical components [18], and were further
refined to produce desired priorities in various example models. These values
could be changed for differing application domains.

While the order of the regularities can be adjusted by varying the constants,
their large number makes it hard to predict the effect of changes. Choosing

23

Regularity r wc(r) wb(r) wq(r)

Parallel directions 1.00 1.00 0.8wsv(0, 1, π) + 0.2wt(O)

Symmetric directions (planar) 1.00 1.00 0.2wsv(2, 1, π) + 0.3wa(F, 1)

+0.1wt(O) + 0.4wra(r)

Symmetric directions (conical) 0.90 0.70 0.3wsv(m, r, b) + 0.3wa(F, 1)

+0.1wt(O) + 0.3wra(r)

Orthogonal system 1.00 1.00 0.6 + 0.3wa(F, 1) + 0.1wt(O)

Special angle between direc-
tions

0.90 0.60 0.8wsv(m, r, 1) + 0.2wa(0, 0.5)

Equal positions 0.80 0.55 wt(O)

2D partially equal positions 0.85 0.65 0.5wa(V, 0.5) + 0.5wt(O)

1D partially equal positions 0.83 0.60 0.5wa(V, 0.5) + 0.5wt(O)

Aligned axes 0.97 0.85 wt(O)

Axis intersections 0.90 0.80 0.1wa(F, 1) + 0.9wt(O)

Axes regularly on grid 0.90 0.85 0.3wt(O) + 0.7wra(r)

Axes equi-spaced on line 0.88 0.75 0.2wt(O) + 0.8wra(r)

Axes symmetrically on cylin-
der

0.95 0.90 0.3wt(O) + 0.7wra(r)

Equal lengths / angles 0.90 0.75 wt(O)

Special ratios between lengths
/ angles

0.80 0.55 wsv(m, r, 1)

Special values for lengths / an-
gles

0.85 0.70 wsv(m, r, b)

Table 5. Constants and Merit Functions for Regularity Priorities.

priorities based on multiple-choice questions presented to a user might im-
prove this. Currently the priorities are sufficient to improve the model, but
a sophisticated decision process considering more complex relations between
regularities and the model, globally, could improve regularity selection with
respect to design intent.

6 Constructing an Improved Model

Regularity selection results in a list of generically consistent constraints de-
scribing the improved model. A numerical method is then used to find a so-

24

lution of the constraint system, followed by a reconstruction process which
generates an improved model from this solution.

A numerical approach is justified as we already have a valid B-rep model
which can be used to provide a good initial value for the numerical solver. As
the initial value is close to the solution, only a few iterations are required to
converge; convergence occurs if a discrete set of solutions exists, which was the
case in all examples we tested, due to the large number of regularities involved.
Symbolic methods based on the results of the solvability test using the graph-
representation of the constraint system provide an alternative approach. It
may be possible to modify the solvability test to create a decomposition plan
for a symbolic constraint solver [7].

The constraint system contains equations of the types in Table 2. We also add
one equation per direction vector to ensure that it is a unit vector. We solve
the constraint system using numerical optimization methods based on quasi-
Newton (variable metric) methods [6,15,21]. These need an approximation
method for the Hessian matrix of second partial derivatives and a line-search
method. For the latter we considered the Goldstein-Armijo and PWS meth-
ods [21]. While both perform well, PWS is more stable and more suitable for
the BFGS quasi-Newton update. For the Hessian, the BFGS update is a widely
used and suitable method. Instead of the simple BFGS iteration formula we
use a formula based on the Cholesky decomposition of the Hessian matrix with
a condition guard initiating restarts of the iteration [21]. Further numerical
stability was achieved by using a damped version of BFGS [13], at the cost of
an increased number of iterations. Using a hybrid method switching between
BFGS and Gauss-Newton steps improved convergence rates while still giving
acceptable numerical stability [15].

After a numerical solution to the constraint system has been found, an im-
proved model is rebuilt using the topological information from the initial model
and the feature values from the numerical solution. We create new faces using
the solution of the constraint system and re-intersect them to obtain the com-
plete model. The solution of the constraint system gives vertex positions and
the faces. Sharp edges are found using a surface-surface intersection algorithm
for adjacent surfaces, guided by the initial model to determine which part of
the intersection curve is required. For smooth edges, the intersection is tan-
gential and cannot be computed in this way. Such special cases are computed
separately for all combinations of the considered surface types.

Additional adjustments include moving the object to a special position and
orientation with respect to certain determined vertex positions, orthogonal
systems and main axes.

25

Time taken in

Analysing: 0.1 sec.

Selecting: 1.6 sec.

Solving: 2.1 sec.

Total: 3.8 sec.

Detected Regularities Tol. Level

1 orthogonal system 3◦

2 pairs of parallel directions 1◦

1 pair of parallel directions 3◦

6 sets of special angles 0.1◦ to 3◦

2 pairs of aligned axes 1◦

1 pair of aligned axes 3◦

1 intersection of 3 axes 0.15

◮ 1 intersection of 2 axes 0.05

1 equality of 8 lengths 0.1

◮ 2 equalities of 3 and 5 lengths 0.04

3 sets of special edge lengths 0.001 to 0.1

Figure 5. A Simple Model from Simulated Data with Test Results.

7 Experiments

We have tested our ideas using models reverse engineered from both real and
simulated data, and we now provide some of the results. The system was
implemented on a GNU/Linux system having a Pentium III 700MHz with
256MB RAM. We first discuss a simple model reverse engineered from sim-
ulated data to show the general properties of our system in detail. Then we
discuss examples using models reverse engineered from real data.

7.1 A Simple Example Using Simulated Data

We illustrate the general behaviour of our method using simulated data from
a model of a cube with edge length 2, perturbed by randomly changing the
plane normals by up to 3 degrees and face positions by up to 0.1 length units.
This model is simple enough to be able to list the regularities detected and
explain the behaviour of the system in more detail. An initial model was
reverse engineered from a point set generated from this object.

The analyser detected 21 approximate regularities (see Figure 5). The com-
plete list has been simplified for this discussion. We list the number of regu-
larity types detected at different tolerance levels (given approximately). We
clearly detect the orthogonal system of the cube, but at a high tolerance level
due to the perturbation. This also caused the detection of two parallel di-

26

rection pairs at a lower tolerance level and a third one at a higher level. We
detected six angles between the plane normals with a set of various special
values close to 90◦ at different tolerances as an alternative to the orthogonal
system. Furthermore, two of the plane axis pairs generated by the centres of
opposite planar faces and the plane normals are quite closely aligned. The
third aligned axis pair is at a higher tolerance level.

The intersection of two of the aligned axis pairs is at a low tolerance value. At
a higher tolerance level this intersection adds the third axis pair. This creates
a parent/child relation in our regularity structure (see ◮ in the list). Similarly
we find two groups of 3 and 5 edge lengths close to each other which are
combined at a higher tolerance level (again see ◮). For each group we also
found sets of special edge length values at various tolerance levels.

For the priorities, we have two basic choices. We can emphasise regularities so
that the orthogonal system and all regularities following from it are selected.
Alternatively we can favour small tolerances, resulting in the selection of alter-
native regularities where e.g. one of the approximately aligned axis pairs is not
orthogonal to the other two. However priorities were set, the numerical solver
found a solution to within a predetermined numerical tolerance. By setting
the priorities to favour an orthogonal system a cube with edge length 2 was
created as the improved model. Besides emphasizing parallel directions and
orthogonal systems, we also had to ensure that integer values for edge lengths
were strongly favoured to achieve this. In contrast, if we favoured precise tol-
erances, integer angles different from 90◦ were chosen for all relations between
directions. The equal edge length groups were completely rejected due to solv-
ability problems and varying values for edge lengths were selected. We also
tried a third set of priorities which neither emphasized tolerance nor quality.
In this case we obtained three aligned axis pairs where two were orthogonal
to each other, but the third one had an angle of 88◦ to the other two. The
group of three equal edge lengths was accepted with a special value 1.9. The
other edges all had separate special length values, or none set specifically by
a regularity, due to solvability issues.

Whether to accept high quality regularities or regularities with small tol-
erances depends on assumptions about the initial model. Only regularities
satisfying both requirements are likely to be always accepted. In the above
example, the third model may actually be the most likely one if we ignore
our knowledge of how we perturbed the model. There is some evidence in the
initial model that the third axis is not part of an orthogonal system as regu-
larities relating to it are at a higher tolerance level. In all three cases selecting
particular special values for lengths and angles is hard. While we can force all
edges to have the same length, this also means that we have to accept a high
tolerance level and so various special values become possible.

The time taken to improve this model was 3.8 seconds; a detailed breakdown

27

Model (a) (b) (c) (d)

Reg. Cons. Reg. Cons. Reg. Cons. Reg. Cons.

Total 229 743 382 1808 216 1263 487 2555

Selected 67 217 164 683 156 910 227 1453

Faces 11 19 14 25

Time in

Analysing 0.2 sec. 0.6 sec. 0.5 sec. 0.9 sec.

Selecting 12.9 sec. 27.3 sec. 18.9 sec. 38.5 sec.

Solving 24.4 sec. 58.2 sec. 45.6 sec. 113.3 sec.

Total 37-.5 sec. 86.1 sec. 64.9 sec. 152.7 sec.

Table 6. Number of Total and Selected Regularities/Constraints and Computing
Times for Example Models.

is given in Figure 5. The time for rebuilding the model was under 0.1 seconds
and is included in the solving time.

7.2 Improving Reverse Engineered Objects

We now discuss the results of improving four models reverse engineered from
real data. Due to the large number of regularities found in these more complex
models, we do not present them in detail. Only how the major regularities were
handled by the system is discussed. Our example models are shown in Figure 6.
Table 6 lists the number of regularities detected and the number of constraints
required to describe them, and how many of each were selected to improve the
model. Note how large these numbers are even for relatively simple objects.

The priority values from Section 5 were used, resulting in quality only being
slightly emphasized over tolerance — in general this resulted in the best overall
regularity selections (Fine-tuning the values for particular models improved
the results). Changing these values to favour quality or tolerance had effects
comparable to those discussed in Section 7.1.

Model (a) has a central axis, several planes with normals parallel to this axis
and two parallel planes with normals orthogonal to it. These regularities were
detected and imposed on the model. The two blue parallel planes (only the
one in front is visible), however, could only be made parallel by allowing large
angular tolerances (about 3◦) due to an error in the initial model. This angular
error arose during registration of the two scanner views for the opposite sides
of the object, containing the blue planes. (The common points in the range
data used for registration of the two views only belonged to cylindrical and

28

(a)

(b)

(c)

(d)

Figure 6. Example Models.

conical surfaces, making the rotation angle hard to determine.) Special values
for the cone angle and edge lengths, as well as equal edge lengths, created
similar problems to those for the cube discussed above.

Model (b) has two symmetrically arranged, planar direction sets based on the
angle π/4. Together with the orthogonal relation between the symmetrically
arranged planes and the blue planes, these regularities have the highest priority

29

and were imposed exactly on the model. Edge lengths caused similar problems
to those for the cube. Even after adjusting the priorities, only the two groups
of short edges could be forced to be of the same length. The values in the
other two groups of lengths were similar, but different special values were
favoured for the two groups. Special ratios between these values also supported
undesired values. The solvability test correctly determined that only one angle
between the groups of red and blue planes can be fixed. However, for the value
of this angle there was again a choice between a special value close to the value
in the initial model and one of high quality. Our method used a particular plane
pair to select this angle. If we favoured integer degrees the closest integer to
this angle is chosen. The angle in the original design was 10◦ degree; the plane
pair chosen had an angle of 45◦ + 10.8◦ degrees and thus the angle between
the two plane sets was chosen to be 11◦. A more sophisticated analysis might
be able to use all angles between the plane pairs to find an average value for
this angle, giving a greater chance of success.

In model (c) the green normals of the planes are arranged symmetrically in a
plane, and the axes of the red cylinders are arranged symmetrically on a cone.
These regularities were well preserved in the initial model (to within about
1◦) and are also of high quality, so they were selected. The edge lengths and
the angle chosen for the conical arrangement had the same problems as for the
other models. In addition, in this case we had no regularity specifying a direct
relation between the group of cylinders and the planes. Hence, there was a
small angle between the cylinder axis directions and the plane normals when
projected on the same plane. The edge length regularities and the topological
constraints ensured that the lack of a precise relation did not change the
topology, i.e. the cylinders were not rotated in a way that they would intersect
with more than one green plane.

The directions in model (d) form two orthogonal systems: the normals of the
green planes and the remaining directions from the red faces. The regularities
were present in the model to within about 2◦. As they are also of high quality,
they were selected. The 45◦ degree relation between the two direction sets
was slightly more ambiguous as it was represented by individual special angle
values between various direction pairs from the two sets. The relation was
preserved in average to within about 3◦. As our priority parameters favour
45◦ angles, the relation was imposed exactly on the improved model. Further
regularities relate to equal edge length and cylinder radii with problems similar
to the other models. The regularity selection, however, ensured that the two
slots are congruent.

30

7.3 Discussion

Usually, the observed tolerances for the reverse engineered real objects were
slightly smaller than those used for simulated data. Initial angular errors were
usually about 1◦–2◦ and positional errors were about 0.5–1 length units (mil-
limetres; scanned points were about 1 millimetre apart). This made the prior-
ities of major regularities quite robust to changes in the priority parameters,
and they were usually exactly imposed on the model. The order of selection of
special values and local relations between faces is less stable and has greater
dependence on the choice of priority parameters. Especially for models where
high tolerances have to be accepted in order to select the major regularities,
the uncertainty for special values is relatively large. We can only make a guess
within the tolerance depending on which kind of values we prefer.

In all cases, independently of the chosen priority parameters, the numerical
solver was able to solve the selected constraint system up to the given nu-
merical tolerance. This is strong evidence that the selected constraint systems
did not contain any inconsistencies. It also provides evidence that the generic
solvability test is sufficient for the kind of models we considered.

It is expected that in more complicated models the ambiguity between the
regularities will increase and selection of correct design intent will be harder.
Furthermore, this may create situations where the generic solvability test is
not sufficient. As we are using a numerical optimization method it is still likely
that a solution which generates a valid model will be found, but it will not
exactly (within numerical tolerance) impose the regularities on the model.

The time required to improve a model is up to a few minutes. This is accept-
able, especially considering the time required for the whole reverse engineering
process, and particularly data acquisition. Most of the time spent in beautifi-
cation is used in numerically solving the constraint system.

Our research so far suggests that our beautification system can be used to im-
prove reconstructed models, even if more testing is needed (However, in order
to handle more complex models the robustness of the other reverse engineer-
ing phases also has to be improved). In particular, our regularity selection
method creates consistent geometric constraint systems. The tests show that
major regularities, when only weakly related to other major regularities, are
easily identified and imposed on the model. However, major approximate reg-
ularities which cannot be imposed on the model at the same time because
they involve similar sets of faces are harder to resolve. No clear decision can
be made if neither the tolerances nor the quality of these regularities differ
distinctively. Only in cases were there is a clear major regularity relating to
many faces in the object can a clear decision be made. In other cases there
may be alternative models which are as plausible as the chosen one. A more

31

intelligent selection method than simple priorities, which considers the global
structure of the model, may improve this situation.

A new model having specific special values for lengths and angles cannot be
guaranteed. In general there is always a choice between high quality regu-
larities and relations close to those in the initial model. Note that a chosen
special value is always subject to a tolerance. If the special value is within the
tolerance chosen in the original design this should not cause a major problem.
Our system allows the setting of various tolerances for the precision present
in the initial model [10]. Higher precision can be achieved only by creating a
more exact initial model.

8 Conclusion

We have presented an efficient system to beautify simple reverse engineered
geometric models. The core components of this system are regularity detec-
tion methods reported in earlier work [5,10–12,16,17] and methods to select
consistent geometric constraints described here. Using this system, weakly
dependent major regularities can be identified and imposed correctly on the
model. The regularities are always selected such that the corresponding con-
straint system is consistent in a generic sense. Experiments show that generic
solvability is sufficient to find solutions of the constraint system which can be
employed to successfully improve the model.

Future work will consider topological changes to the model and alternative
methods for selecting regularities in the presence of inconsistencies.

Acknowledgements

This project is supported by the UK EPSRC Grant GR/M78267. We would
like to thank T. Várady and P. Benkő from the Hungarian Academy of Sciences
for helpful discussions and CADMUS Consulting and Development Ltd. for
providing reverse engineering software.

References

[1] P. Benkő, G. Kós, T. Várady, L. Andor, R. R. Martin. Constrained fitting in
reverse engineering. Computer Aided Geometric Design, 19(3):173–205, 2002.

32

[2] P. Benkő, R. R. Martin, T. Várady. Algorithms for reverse engineering boundary
representation models. Computer-Aided Design, 33(11):839–851, 2001.

[3] B. Brüderlin, D. Roller. Geometric Constraint Solving and Applications.
Springer, Berlin, Heidelberg, New York, 1998.

[4] I. Fudos, C. M. Hoffmann. A graph-constructive approach to solving systems
of geometric constraints. ACM Trans. Graphics, 16(2):179–216, 1997.

[5] C. H. Gao, F. C. Langbein, A. D. Marshall, R. R. Martin. Approximate
congruence detection of model features for reverse engineering. Accepted for
Int. Conf. Shape Modelling and Applications, 2003.

[6] J. X. Ge, S. C. Chou, X. S. Gao. Geometric constraint satisfaction using
optimization methods. Computer-Aided Design, 31:867–879, 1999.

[7] C. M. Hoffmann, A. Lomonosov, M. Sitharam. Decomposition plans for
geometric constraint systems. J. Symbolic Computation, 31(4):367–427, 2001.

[8] G. A. Kramer. Solving geometric constraint systems: a case study in kinematics.
MIT Press, 1992.

[9] F. C. Langbein, A. D. Marshall, R. R. Martin. Numerical methods
for beautification of reverse engineered geometric models. In: H. Suzuki,
R. R. Martin (eds), Proc. Geometric Modeling and Processing 2002. IEEE
Computer Society, Los Alamitos, CA, 159–168, 2002.

[10] F. C. Langbein, B. I. Mills, A. D. Marshall, R. R. Martin. Approximate
geometric regularities. Int. J. Shape Modeling, 7(2):129–162, 2001.

[11] F. C. Langbein, B. I. Mills, A. D. Marshall, R. R. Martin. Finding approximate
shape regularities in reverse engineered solid models bounded by simple
surfaces. In: D. C. Anderson, K. Lee (eds). Proc. 6th ACM Symp. Solid

Modelling and Applications. ACM Press, 206–215, 2001.

[12] F. C. Langbein, B. I. Mills, A. D. Marshall, R. R. Martin. Recognizing geometric
patterns for beautification of reconstructed solid models. In: Proc. Int. Conf.

Shape Modelling and Applications. IEEE Computer Society, Los Alamitos, CA,
10–19, 2001.

[13] D. H. Li, M. Fukushima. A modified BFGS method and its global convergence in
non-convex minimization. J. Computational and Applied Mathematics, 129(1–
2):15–35, 2001.

[14] Y. T. Li, S. M. Hu, J. G. Sun. A constructive approach to solving 3D
geometric constraint systems using dependence analysis. Computer-Aided

Design, 34(2):97–108, 2002.

[15] L. Luksan, E. Spedicato. Variable metric methods for unconstrained
optimization and nonlinear least squares. J. Computational and Applied

Mathematics, 124:61–95, 2000.

33

[16] B. I. Mills, F. C. Langbein. Determination of approximate symmetry in
geometric models – an exact approach. Submitted to Computational Geometry,
2002.

[17] B. I. Mills, F. C. Langbein, A. D. Marshall, R. R. Martin. Approximate
symmetry detection for reverse engineering. In: D. C. Anderson, K. Lee (eds).
Proc. 6th ACM Symp. Solid Modelling and Applications. ACM Press, 241–248,
2001.

[18] B. I. Mills, F. C. Langbein, A. D. Marshall, R. R. Martin. Estimate of
frequencies of geometric regularities for use in reverse engineering of simple
mechanical components. Technical Report GVG 2001-1, Geometry and Vision
Group, Dept. Computer Science, Cardiff University, 2001. http://ralph.cs.

cf.ac.uk/papers/Geometry/survey.pdf.

[19] N. M. Samuel, A. A. G. Requicha, S. A. Elkind. Methodology and results of an
industrial part survey. Technical Report TM-21, Production and Automation
Project, College of Engineering & Applied Science, University of Rochester,
July 1976.

[20] M. Sitharam, C. M. Hoffman, A. Lomonosov. Finding dense subgraphs of
constraint graphs. In: G. Smolka (ed). Constraint Programming. Springer,
Berlin, Heidelberg, New York, 463–478, 1997.

[21] P. Spellucci. Numerische Verfahren der nichtlinearen Optimierung. Birkhäuser,
Basel, Boston, Berlin, 1993.

[22] W. B. Thompson, J. C. Owen, J. Germain, S. R. Stark, T. C. Henderson.
Feature-based reverse engineering of mechanical parts. IEEE Trans. Robotics

and Automation, 15(1):57–66, 1999.

[23] T. Várady, R. R. Martin, J. Cox. Reverse engineering of geometric models –
an introduction. Computer-Aided Design, 29(4):255–268, 1997.

[24] T. Várady, R. R. Martin. Reverse engineering. Chapter 26 in: G. Farin,
J. Hoschek, M.-S. Kim (eds). The Handbook of Computer-Aided Geometric

Design. Elsevier, Amsterdam, 651–681, 2002.

[25] N. Werghi, R. Fisher, C. Robertson, A. Ashbrook. Object reconstruction by
incorporating geometric constraints in reverse engineering. Computer-Aided

Design, 31(6):363–399, 1999.

[26] N. Werghi, R. B. Fisher, C. Robertson, A. Ashbrook. Faithful recovering of
quadric surfaces from 3D range data by global fitting. Int. J. Shape Modelling,
6(1): 65–78, 2000.

[27] N. Werghi, R. B. Fisher, C. Robertson, A. Ashbrook. Shape reconstruction
incorporating multiple non-linear geometric constraints. Constraints, 7(2):117–
149, 2002

34

