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Abstract

Automatic extraction of CAD descriptions which are ultimately intended for human manipulation
requires the accurate inference of geometric and topological information. We present a system which
applies segmentation techniques from computer vision to automatically extract CAD models from range
images of parts with curved surfaces. The output of the system is a B-rep of the object which is suitable
for further manipulation in a modelling system.

The segmentation process is an improvement upon Besl and Jain’s variable-order surface fitting!,
extracting general quadric surfaces and planes from the data, with a postprocessing stage to identify
surface intersections and to extract a B-rep from the segmented image.

We present results on a variety of machined objects, which illustrate the high-level nature of the
acquired models, and discuss the numerical accuracy (feature sizes and separations) and the correctness
of structural inferences of the system.
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Introduction

Automatic extraction of CAD descriptions for reverse engineering, rather than for simple copy milling,
demands models that are ultimately intended for human manipulation. This in turn implies the need
for accurate inference of geometric and topological information, expressed in terms of component
features and their interconnections. Such a description is conceptually at a higher level than that of
approximating raw data with spline patches?? for example.

Previous research into such “feature-based” reverse engineering has been limited either to interactive
systems*”, which are not suitable when acquisition of many models (for legacy inventory modelling for
example) is required. The noninteractive systems that have been described® are generally limited to
polyhedra, which permits the reverse engineering of only a narrow class of objects.

The problem of feature segmentation is widely recognized in the field of computer vision, where
extracted features are used to perform symbolic matching between images. This paper applies com-
puter vision techniques to the automatic inference of geometric and topological structure for reverse
engineering. We describe a system which automatically builds CAD models of objects which are
bounded by arbitrary piecewise quadric surfaces, significantly expanding the range of applicability of
the feature-based technique.

Our previous work® segments an image based on the signs of mean and Gaussian curvatures,
producing a qualitative description of arbitrary curved surfaces suitable for object recognition. For
CAD reconstruction, however, it has a number of inadequacies:

e The surface patches have no parametric description. While reconstruction up to a Euclidean
transformation is theoretically possible from the curvatures, this is not a practical CAD repre-
sentation.

e The patch boundaries are ragged due to the inherent amplification of errors in the extraction of
second derivatives for curvature calculation.

e No topological information is provided.

The input data to the new algorithm are a Q%D range image which has been coarsely segmented as
described above, and the output is a B-rep model in Fisher’s Suggestive Modelling System” language.

In the paper we briefly review previous approaches to range-data segmentation, and then describe
our algorithm providing examples of its operation on a number of mechanical parts.

Survey of Range Image Segmentation

In this section we briefly survey strategies for range image segmentation, and indicate their rele-
vance to the problem of CAD model acquisition. The surface models used range over planes®?, spe-
10,11,23,12,13 * goneral quadrics'®®, algebraic
, and splines.?® The published algorithms generally fall into three cate-

cific quadrics (for example cylinders, spheres and cones)
surfaces'®, superquadrics'®!7
gories:

Split-and-merge algorithms!®#:19:20.21.22,13 {iyide the image into many small regions, and then it-
eratively merge regions that are statistically likely to represent the same surface primitive. Merging
stops when no two regions are sufficiently similar. Thresholding the similarity measure provides an
easy way to determine the number of regions and scale of segmentation.

Algorithms based on clustering*>**?° estimate surface parameters on small patches and accumulate
the parameters in a histogram. Large peaks in the histogram correspond to instances of the surface in
the data. Flynn?® and Han?* both look at clusters of surface normals: Flynn uses the eigenvectors of
the local normal covariance matrix to discriminate between planar, cylindrical and spherical patches;
Han further histograms cross products of pairs of normals to test for and determine cylinder axes.
Clustering techniques, like the Hough transform?®, are generally limited to surface types with a small
number of free parameters.

Region growing"?"*® is a surface fitting technique which fits to each of several small “seed” regions a
mathematical surface and then extends these surfaces to encompass pixels adjacent to the seed region.
Besl and Jain’s much-cited paper! describes a technique based on polynomial surfaces of orders up to



Diffusion-smooth range image x(%, j), preserving discontinuities

Calculate curvature images H (¢, 7) and K (¢, 7).

Morphologically smooth curvature images, producing H (7, j) and K (i, j).
Create label image L(7,7) from connected components analysis of f{R(l,])
Create seed regions {R;}", from L(¢,j).

for each seed region R;,
repeat
Calculate sample covariance matrix of region points to decide surface order.
Robustly fit an algebraic surface S;(x) = 0 to the points of R;
Replace R; with the largest overlapping connected region of points
which are within a threshold 7 of 5;, and are closer to S;
than to any other S;.
until R; does not change.
end
Create 2-D adjacency graph from label image L(3, j)
Create 3-D Region-Sheet (RS) graph
Process RS graph into produce B-rep Region-Sheet-Curve-Vertex graph.
Optionally postprocess to replace general quadrics with specifics.

Figure 1: Algorithm overview

four. These systems work relatively well on simple industrial parts with sharp orientation and even
curvature discontinuities but prove inadequate on more freeform surfaces.

The Algorithm

Our system is an improvement on the method of Besl and Jain', with postprocessing stages to recover
the topological information and to convert the segmentation output to a B-rep model. Figure 1 gives
an overview of the procedure, which comprises the following steps:

Curvature Classification.

To summarize Trucco®

, we estimate principal curvatures at each pixel after spike noise removal and
boundary-preserving smoothing have been applied to the raw data. From the principal curvatures sy

and ko, we calculate the Gaussian (K') and mean (H) curvatures from:

K1+ K2

K= R1K2 H= 5

From the signs of these curvatures, we can classify each image pixel into locally planar, cylindrical,
spherical, or hyperbolic. A connected components analysis of this image then produces a set of regions
of constant curvature class. Figure 2 illustrates the output of this stage.

Morphological Hysteresis Thresholding

In the current system the noisy curvature-sign images are morphologically smoothed using a new
hysteresis-like inclusion criterion. Each curvature value is classified as Negative, Zero, Positive or
Unknown based on the values of “inner” and “outer” thresholds. The inner threshold determines the
range of values called Zero. The outer threshold determines the inner limit of the ranges of the Negative
and Positive values. (Figure 3 provides a graphical depiction of these thresholds) Between these values
the pixel is labelled as Unknown. These H and K sign maps are then morphologically dilated?? using a



(a) (b)

Figure 2: (a) Raw range data (b) Curvature classification. The greylevels on the right label pixels as
locally falling into one of three classes, based on the sign of the mean curvature, H, (on this object the
Gaussian curvature is zero everywhere other than at edges).
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Figure 3: Ranges for hysteresis thresholding.

3 x 3 cross (“wgw’ shaped) structuring element to propagate the known labels into the Unknown regions.

Figure 4 illustrates the effectiveness of this technique on an image where the curvature thresholds
have been set artificially low. The image on the left is a synthetic range image rendered using an
artificial Lambertian lighting model to illustrate the noise level of the image. The central image
shows the result of thresholding the mean curvature with an “inside” threshold of approximately the
median curvature value observed in the planar region, and an “outside” threshold of approximately the
minimum value in the ellipsoidal region.

Connected Components Analysis

In the last of the preprocessing stages, connected components analysis of the label images groups pixels
which are 4-connected and share the same labels. This process produces a set of initial seed regions
{R;}7_,, where a region is defined as a set of connected pixels {x}},-, and an associated label.

Region growing: Initial pass

After the seed regions have been identified, the region growing stage refines the coarse segmentation in
order to ensure intersection boundary consistency. Region growing is performed through an iterative
expand/fit /contract cycle after the initial surface fitting.
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Figure 4: Morphological Hysteresis Thresholding. The object on the left has been processed with
incorrect threshold values. (a) Mean curvature image with each pixel classified as Negative, Zero,
Positive or Unknown. (b) Mean curvature image after application of morphological hysteresis.

Surface fitting

For each region in the initial segmentation above a minimal size a least squares surface fitting is

performed, associating with each region R; an algebraic surface S;(x) = 0. To perform the fitting,

we use Taubin’s generalized eigenvector fit!® (GEVFIT), which minimizes the approzimate mean square
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to the surface defined by F(x) = 0.

The choice of fitting algorithm was a result of comprehensive tests on several 2D conic fitting
algorithms®® which found GEVFIT to provide the best tradeoff between speed and accuracy. While
the same evaluation has not been formed in 3D, the very simple analogy between quadrics and conics
allows us to be confident that the results will extend to higher dimensions.

Here we limit the types of surfaces to quadrics and planes, due to problems of instability when
fitting higher-order surfaces. The decision about which type of surface to fit is made by examining
the sample covariance matrix of the region points and fitting a plane if the ratio of its two smallest
eigenvalues exceeds a preset threshold. Otherwise, a quadric surface is fitted.

Expansion

Next, each region in turn is grown. For expansion, a pixel is added to the current region if it meets the
following requirements:

1. it is 2-D adjacent (defined as 4-connectivity on the label image) to the current region,

2. the corresponding 3-D point p is within a minimum perpendicular distance 7 of the current
surface. The minimum distance for quadrics is readily calculated if coordinates are transformed?
so that the quadric is

x'Dx =1
for diagonal D. Then the x closest to p satisfies

X+ADx=p
(I+AD)x=p

"This transformation cannot be performed for paraboloids and certain degenerate quadrics, but a similar analysis can
be easily applied if the paraboloid is transformed to the form # = ax® + by?.



So that A is a solution of p” (I + AD)~TD(I+ AD)"'p =1, or

dy p? dap? dsp?

=1
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(1= ds)\)?

Which, on multiplication by ||[I — AD||% gives a 6" degree polynomial in A. Choosing the root
which minimizes the distance yields the closest point.

3. the point is closer to the current surface than to any other surface for which it may have been
labelled during the growing of a previous region,

4. the surface normal at the pixel (estimated by least-squares fitting af a plane to a 5 x 5 window
about the pixel) is within an angular threshold 6 of the current surface normal at that position,

5. the estimated pixel normal is in better agreement with the current surface than with any other
surface for which it may be labelled.

Choice of minimum perpendicular distance threshold =

The choice of threshold 7 depends on the accuracy of the range sensor, and is chosen such that about
95% of range points are expected to lie within 7 of their true surface. The value may be estimated by
imaging a surface of known geometry, such as a sphere or a plane, performing a robust least-squares
fit, and calculating the 95" percentile residual value. Using the range data gathered by our in-house
laser striper, values of 7 = 0.6mm and 8 = 80° were used, while for other experiments®! values of 1mm
and 4mm were required.

Contraction

The boundary of the current region is extended in this manner as far as possible. Then the surface
is refitted to this new data set. Finally, a contraction of the region boundary is performed. Each
pixel is tested using the previous criteria against the new surface estimate. If it is not best accounted
for by the new surface, the pixel is returned to the region from which it was originally taken. This
expand /contract cycle is iterated until the region boundary stabilizes, or until a maximum iteration
limit is reached.

Intersection boundary consistency

After a single pass has been made through the surfaces, the majority of pixels have been labelled.
However, the intersection boundaries between surfaces may be very ragged, as there is often a significant
overlap between regions because pixels on the boundary will be within 7 of both the adjoining surfaces.
The criterion above that assigns the label of the closest surface to border pixels often fails to give a
clean intersection boundary due to the effects of noise in the data, as demonstrated in Figure 5.

To resolve this problem, the second and subsequent passes add a novel compatibility criterion which
attempts to ensure that the boundaries of adjacent regions are consistent with the regions’ intersection
curve. The new criterion is applied only at ambiguous pixels (those that are within the distance
threshold 7 of more than one region), and replaces the “closest point” constraint with one that labels
an ambiguous pixel based on its being on the same side of a decision surface as the region for which it
will be labelled.

In the case of planes, this surface is another plane passing through the line of intersection between
the current plane and the plane corresponding to the current labelling of the pixel. This dividing plane
is also chosen to bisect the volume of space between the two planes in question. Thus, for two planes

mx = d1

noX = d2
the equation of the decision plane is simply

(111 — IIQ)X = d1 — d2
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Figure 5: An example showing where assigning pixels to their closest region fails. The thick sloped
lines represent two true planes, while the jagged dotted line represents the noisy image of the planes.
The closest region criterion will classify the circled pixels into the wrong regions. Applying the decision
surface criterion to the pixels in the grey area (where points are within 7 of both regions) will correctly
classify all but the grey circled pixel, which is outside the threshold range for its “correct” region.

Figure 5 illustrates the concept in one dimension, and shows how this decision surface criterion will
produce more consistent labellings in a simple case. The figure also demonstrates that the criterion
will fail when a pixel is sufficiently far from its “correct” plane that it falls outside the threshold bands.
In this case the connected components labelling will discover this isolated pixel and reject it as being
too small to be a single region, but in general if the initial phase produces a labelling that is grossly
wrong, this criterion will not be able to correct the error.

The same technique may be applied to curved surface intersections by considering the intersections
of the local tangent planes, because the decision surface is calculated separately for each pixel, and is
based on the local surface normal.

Topology extraction: Building the B-rep model

Having performed the segmentation step, production of the B-rep consists of extracting 3D adja-
cency and surface intersection curves and output of the SMS format model.
The topological information in which we are interested comprises the adjacency graph of the scene,

' World 3\ ...................
Sheet P-w B{— Curve P-W .

(Pl ane o Curve Q-W (Jump)

Sheet P-Q E:—> P.Q Intersection ="
' Quadric

Figure 6: lllustration of the B-rep graph for a simple object
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Pixel

Figure 7: Example dual-lattice edgel. The
edgel is defined by the position of its midpoint,
which in turn defines its orientation — a frac-
tional X and integral Y imply the edgel is ver-
tical. With each edgel we associate an internal
and external pixel.

&

Figure 8: Example of vertex identification.
The solid black edgel sequence is the exterior
boundary of region A, with edges labelled with
the indexes of their adjoining regions. The
three-way vertex is simply indicated by the la-
belling change from “ab” to “ac” as the bound-
ary is tracked.

where two patches are deemed adjacent if their finite intersection is a space curve lying on the sensed
surfaces. This definition therefore incorporates the identification of intersection curves into the adja-
cency determination process.

To assist in this process, we do have a certain amount of topological information available ini-
tially. The segmented Q%D range image gives us a 2-D adjacency map, and we can make the following
observation:

If two 3-D region boundaries are within 7 of each other, they will be 2-D adjacent in the
label map, because each boundary point is within 7 of both surfaces.

This allows us to extract 2D adjacency during the execution of a dual-lattice boundary tracker, and to
mark as 3D-adjacent boundary points which are within 7 of both the internal and external surfaces.

The B-rep model structure

The specific B-rep which our system generates is that defined in Fisher’s Suggestive Modelling System.”
The SMS defines surfaces in terms of shape, extent and position®? where the shape parameters (such as
the 3 radii of an ellipsoid) determine the parametric or implicit surface in a canonical position. Surface
extent is defined by a collection of space curves which lie on the surface and by a point defining the
interior of the surface. This limits surfaces to being singly connected components, so that a surface
representation comprises one external sheet, and zero or more “hole” sheets. Each sheet may in turn
be defined by an assembly of space curves. Figure 6 illustrates the structure of a simple model.

Boundary tracking

The segmentation process gives us collections of regions whose boundaries are implicit in the label
map. By tracking around the pixels using a dual lattice boundary tracker we can build a list of
boundary edgels around each region. Each edgel contains (in addition to its position and orientation)
the label of the external pixel and the distance from the external pixel to the region’s surface, as shown
in Figure 7.

Using the external distance information, 3-D adjacency can be determined at each edgel as observed
above. Clearly this scheme will erroneously report adjacencies along chamfers of radius less than 7.
However, as 7 has been chosen to reflect the level of noise in the range data, such chamfers are outside
the resolution of the system in any case (see Figure 9).



Figure 9: A chamfer that is outside the resolution of our system. Such structures will generally be
modelled as two intersecting planes, ignoring the chamfer.

Having identified pixel adjacencies, we can segment the region boundaries into sequences of edgels
which share the same internal /external region labels. This gives us a Region-Sheet-Curve decomposition
where the curves are still represented as raw sequences of edgels. For example region Q in Figure 6
will be represented as having one sheet, comprising two curves: the 3D adjacency curve between P and
Q (labelled QP), and the non-adjacency curve corresponding to Q’s occluding contour (labelled QW)
indicating the boundary between @ and the World.

Surface intersection: Curves and vertices

We can now replace sequences which denote 3D adjacency between surface patches (curve PQ in the
example) with the intersection curves of the adjoining patches.}

On transitions between sections (where region A changes from being adjacent to region B to region
C for example — see Figure 8), we know that there must be a vertex found by the intersection of the
three surfaces and can therefore define it thus.

Curve description and hole extraction

Finally, in the current case where not all of the object is observed, some boundary segments will be
adjacent to the World. Currently these segments are simply approximated by lines and conic sections
using a segmentation algorithm based on the run-distribution test.®® Note that this frequently applies
near surface holes, so that this process produces a description of the circular rim of the hole even in
the absence of range data from the cylindrical inner surface.

As holes are generally considered an important feature, the system specifically attempts to model
internal boundaries as a single circle by the following process:

1. A plane is least-squares fitted to the points {x;}”_, by extracting the centroid and shortest
eigenvector of their sample covariance matrix.

2. If the residuals after this fit exceed 7, the process is terminated.
3. The points are transformed to lie in the X-Y plane, where they are expressed as { (@, v;) }iy.

4. A circle is least-squares fitted using GEVFIT and the linear parameterization ay + aqz; + asy; +
as(2? 4+ y?) = 0, producing a center (c;, c,) and estimated radius R.

5. The boundary is tracked again, and the sample radii R; = ||(2;, y;) — (cz, ¢)|| are extracted.

6. Application of the run distribution test to {R;}"_, determines whether or not the boundary is a
circle.

In the case when a modelled intersection curve reaches such background curves, we link them
together using a line segment which connects the last point on the background curve to its closest
point on the intersection curve.

{This paper does not discuss the mathematics of the surface intersections, as the key interest is in the identification of
the finite extent of the intersection.



Specialization of quadric surfaces

To be useful in CAD systems, it is often preferable to deal with specific quadric surfaces such as
cones, cylinders and spheres rather than with the general 10-parameter form. Our system includes
an optional postprocessing stage that applies some simple heuristics to determine whether a generic
quadric instance is that of a specific subclass. The process transforms the quadric x” Ax+ Bx+C =0
into its central form by extracting the eigensystem of A:

R'DR=A
rotating the coordinate system:

A"« RTAR

B « R'B

C' o« C

translating B to the origin: (note that if D is noninvertible, the tests are not performed)

t —%D_IB’

A" A

" C’—I—%t-B’
B" « B 424t

and finally extracting the shape parameters:

R. — sgn( /1/1)

VAT

R, = sgn(Aj)
R. = sgn(Ass)
K = "

The following tests are applied to the shape parameters in order to identify specific subclasses:
1. if R, and R, have the same sign and |R.| exceeds a threshold R, the surface is a cylinder.
2. if | K| is less than a threshold €., the surface is a cone.

3. if R;, Ry and R, have the same sign and their absolute values are under R, the surface is an
ellipsoid.

In the cases where a specific subclass has been determined, a nonlinear least squares algorithm?®* is
applied to fit the appropriate model, which replaces the general quadric description.

Experimental results

We have implemented the above system in C++ and tested it on range data gathered by the laser
striper in our laboratory.?® In addition, the same algorithm restricted to polyhedra has been tested by
Hoover et. al.3! in their comparison of range segmentation systems.

Figures 10, 11 and 12 show the operation of the system on three objects which are bounded by
planes and quadric surfaces. The figures show the raw range data and the renderings of the final models
in the SMS object viewer.
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(a) (b)

(a) (b)

Figure 11: Manufactured part: (a) Raw range data (b) Automatically acquired model

(a) (b)

Figure 12: Optical Stand: (a) Raw range data (b) Automatically acquired model
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Figure 13: Hole accuracy: Test object. The object is sampled at 1mm intervals in X and Y. The true
hole radius is 7.5mm, with a separation of 40mm.
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Figure 14: Hole accuracy: Radii. The graph shows the distribution of radii for the 15 holes. Median
error is 0.16mm, mean error is 0.32mm.
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Figure 15: Hole accuracy: Separation. The graph shows the distribution of hole separations. Median
error is 0.19mm, mean is 0.20mm.
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Object True Measured Error

Widget 45.00 44.93  0.07
Manufactured 60.00 59.88  0.12
Optical Stand 40.00 39.06 0.94
Optical Stand  50.00 49.61  0.39
Optical Stand 90.00 90.34  0.34

Table 1: True versus estimated cylinder radii on sampled objects. All measurements are in mm.

Object Metric True Meas. Error

Widget PP 90.00 90.10 0.10
Widget PP 90.00 B80.85  0.15
Widget PP 26.57  26.74  0.17
Manuf. PP 120.00 119.95  0.05
Manuf. PA 90.00 90.04 0.04
Manuf. PA 90.00 89.91  0.09

OptStand PP 90.00  90.50  0.50
OptStand PP 90.00  90.07  0.07

Table 2: True versus estimated angles. The PP measures are between surface normals of the largest
planes on the sampled objects. The PA measures are between plane normals and cylinder axes. All
measurements are in degrees.

Accuracy

In order to evaluate the accuracy of the hole extraction stage, we commissioned the object shown in
Figure 13 to be built. Taking an image of the object, with X and Y sampling of Imm, and approximating
each of the holes in the plane by a circle, we compare the distribution of returned radii against the true
value of 7.5mm. Figures 14 and 15 show the error histograms for the radius and separation estimates.

Note that while the model error is on the order of 0.Imm, an order of magnitude less than the
sampling rate, there are three holes where surface reflectance problems give a radius error of Imm. We
are investigating the use of combined intensity and range data to solve this problem while retaining
the basic accuracy.

Additional accuracy measurements have been less rigorously studied, but Table reftbl:angles shows
the true versus measured angles between plane normals and between normals and cylinder axes for the
illustrated objects. Table 1 shows true versus estimated cylinder radius for the objects. The accuracy
depends largely on the size of the surface patch and the quality of the range data, but the results on
the images from our laboratory (the Widget and Manufactured parts) indicate that angular errors of
approximately 0.1° are representative.

Discussion

Our current implementation of the system uses planar and quadric surfaces, and calculates intersections
only for the plane-quadric case. However, both the segmentation and intersection detection depend
only on the ability to measure distance from a point to a surface, and so may be readily applied to other
surface types. The key to the intersection calculations is primarily in the image processing operations
that are applied to the data rather than in the calculations required to perform the intersections
themselves.

13



Contributions

The contributions of this research are in the extension of automatic feature-based reverse-engineering
systems to curved surfaces, and in the incorporation of topological constraints into the segmentation
process directly. The survey of Hoover et. al.! found the planar version of this algorithm to produce the
most accurate structural results (in terms of pixels correctly labelled) with the second fastest running
time, of the systems tested.??36:3!, We believe that this is largely attributable to the incorporation of
topological constraints.

In comparison with other quadric-based segmentation systems, it is difficult to offer quantitative
comparisons as few authors include quantitative results. In addition, because quantitative measures
such as angles and hole radii are very dependent on the quality of the range data, they do not distinguish
the qualitative differences in accuracy of labellings and topology extraction.

Conclusions

We have presented a system that applies techniques used in computer vision to the problem of CAD
model acquisition for reverse engineering. This system does not require operator intervention and is
therefore suitable for large projects where many models are to be acquired, such as in legacy inventory
modelling. The system produces models which are very close in structure to those produced by a
human operator given the same task, and as such are useful in environments where the models are to
be further edited after acquisition.

Future work

e We are currently extending the system to operate on full 3D data from view merging. This will
allow a more accurate identification of surface adjacency as the problems of self-occlusion will be
greatly reduced.

e The system is being extended to output models in AutoCad DXF format so that they can be
directly imported into this standard CAD system.

e [ixtension of the range of surface types allowed to include NURBS surfaces is being investigated,
again with the objective of widening the range of applicability of the system.

e Incorporation of intensity information into the edge detection process.

e Incorporation of more domain knowledge to the acquisition system, so that for example planes
of “approximately” 90° are converted to right angle joins by the system.
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