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Abstract

In this paper, we propose an algorithm for automated segmentation of midsagittal brain MR images.
First, we apply thresholding to obtain binary images. From the binary images, we locate some
landmarks. Based on the landmarks and anatomical information, we preprocess the binary images,
which substantially simpli®es the subsequent operations. To separate regions what are incorrectly
merged after this initial segmentation, a new connectivity-based threshold algorithm is proposed.
Assuming that some prior information about the general shape and location of objects is available, the
algorithm ®nds a boundary between two regions using the path connection algorithm and changing the
threshold adaptively. In order to test the robustness of the proposed algorithm, we applied the
algorithm to 120 midsagittal brain images and obtained satisfactory results. # 1998 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Magnetic resonance (MR) imaging produces sequences of two dimensional images of three

dimensional objects. In particular, MR images of the brain have provided valuable information

in understanding brain anatomy. Although the sequences of two dimensional images provide
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basic information on structure, abnormality, etc., further processing on the sequences provides
far more information. For example, 3-D reconstruction from the sequences of 2-D images
provides 3-D information of brain structure and allows volumetric analysis and coregistration
with functional brain images. In order to obtain a 3-D representation, one needs to separate
the brain from the surrounding tissues. This procedure, known as stripping, can be viewed as a
special application of image segmentation [11±18]. However, due to the complexity of the brain
structure and a large variation among individuals, researchers have not yet been entirely
successful in developing a completely automated segmentation algorithm for brain MR images.
Since segmentation of brain MR images is important in many medical image analysis, it has
also been studied by many authors [1, 2, 19, 20]. Kennedy et al. proposed a segmentation
algorithm based on contouring and outline optimization [3]. Joliot and Mazoyer proposed a 3-
D segmentation algorithm using thresholding and a connectivity algorithm [4]. Some
researchers applied neural networks for segmentation of MR images [5, 6]. However, none of
these approaches has been fully automated.
Among the various approaches available in segmentation, thresholding is by far the simplest

and still most widely used [7±10]. Unfortunately, it is not always applicable because often there
is not a single threshold (or a combination of thresholds) that properly separates the various
objects in an image, particularly in medical imaging. In this paper, in order to successfully
segment midsagittal brain MR images, we address some of the de®ciencies of global
thresholding methods by making use of simple a priori knowledge that can be translated into
connectivity constraints. We propose a post-processing method that re®nes a initial
segmentation map by separating objects that have been improperly merged together. The basis
of the method is to adaptively adjust the threshold to meet certain connectivity constraints.
In our segmentation algorithm of midsagittal brain MR images, we ®rst apply thresholding

to obtain binary images. From the binary images, we locate some landmarks. Based on the
landmarks and anatomical information, we preprocess the binary images to eliminate small
regions and remove the skull, which substantially simpli®es the subsequent operations. To
identify regions that have been incorrectly merged, we make use of general a priori information
obtained from the landmarks. Finally, we apply the new connectivity-based thresholding
segmentation to separate brain regions that are improperly merged.

2. Thresholding and locating landmarks

Fig. 1 shows an original gray scale brain MR image and Fig. 2 its binary version obtained
by applying thresholding. Although the brain is easily recognizable in the binary image, the
problem is that there is no single threshold which will correctly separate it from its
neighboring structures. Generally, some parts of the brain tend to be improperly connected
to nonbrain tissues. In this paper, we starts the segmentation with the binary image. We try
to perform segmentation as much as possible in binary images, and then return to the
original gray scale images to solve problematic regions which could not be determined in
binary images.
Segmentation without prior knowledge seldom produces desirable results. Assuming prior

knowledge about images will limit the application of an algorithm. However, the result will be
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Fig. 2. Binary brain MR image.

Fig. 1. Original gray scale brain MR image.
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far more useful in many cases. In this paper, we utilize anatomical information to guide
segmentation of the brain. This is achieved in part by locating some landmarks. If errors occur
in locating the landmarks or the anatomical information is incorrectly applied, all subsequent
operations will be unreliable. Therefore, we try to select landmarks which are robust and very
unlikely to be incorrectly located and utilize anatomical information which is robust and
subject-independent.
We use two landmarks which are easy to ®nd and very unlikely to be erroneously located.

First we locate the tip of the nose and then ®nd the nasion (around the eye area) as shown in
Fig. 3. Inside the skull, there is ¯uid between the skull and the brain and the ¯uid has very
small values in MR images. Thus, we can assume that the ¯uid will have a background value
in the binary image and that the forebrain (frontal lobes) is entirely above the nasion. This
anatomical assumption is reasonable and can be applied to almost all subjects without any
problem.
Next, preprocessing is performed on the binary images. First, we apply a connected

component labeling and eliminate all regions but the largest one. Fig. 4 shows the MR brain
image after this procedure. It can be seen that all small regions are removed and there remains
only one connected region. Then, we eliminate small holes inside the brain and make three
openings in the skull, one at the nasion, one posteriorly in the same horizontal plane and one
near inferior and posterior limit of the brain as shown in Fig. 5. Finally, we apply the
connected component algorithm to ®nd regions and eliminate all regions except the largest one.
This operation removes the skull. After this preprocessing, only one connected region remains
without any hole. Fig. 6 shows the image resulting from preprocessing.

Fig. 3. Example of landmarks of human brain.
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3. Connectivity-based threshold segmentation

3.1. Boundary and path connection algorithms

One of the most di�cult regions to process in sagittal brain MR images is the inferior aspect
of the forebrain (inside the rectangular box in Fig. 7a) where, due to bone, eye muscles and
other structures, the brain tends to be connected to surrounding nonbrain tissues. Fig. 7c
shows a magni®ed view of this area. Usually, there is a boundary between the brain and
adjacent structures. However, the width and the gray levels of this boundary can vary
considerably. Global threshold methods (k-means) or gradient methods typically fail in this
kind of problem. This is exempli®ed in Fig. 7b which shows the result of a global threshold
method where the brain is merged together with other nonbrain tissues. Fig. 7d displays the
corresponding gradient image. Similar segmentation problems also occur in other medical
images such as computer assisted tomography (CAT).

Fig. 4. Eliminating small regions.
Fig. 5. Removing small holes and making openings in

the skull.

Fig. 6. Removing the skull.
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The problem with images of this nature is that the boundaries between regions are not
always well de®ned. In this paper, we address segmentation in such a context and consider the
segmentation task as ®nding the correct boundary between two regions. This simple de®nition
can be applied to any image, although there can be a singular point where more than two
regions meet, as shown in Fig. 8. However, for most practical purposes, such singular points
may be ignored. There can be many criteria for distinguishing regions, such as gray level,
texture and existence of a boundary. In practice, region characteristics may not be uniform and
there can be signi®cant variation within the same region; boundaries between regions may not
be well de®ned. Here, we propose a new approach for ®nding such boundaries. The algorithm
assumes that some prior information is available and that there exists a detectable boundary
between two regions. The boundary may not be uniform and its location may be unknown.

Fig. 7. Separating brain from surrounding tissues (a) original image (b) binary image (c) enlarged image (d) gradient
image.
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Let us now brie¯y discuss the path connection algorithm that will be used in our
segmentation method. The basic problem is to ®nd a path between two points. One of the
most widely used path connection algorithms is the Lee path algorithm [21] which always ®nds
a path if any exists. There are also many variants of this algorithm to speed up the search
procedure [22]. We propose to use this search technique to adaptively select a proper threshold
that separates two objects. Specially, we will select two reference points and test whether these
points are connected or not.
To be precise in describing our algorithm, we de®ne a path function, Pv(a, b), as follows:

Pv�a, b� � 1 if there exists a path between a and b,

Pv�a, b� � 0 if there exists no path between a and b,
�1�

where v is the path value. It is noted that, in the de®nition of P, we include the path value.
For example, in binary images, the path value can be either 0 or 1.
We will consider two cases. First, we assume that the end points of the boundary are known.

In many practical situations, it is possible to ®nd the intersection points when two objects are
overlaid. Second, we consider the case in which one point in each object is known without any
further knowledge of the location of the boundary.

3.2. Separating two objects with two known end points

Fig. 9 shows an illustration of the ®rst case. There is a boundary which separates two
objects and has two known end points p1 and p2. The boundary may or may not have some

Fig. 8. Schematic of image segmentation.
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width. In other words, the boundary may consist of pixels which do not belong to adjacent
regions, or be an imaginary line between the two di�erent objects. The segmentation algorithm
can be applied to both cases. Here we will consider the former case.

Without loss of generality, we can assume that the background value is zero and that the
mean value of the boundary area is smaller than those of the objects. Now we draw a
rectangular box containing the points p1 and p2 with some margin. Starting with t= t0, we
apply a threshold to the original gray scale image X inside the box to obtain a binary image Y,
i.e.

yij � 1 if xijrt, yij � 0 otherwise: �2�
Then we check if there exists a path between p1 and p2 with value 0 inside the box (i.e.
objects 1 and 2 are disconnected). If there is one, i.e. P0(p1, p2)=1 (see Eq. (1)), we
separate the two objects. Otherwise, i.e. P0(p1, p2)=0, the two objects are still connected.
Then we increase the threshold and check again. Since we assumed that the mean value of
the boundary area is smaller than those of the objects, the path will have zero values
before the objects begin to be eroded. In addition, as the threshold increases, we will
eventually ®nd a path between the two points. In other words, we will always ®nd a
complete boundary, although the boundary may not be necessarily the true one. This
property is a real advantage. The segmentation algorithm will never have problems of
broken or missing boundaries. In the case in which the boundary does not have any area,
i.e. the boundary is just an imaginary line between points of the objects, the same method
can be used. We summarize the procedure as follows:

Procedure 1. Separating two objects (end points of the boundary are known):

Step 1: Initialize the threshold value (t= t0).

Step 2: Draw a rectangular box containing the two end points (p1, p2) of the boundary
with some margin.

Step 3: Apply the threshold t to the pixels inside the box.

Step 4: Check if there exists a path inside the box between p1 and p2 with path value 0. If
there is one, i.e. P0(p1, p2)=1, we separate the two objects. Otherwise, increase the
threshold value and go to step 3.

Fig. 9. Separating objects when two end points are given.
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3.3. Separating two objects with unknown boundary

Now we consider the second case in which the location of the boundary is unknown. The
situation is illustrated in Fig. 10. As previously, the boundary may or may not have some
width. Here we do not make any assumption about the boundary.
We are given two points: k1 belonging to object 1 and k2 belonging to object 2. Similarly we

draw a box containing k1 and k2. Then we start with t= t0, we apply a threshold to the image
(Eq. (2)). Then we check if there exists a path between k1 and k2 with path value 1. If there
exists no path, i.e. P1(k1, k2)=0 (see Eq. (1)), we separate the two objects. If there is one, i.e.
P1(k1, k2)=1, the two objects are still connected. Thus, we increase the threshold and check
again. In practice, more than one point can be known from each object. In that case, we can
repeat the procedure for several combinations of points to ensure that the results are
consistent. We summarize the procedure as follows:
Procedure 2. Separating two objects (one point from each object is given):

Step 1: Initialize the threshold value (t= t0).
Step 2: Draw a rectangular box containing the two points (k1, k2) with some margin.
Step 3: Apply the threshold to the pixels inside the box containing the two points with

threshold value t to the gray scale image X to obtain binary image Y.
Step 4: Check if there exists a path between p1 and p2 with path value 1. If there exists no

path, we separate the two objects. If there is one, increase the threshold and go to step 3.

The scheme can be easily extended for texture segmentation provided that we can de®ne a
invariant discriminative function F. An example of such a function is given in [23]. The
discriminative function F is designed to produce an output image Y from the input image X in
such a way that the distributions of the two regions are separable in Y. In other words, after
feature extraction, the distribution of the two regions are bimodal and separable. For the cases

Fig. 10. Separating objects when the location of the boundary is unknown.
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that we have considered so far, this function is simply the identity

yi � F�xi, X� � xi:

However, if the input image is a texture image, the feature extraction function will be more
complex. In particular, it will always be nonlinear and take into account the neighboring
pixels.

3.4. Restricting path direction and length

Between two points, there can be many paths. Consider the example in Fig. 11. Assume two
end points are given and three paths could be found by the algorithm (paths A, B, C). None of
these might be a good boundary. This problem will occur when the boundary has no width
and the image is noisy. An example of such images is shown in Fig. 12, along with its gradient.
This kind of image is di�cult to segment for any algorithm. However, if more information
about the boundary is available, the connectivity-based threshold algorithm can use such
information to restrict the path between the two points. A criterion that can be applied to any

Fig. 11. Path restriction.

Fig. 12. Image with strong noise (a) and its gradient image (b).
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image is to take into account the length of the path. If the length is considerably longer than
the distance between the two points, it is most likely that the path is not the true boundary. By
this restriction, path A in Fig. 11 can be eliminated. Another restriction is the smoothness of
the path. If the path has many sharp turns like path B in Fig. 11, it is unlikely to be the true
boundary unless there is a strong reason to believe that the boundary has many sharp turns.
By this restriction, path B in Fig. 11 can be eliminated. There can be other heuristic
restrictions which can be used to determine whether or not the path is the true boundary. If
such information is available, it can be e�ectively used to guide the connectivity-based
threshold algorithm.

4. Experiments

4.1. Experiments with generated data

First, we tested the algorithm on simulated data. Our basic test image contains two squares
of equal intensity which are separated by small boundary region, as shown in Fig. 13. This
con®guration is intended to simulate the kind of problem that is the most frequently
encountered in medical images, as illustrated in Fig. 2. It is also assumed that the two end
points of the boundary are known. It is very easy to separate the two objects in such a
uncorrupted image. So we added increasing amounts of noise. Fig. 14 shows the corrupted
images with SNRs 14.0, 4.44, 1.93 and 0.00 dB, respectively. Fig. 15 shows the corresponding

Fig. 13. Original uncorrupted image.

Fig. 14. Corrupted images with SNRs (a) 14.0 dB, (b) 4.44 dB, (c) 1.93 dB and (d) 0.00 dB.
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outputs of a gradient-based edge detector which obviously fails at detecting the boundary for
SNRR4.44 dB. We applied the proposed algorithm to these images and Fig. 16 shows the
results. When SNR is 14.0 dB, the algorithm found the boundary almost perfectly. As the
noise level increases, the boundaries extracted by the algorithm also become noisier. For SNRs
of 4.4 and 1.93 dB, the boundaries are still relatively close to the true one. The basic procedure
breaks down at 0 dB, which is not unexpected considering the amount of noise.
It is observed that the proposed algorithm can ®nd a good boundary between objects even

when a strong noise is present. The connectivity-based threshold segmentation algorithm
performed well while segmentation based on gradient failed. Standard global threshold
algorithms (k-means) also fail for this particular example because the boundary region is too
small and the two objects usually get lumped together.

4.2. Experiments with real brain MR images

We have applied the connectivity-based threshold segmentation algorithm to brain MR
images (Fig. 17). As mentioned in the introduction, the problem is to separate the brain from
the surrounding structures. This segmentation task is a very important ®rst step in analyzing
and processing brain MR images; it is typically performed in a semi-automatic fashion. In our
system which is fully automated, the images are ®rst presegmented by applying a global
threshold and removing all small regions and the skull. This preprocessing yields a binary
segmentation map that at least includes the brain as a subpart. In most cases, this initial

Fig. 15. Gradient images of the images in Fig. 14.

Fig. 16. Gradient images of the images in Fig. 14.
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segmentation is imperfect because the brain may be connected to surrounding tissues as shown
in Fig. 17.
Typically for sagittal images as shown in Fig. 17, there are two problematic areas. One is the

inferior aspect of the forebrain mentioned previously, which is the most problematic region
even when sagittal brain MR images are segmented manually or semi-automatically. To solve
this problem, we ®rst locate the most anterior point of the brain which is shown in Fig. 17.
Starting at that level (Lanterior) we search downwards to ®nd the boundary points at a uniform
spacing, obtaining 4 points, p1, p2, p3 and p4 until we reach about half way along the anterior±
posterior line. The points are displayed in Fig. 17 as black squares. Since we assumed that
there is no brain below the nasion level, therefore if any of these points is below the nasion
level, it indicates that the brain is connected to nonbrain tissues. If such a point is found, we
®nd two valley points searching downwards from the Lanterior. The two valley points, e1 and e2,
are shown in Fig. 17 as circles. In order to extract the boundary, we apply the connectivity-
based threshold segmentation algorithm with the two end points known, e1 and e2 (procedure
1). In fact, we apply the algorithm to the pairs of points, p1 and e1, e1 and e2, e2 and p3, and
p3 and p4 to ensure that there is no further connection between the brain and nonbrain tissues.
Note that all these points are located automatically without any user intervention.
The other typical problematic area in Fig. 17 is in the posterior inferior brain and also tends

to be connected to nonbrain tissues. Generally, it is more di�cult to ®nd reliable landmarks in
this area of the brain. To solve this problem, we select two points, one k1 belonging to brain
and the other k2 from a suspected nonbrain area. These two points are also selected
automatically. The point k1 is relatively easy to select. The other point k2 is located as follows:
®rst we ®nd the most inferior point of the brain as shown in Fig. 17. If there is any region

Fig. 17. Problem areas in segmenting brain MR image.
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below this point posterior to the brain stem, it is most likely that the region is not part of the
brain and we select a point from it, i.e. k2. Then we apply the connectivity-based threshold
segmentation algorithm with unknown boundary (procedure 2). Fig. 18 shows the ®nal result
of the binary image and Fig. 19 the corresponding the gray scale image. As can be seen, the
algorithm generally ®nds a good contour of the brain.

Fig. 19. Corresponding gray scale image.

Fig. 18. Final result of the binary image.
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4.3. Reliability of the proposed algorithm

In order to demonstrate the reliability of the proposed algorithm, we have applied the
algorithm to 120 midsagittal brain MR images. The original MR images and segmented images
are shown in Appendix A. As expected, there are signi®cant variations among the 120 images.
For instance, there is much variation in the head area, from large (Fig. 20f, Fig. 23a) to small
(Fig. 20i, Fig. 28g). Some of the subjects tilted forwards (Fig. 20j, Fig. 28e), some tilted
backwards (Fig. 23j). In some images, artifacts from neighboring slices are included (Fig. 20f,
Fig. 25d and f). As can be seen in Fig. 20g and Fig. 25e, sometimes there appear bright spots
in the left-bottom corner of the forebrain, which caused error initially in some cases.
Although the proposed algorithm works relatively well, the algorithm initially produced

some unsatisfactory results. After investigating the problems, we found that some of the initial
assumptions were not always correct. For example, initially we assumed that the nose would be
the leftmost point in the midsagittal brain MR image. This assumption was not valid in
Fig. 26e, resulting in an error in locating the nasion. This problem was solved by putting
additional restriction in the location of the nasion (the vertical di�erence between the nasion
and the top of head should be smaller than 150 pixels). The bright spot in the left-bottom
corner of the forebrain is taken care of by applying a threshold. There were other minor
technical problems, all of which we were able to solve.
Although the proposed algorithm produces very satisfactory results in most cases, some of

the segmented images still include nonbrained tissues. For instance, small nonbrain tissues are
included under the inferior aspect of the forebrain (Fig. 21c, Fig. 22c, Fig. 28h). Some of the
images include meninges (brain covering) which need to be excluded depending on
applications. However, considering the size of test images and the large variations among the
images, it seems that the proposed algorithm is quite reliable and will be very useful for many
applications.

5. Conclusion

Stripping away of nonbrain tissues is crucial in processing brain MR images and the ®rst
step for various analyses. In this paper, we proposed a new segmentation algorithm which can
be used for the development of a fully automated segmentation system. We have shown that
this algorithm can automatically remove most nonbrain tissues from midsagittal slices. In order
to develop a fully automated segmentation system, the algorithm must be applied to all slices
of brain MR images. Presently, we have chosen to concentrate our attention on the middle
slices which are typically the most di�cult to segment due to the complexity of anatomy. Once
these have been successful segmented, it should be possible to use this information to simplify
the processing of the more lateral sagittal slices to yield a fully automated whole brain
segmentation system.
The proposed connectivity based threshold segmentation algorithm may be useful for other

applications. Although the method requires some prior information, the algorithm has some
de®nite advantages. Firstly, it always ®nds a complete boundary between regions. Unlike edge
detection methods, it does not have problems with broken or missing boundaries. Although the
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contour found by the proposed algorithm may not always be the true boundary, experiments
showed that it is reasonably close to the true boundary in most cases. Secondly, the
connectivity based threshold segmentation algorithm is shown to be robust even in the
presence of strong noise. Thirdly, if some additional information about the boundary is
available, it can be easily used to improve the performance. In particular, we have
demonstrated that it can be used to segment the brain from surrounding tissues in MR images.
The method can also be applied interactively to improve the results obtained by other
segmentation algorithms. Regions that have been improperly merged can easily be separated if
the user just speci®es two points.

6. Unlinked References

[7±20]

Appendix A

For additional results using the proposed algorithm see Figs. 20±31.
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Fig. 20.
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Fig. 21.
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Fig. 22.
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Fig. 23.
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Fig. 24.
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Fig. 25.
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Fig. 26.
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Fig. 27.
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Fig. 28.
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Fig. 29.
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Fig. 30.
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Fig. 31.
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