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ALGEBRAIC SHIFTING INCREASES RELATIVE HOMOLOGY

ART M. DUVAL

Abstract. We show that algebraically shifting a pair of simplicial complexes
weakly increases their relative homology Betti numbers in every dimension.

More precisely, let ∆(K) denote the algebraically shifted complex of simplicial

complex K, and let βj(K,L) = dimk H̃j(K,L;k) be the dimension of the jth
reduced relative homology group over a field k of a pair of simplicial complexes
L ⊆ K. Then βj(K,L) ≤ βj(∆(K),∆(L)) for all j.

The theorem is motivated by somewhat similar results about Gröbner bases and
generic initial ideals. Parts of the proof use Gröbner basis techniques.

1. Introduction

Algebraic shifting is a remarkable procedure that finds, for any simplicial complex
K, a shifted (and hence combinatorially simpler) simplicial complex ∆(K) with many
of the same properties as K. For instance, the f -vector and homology Betti numbers
are preserved; Björner and Kalai [BK1] used this fact to characterize the f -vectors
and Betti numbers of simplicial complexes.

However, the situation for pairs of complexes and relative homology is different.
In a simple example on three vertices (Example 3.1), algebraically shifting a pair
of complexes increases their relative homology in dimensions 0 and 1. Upon seeing
this one example, Keith Pardue (private communication) conjectured that algebraic
shifting always weakly increases relative homology in every dimension. Our main
result (Theorem 5.2) is that this conjecture is true.

Pardue’s conjecture was grounded in more than just this one simple example. Al-
gebraic shifting, which takes place in exterior (anti-commutative) algebra, is similar
to using Gröbner bases and generic initial ideals in commutative algebra (see Sec-
tion 3). Quantities such as free resolution Betti numbers weakly increase upon taking
generic initial ideals (see, e.g., [Hu1, Hu2, Bi], and Section 3). Pardue’s insight was
that these results would carry over to algebraic shifting.

It would be ideal, then, to prove his conjecture by translating the algebraic shifting
problem to a generic initial ideal problem, and then invoking the existing results.
However, this approach has been unsuccessful, so far. The proof here, while motivated
at points by Gröbner basis ideas (see Lemma 4.1), instead directly refines Björner
and Kalai’s correspondence between the homology of the original complexes and the
combinatorics of the algebraically shifted complexes. The hope is that this result
will serve as further evidence of the deeper connection between algebraic shifting and
generic initial ideals.
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Background and notation on simplicial complexes, including homology, shifted
complexes, and near-cones is in Section 2. Algebraic shifting is reviewed and com-
pared to generic initial ideals in Section 3. In Section 4, we use Gröbner basis ideas
to define a nice basis of a space associated with a pair of complexes (K,L), and
then use this basis to compare key components of the homology groups of (K,L) and
(∆(K),∆(L)). We prove our main result (Theorem 5.2) in Section 5.

2. Simplicial complexes

For basic definitions of simplicial complexes and their homology and relative ho-
mology, see, e.g., [Mu, Chapter 1] or [St2, Section 0.3]. We allow the empty simplicial
complex ∅ consisting of no faces; all other complexes must contain the empty set as a
(−1)-dimensional face. We also allow the complex {∅} consisting of only the empty
face, but we do distinguish between the two complexes ∅ and {∅}. Let Kj denote
the set of j-dimensional faces of a simplicial complex K. The f-vector of K is the
sequence (f0, . . . , fd−1), where fj = fj(K) = |Kj | and d − 1 = dimK. The same
notion of f -vector will apply in this paper to every finite collection of sets.

Let k be a field, fixed throughout the paper. The jth Betti number of a simplicial

complex K is βj = βj(K) = dimk H̃j(K), where H̃j(K) is the jth reduced homology
group of K (with respect to k). Similarly, the jth relative Betti number of a pair

of simplicial complexes L ⊆ K is βj = βj(K,L) = dimk H̃j(K,L), where H̃j(K,L) is
the jth reduced relative homology group of the pair (K,L) (with respect to k).

“Reduced” homology means precisely to treat the empty set as a face of any non-
empty complex, so β0 is one less than the number of connected components of ∆, and
hence one less than the “unreduced” β0. Furthermore, β−1 = 0, unless ∆ = {∅}, in
which case β−1 = 1. Reduced relative homology, which also treats the empty set as a
face of any non-empty complex, is the same as unreduced relative homology, except
that β−1({∅}, ∅) = 1; for any other pair of complexes, β−1 = 0.

Definition. If S = {s1 < · · · < sj} and T = {t1 < · · · < tj} are j-subsets of integers,
then:

• S ≤P T under the standard partial order if sp ≤ tp for all p; and
• S <L T under the lexicographic order if there is a q such that sq < tq and
sp = tp for p < q .

Lexicographic order is a total order which refines the partial order.

Definition. A collection C of k-subsets is shifted if S ≤P T and T ∈ C together
imply that S ∈ C. A simplicial complex ∆ is shifted if the set of j-dimensional faces
of ∆ is shifted for every j.

Björner and Kalai showed in [BK1] that shifted complexes are near-cones, which
we now define.

Definition. A near-cone with apex v0 is a simplicial complex ∆ satisfying the
following property: For all F ∈ ∆, if v0 6∈ F and w ∈ F , then

(F − {w}) ∪ {v0} ∈ ∆.
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For ∆ a near-cone with apex v0, let B(∆) = {F ∈ ∆: F ∪ {v0} 6∈ ∆} and ∆′ = {F ∈
∆: v0 6∈ F, F ∪ {v0} ∈ ∆}; then

∆ = (v0 ∗∆
′) ∪̇B(∆),

where ∗ denotes topological join (so v0 ∗ ∆′ = ∆′ ∪̇ {{v0} ∪̇ F : F ∈ ∆′}). Both ∆′

and ∆′ ∪̇B(∆) are subcomplexes of ∆. If B(∆) = ∅, then ∆ is simply a cone.

Note, in particular, that ∅ and {∅} are near-cones (the condition in the definition is
vacuous in this case) and that ∅ = v0 ∗ ∅ and {∅} = (v0 ∗ ∅) ∪̇ {∅}. If ∆ is a near-cone
with apex v0, then v0 is one of the vertices of ∆, unless ∆ = ∅ or {∅}.

It is not hard to see that shifted simplicial complexes are near-cones with apex 1.
Every F ∈ B(∆) is maximal in ∆, so the collection of faces in B(∆) forms an

antichain. Further, f(B(∆)) = β(∆), which follows by contracting v0 ∗ ∆′ to v0,
leaving a sphere for every face in B(∆) [BK1, Theorem 4.3]. In other words, if ∆ is
a near-cone with apex v0, then

βj(∆) = |{F ∈ ∆j : v0 6∈ F, v0 ∪̇ F 6∈ ∆}|.(1)

This observation is generalized by [Du, Lemma 8]: If Γ ⊆ ∆ is a pair of near-cones
with common apex v0, then

(2) βj(∆,Γ) = |{F ∈ (∆− Γ)j: v0 6∈ F, v0 ∪̇ F 6∈ ∆}|

+ |{G ∈ (∆− Γ)j: v0 ∈ G, G− {v0} ∈ Γ}|.

In light of the formulation of the homology of near-cones that equation (1) gives,
equation (2) is approximately the near-cone equivalent of using the long exact se-
quence (e.g., [Mu, Theorem 23.3])

· · · → H̃j(L)
i∗−→ H̃j(K)

π∗−→ H̃j(K,L)
∂∗−→ H̃j−1(L) → · · ·(3)

to compute
βj(K,L) = dim(im(π∗)j) + dim(im(∂∗)j)

for an arbitrary pair (K,L).

3. Algebraic shifting

Algebraic shifting transforms a simplicial complex into a shifted simplicial complex
with the same f -vector and Betti numbers. It also preserves many algebraic proper-
ties of the original complex. Algebraic shifting was introduced by Kalai in [Ka1]; our
exposition is summarized from [BK1] and included for completeness (see also [BK2,
Ka2]). We start with the exterior face ring.

Definition. Let K be a (d − 1)-dimensional simplicial complex with vertices V =
{e1, . . . , en} linearly ordered e1 < · · · < en. Let Λ(kV ) denote the exterior algebra
of the vector space kV ; it has a k-vector space basis consisting of all the monomials
eS := ei1∧· · ·∧eij , where S = {ei1 < · · · < eij} ⊆ V (and e∅ = 1). Note that Λ(kV ) =
⊕n

j=0Λ
j(kV ) is a graded k-algebra, and that Λj(kV ) has basis {eS: |S| = j}. Let

(IK)j be the subspace of Λj+1(kV ) generated by the basis {eS: |S| = j + 1, S 6∈ K}.
Then IK := ⊕d−1

j=−1(IK)j is the homogeneous graded ideal of Λ(kV ) generated by
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{eS: S 6∈ K}. Let Λj[K] := Λj+1(kV )/(IK)j . Then the graded quotient algebra
Λ[K] := ⊕d−1

j=−1Λj[K] = Λ(kV )/IK is called the exterior face ring of K (over k).

The exterior face ring is the exterior algebra analogue to the Stanley-Reisner face
ring of a simplicial complex [St2]. For x ∈ kV , let x̃ denote the image of x in Λ[K].

Definition (Kalai). Let {f1, . . . , fn} be a “generic” basis of kV , i.e.,

fi =

n∑

j=1

αijej,

where the αij’s are n2 transcendentals, algebraically independent over k. Define
fS := fi1 ∧ · · · ∧ fij for S = {i1 < · · · < ij} (and set f∅ = 1). Let

∆(K,k) := {S ⊆ [n]: f̃S 6∈ span{f̃R: R <L S}}

be the algebraically shifted complex obtained fromK; we will write ∆(K) instead
of ∆(K,k) when the field is understood to be k. In other words, the j-subsets of
∆(K) can be chosen by listing all the j-subsets of [n] in lexicographic order and
omitting those that are in the span of earlier subsets on the list, modulo IK and with
respect to the f -basis.

The algebraically shifted complex ∆(K) is (as its name suggests) shifted, and is
independent of the numbering of the vertices of K [BK1, Theorem 3.1].

It is easy to see that algebraic shifting preserves the f -vector, i.e., fj(K) =
fj(∆(K)). Björner and Kalai [BK1] showed that algebraic shifting also preserves
Betti numbers, i.e., βj(K) = βj(∆(K)). The reason lies in the relation between
algebraic shifting and coboundaries. Define the weighted coboundary operator

δ: Λ[K] → Λ[K] by δ(x) = f̃1 ∧ x, so

δ(ẽS) = f̃1 ∧ ẽS =

n∑

j=1

α1j ẽj ∧ ẽS =
∑

j 6∈S
S∪{j}∈K

±α1j ẽS∪{j}

(hence the name weighted coboundary operator). Betti numbers may be computed
using this δ, i.e., βj(K) = dimk(ker δ)j/(im δ)j [BK1, pp. 289–290]. Furthermore, the

action of δ on many members of the f̃ -basis is easy to describe: δ(f̃F ) equals f̃1∪̇F
if 1 6∈ F and 1 ∪̇ F ∈ ∆(K), but is zero if 1 ∈ F (the third case, when 1 6∈ F , but
1 ∪̇ F 6∈ ∆(K), is harder, and we shall not need it).

What about relative homology? First, we note a result of Kalai’s [Ka2, Theo-
rem 2.2] that if L ⊆ K is a pair of simplicial complexes, then ∆(L) ⊆ ∆(K). For
every pair (K,L), we may then consider the pair (∆(K),∆(L)). In contrast to the
single complex case, however, the homology of (K,L) and (∆(K),∆(L)) need not
coincide, as the following example shows.

Example 3.1. Let K be the simplicial complex on vertices {1, 2, 3} whose maximal
faces are {1} and {2, 3}, and L be the subcomplex consisting of just the two vertices
{1} and {2}. The only shifted complex with three vertices and one edge has maximal
faces {1, 2} and {3}, so this must be ∆(K). Furthermore, L is the only simplicial
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❢ ✈❢
1 2 3

(∆(K),∆(L))

❢❢ ✈
21 3

(K,L)

Figure 1. Example 3.1

complex with two vertices and no edges, so ∆(L) = L. (See Figure 1.) But then it is
easy to see that (∆(K),∆(L)) has non-trivial relative homology in dimensions 0 and
1, while (K,L) has no non-trivial relative homology.

Thus, the relative Betti numbers of (∆(K),∆(L)) are all at least as large as those
of (K,L). Theorem 5.2 shows that this is true for any pair (K,L).

Algebraic shifting is the exterior algebra analogue of generic initial ideals and
Gröbner bases in commutative algebra, in the following way. If IK were instead a
monomial ideal of a polynomial ring, then the algorithm used to create the list of
non-faces of ∆(K) would instead create a list of monomials generating the generic
initial ideal of IK , denoted Gin(IK). For further details of generic initial ideals, see,
for instance [Ei, Section 15.9]. For more about the relationship between generic initial
ideals and algebraic shifting, see [HT]. For a more general exterior algebra version of
Gröbner bases and generic initial ideals, see [AHH, Section 1].

Theorem 5.2 bears some resemblance to results about generic initial ideals (Sec-
tion 3). For instance, Hulett [Hu1, proof of Lemma 1.24], [Hu2, p. 2338] and Bi-
gatti [Bi, proof of Theorem 3.7] have shown that for any homogeneous ideal I in a
polynomial ring, the free resolution Betti numbers of its generic initial ideal Gin(I)
are at least as large as those of I.

4. Relative homology

In order to say anything about (∆(K),∆(L)), we must first consider (K,L). For
Q = K − L (the “Q” is for “quotient”), we define ∆(Q) = ∆(K) − ∆(L). This is
primarily a combinatorial definition, with the algebra hidden in the computation of
∆(K) and ∆(L). We now examine how to interpret ∆(Q) algebraically. Let

Q̃ = span{ẽF : F ∈ Q}.

It is not hard to see, then, that we may algebraically shift the subcomplex L using

Λ[K] instead of Λ[L], by modding out by Q̃ on Λ[K] instead of by IL on Λ[L], since

Q̃ = ĨL (see [Du, Section 3]).

Lemmas 4.1 and 4.2 show how ∆(Q) is related to Q̃, namely that ∆(Q) indexes a

nice basis of Q̃; the construction is motivated by Gröbner basis ideas. Then, guided
by earlier results about Q̃ (summarized here as Lemma 4.3), we use this basis of Q̃

in Lemmas 4.4 and 4.5 to compare key subspaces of H̃(K,L) and H̃(∆(K),∆(L)).

Lemma 4.1. If F ∈ ∆(Q), then there is a unique linear combination
∑

G<LF
G∈∆(L)

aGf̃G,

such that f̃F −
∑

G<LF
G∈∆(L)

aGf̃G ∈ Q̃.
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Proof. Since F ∈ ∆(Q), and hence F 6∈ ∆(L), we have

f̃F −
∑

G<LF

aGf̃G ∈ IL = Q̃(4)

for some aG. We may iterate this process on the f̃G’s for which G 6∈ ∆(L), replacing

them by lexicographically earlier linear combinations that are equal modulo IL = Q̃
until every G in equation (4) is in ∆(L). This eventually terminates, since lexico-
graphic order is a total order. (In Gröbner basis theory, this procedure is known as
finding the normal form [AL, Definition 2.1.3].)

To show these aG are unique, assume that also

f̃F −
∑

G<LF
G∈∆(L)

bGf̃G ∈ Q̃.(5)

Then by subtracting equation (5) from equation (4), we get
∑

G<LF
G∈∆(L)

(bG − aG)f̃G ∈ Q̃.(6)

If any bG − aG in equation (6) is non-zero, let G0 index the lexicographically last
of these; then

(aG0
− bG0

)f̃G0
−

∑

G<LG0

G∈∆(L)

(bG − aG)f̃G ∈ Q̃,

and

f̃G0
−

∑

G<LG0

G∈∆(L)

(
bG − aG
aG0

− bG0

)
f̃G ∈ Q̃,

which contradicts G0 ∈ ∆(L).

Definition. By Lemma 4.1, we may define, for any F ∈ ∆(Q), γ̃F supported on

∆(L) such that f̃F − γ̃F ∈ Q̃.

Lemma 4.2. {f̃F − γ̃F : F ∈ ∆(Q)} is a basis of Q̃.

Proof. We first show that {f̃F − γ̃F : F ∈ ∆(Q)} is linearly independent. Assume
otherwise;

∑

F∈∆(Q)

bF (f̃F − γ̃F ) = 0,(7)

where bF0
6= 0 for some F0 ∈ ∆(Q). When expanding the sum on the left-hand side of

equation (7) in the {f̃F : F ∈ ∆(K)} basis, the coefficient of f̃F0
will be bF0

6= 0, since

the γ̃F are all supported on ∆(L), and so cannot cancel f̃F0
. So {f̃F − γ̃F : F ∈ ∆(Q)}

is a set of |∆(Q)| linearly independent vectors in Q̃.

On the other hand, Q̃ is a |K − L| = |∆(Q)|-dimensional vector space, so {f̃F −
γ̃F : F ∈ ∆(Q)} must be a basis.
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Now we see how Q̃ can help compute homology and relative homology. We adopt
the shorthand

δ−1Q̃ = {x̃ ∈ Λ[K]: δx̃ ∈ Q̃}.

Lemma 4.3. For any pair of simplicial complexes L ⊆ K,

(a) βj(L) = dim((δ−1Q̃)/(im δ + Q̃))j; and

(b) βj(K,L) = dim((ker δ ∩ Q̃)/(δQ̃))j.

Proof. This is [Du, Lemmas 2 and 4], where the notation Λ[Σ] was used in place of

Q̃.

Lemma 4.3(b) suggests that in order to compute βj(K,L), we examine ker δ ∩ Q̃

and δQ̃. However, im δ∩ Q̃ turns out to be easier to handle than ker δ∩ Q̃. The next

two lemmas compare im δ ∩ Q̃ and δQ̃ to subspaces of Q̃ indexed by combinatorially
defined sets of ∆(Q). These two comparisons will combine to prove the key inequality
in the proof of Theorem 5.2.

Lemma 4.4. im δ ∩ Q̃ ⊆ span{f̃1∪̇F − γ̃1∪̇F : 1 6∈ F, 1 ∪̇ F ∈ ∆(Q)}.

Proof. Let x̃ ∈ im δ ∩ Q̃. By Lemma 4.2, we can write

x̃ =
∑

G∈∆(Q)

aG(f̃G − γ̃G)(8)

uniquely, since x̃ ∈ Q̃. Similarly, by [BK1, equation (3.5)], we can also write

x̃ =
∑

16∈F
1∪̇F∈∆(K)

bF f̃1∪̇F(9)

uniquely, since x̃ ∈ im δ. Now, by definition, the support of γ̃G is entirely on ∆(L).
Of course, the support of x̃ in ∆(Q) must be the same in equations (8) and (9), so
we must be able to write every G ∈ ∆(Q) such that aG 6= 0 as G = 1 ∪̇ F for some
F . Therefore, equation (8) can be rewritten as

x̃ =
∑

16∈F
1∪̇F∈∆(Q)

a1∪̇F (f̃1∪̇F − γ̃1∪̇F ),

implying the lemma.

Lemma 4.5. There is a subspace Q̃′ of Q̃ such that

dim δQ̃′ = |{F ∈ ∆(Q): 1 6∈ F, 1 ∪̇ F ∈ ∆(Q)}|.

Proof. Let Q̃′ = span{f̃F − γ̃F : F ∈ ∆(Q), 1 6∈ F, 1 ∪̇ F ∈ ∆(Q)}. First note that

by definition of γ̃F (and F ∈ ∆(Q)), each f̃F − γ̃F ∈ Q̃, so Q̃′ is a subspace of Q̃.

Clearly, we only need to show that {δ(f̃F − γ̃F ): F ∈ ∆(Q), 1 6∈ F, 1 ∪̇ F ∈ ∆(Q)}
is linearly independent.
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By definition of γ̃F and Lemma 4.1, we may write each

f̃F − γ̃F = f̃F −
∑

G<LF
G∈∆(L)

bF,Gf̃G

for some bF,G’s. Furthermore, we are assuming 1 ∪̇ F ∈ ∆(Q) for each F , so 1 ∪̇ F ∈

∆(K), and thus δf̃F = f̃1∪̇F . For each G <L F , if 1 ∈ G, then δf̃G = 0; otherwise

1 ∪̇G <L 1 ∪̇ F ∈ ∆(K), so 1 ∪̇G ∈ ∆(K), and δf̃G = f̃1∪̇G. Therefore

δ(f̃F − γ̃F ) = f̃1∪̇F −
∑

G<LF
16∈G, G∈∆(L)

bF,Gf̃1∪̇G.

To show that {δ(f̃F − γ̃F ): F ∈ ∆(Q), 1 6∈ F, 1 ∪̇ F ∈ ∆(Q)} is linearly indepen-
dent, assume

0 =
∑

F∈∆(Q)
16∈F, 1∪̇F∈∆(Q)

cF (f̃1∪̇F −
∑

G<LF
16∈G, G∈∆(L)

bF,Gf̃1∪̇G).(10)

Now, f1∪̇G’s appearing in equation (10) all satisfy G ∈ ∆(L), while all the f̃1∪̇F ’s

satisfy F ∈ ∆(Q), so there is no cancellation between the f̃1∪̇G’s and the f̃1∪̇F ’s.

But all the f̃1∪̇F ’s are distinct members of the {f̃H : H ∈ ∆(K)} basis, so there

is no cancellation among the f̃1∪̇F ’s. Therefore all the cF ’s must be zero, and the

δ(f̃F − γ̃F )’s are linearly independent.

5. Proof of main theorem

We start with an easy lemma.

Lemma 5.1. If I, J , and K are subspaces of a vector space and I ⊆ K, then

dim(K/I) = dim((K ∩ J)/(I ∩ J)) + dim((K + J)/(I + J)).

Proof. Simply expand the right-hand side as

(dim(K ∩ J)− dim(I ∩ J)) + ((dimK + dim J − dim(K ∩ J))

− (dim I + dim J − dim(I ∩ J)))

by the standard vector space argument dim(A+B) = dimA+dimB − dim(A∩B),
applied twice. This expression then easily simplifies to dimK − dim I = dim(K/I).

Theorem 5.2. For any pair of simplicial complexes L ⊆ K,

βj(K,L) ≤ βj(∆(K),∆(L))

for all j.
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Proof. Because ∆(K) and ∆(L) are shifted, and therefore near-cones with apex 1,
we may use equations (1) and (2) to compute the homology of ∆(K), ∆(L), and
(∆(K),∆(L)). The sets in these equations overlap in a nice way. In particular, if we
let

CKQ = {F ∈ ∆(Q): 1 6∈ F, 1 ∪̇ F 6∈ ∆(K)},

C ′
LQ = {G ∈ ∆(Q): 1 ∈ G, G− 1 ∈ ∆(L)},

CLQ = {F ∈ ∆(L): 1 6∈ F, 1 ∪̇ F ∈ ∆(Q)}, and

CKL = {F ∈ ∆(L): 1 6∈ F, 1 ∪̇ F 6∈ ∆(K)},

then it is not hard to see, from equation (1), that

βj(∆(K)) = |(CKQ)j|+ |(CKL)j |,

βj(∆(L)) = |(CLQ)j|+ |(CKL)j|,

and, from equation (2), that

βj(∆(K),∆(L)) = |(CKQ)j|+ |(C ′
LQ)j |.

(We name these sets “C” because they are combinatorial.) An easy bijection (F ↔
1 ∪̇ F = G) shows that

|(CLQ)j | = |(C ′
LQ)j+1|.

Continuing the analogy begun at the end of Section 2 between formulas for homology
of near-cones and the long exact sequence (3), CKQ corresponds to im π∗, CLQ and
C ′

LQ correspond to im ∂∗, and CKL corresponds to im i∗.
We can find “corresponding” subspaces in Λ[K]; define

AKQ = (ker δ ∩ Q̃)/(im δ ∩ Q̃),

A′
LQ = (im δ ∩ Q̃)/(δQ̃),

ALQ = (δ−1Q̃)/(ker δ + Q̃), and

AKL = (ker δ + Q̃)/(im δ + Q̃).

(We name these spaces “A” because they are algebraic.) Then by Lemma 5.1,

βj(K) = dim(AKQ)j + dim(AKL)j;

by Lemma 4.3,

βj(L) = dim(ALQ)j + dim(AKL)j , and

βj(K,L) = dim(AKQ)j + dim(A′
LQ)j;

and, by [Du, Lemma 5],

(ALQ)j ∼= (A′
LQ)j+1.
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We will show how the dimension of each A subspace compares with the cardinal-
ity of the corresponding C set with the same subscript. Because algebraic shifting
preserves homology,

dim(ALQ)j + dim(AKL)j = βj(L) = βj(∆(L)) = |(CLQ)j|+ |(CKL)j|(11)

and

dim(AKQ)j + dim(AKL)j = βj(K) = βj(∆(K)) = |(CKQ)j|+ |(CKL)j|.(12)

By Lemma 4.4,

dim(im δ ∩ Q̃)j+1 ≤ |{F ∈ ∆(K)j: 1 6∈ F, 1 ∪̇ F ∈ ∆(Q)}|,

and by Lemma 4.5,

dim(δQ̃)j+1 ≥ dim(δQ̃′)j+1

= |{F ∈ ∆(Q)j : 1 6∈ F, 1 ∪̇ F ∈ ∆(Q)}|.

(The index shift, of j + 1 to j, in the above inequalities arises because the (j + 1)-

dimensional basis elements for im δ∩ Q̃ and δQ̃′ are the (j+1)-dimensional elements

f̃1∪̇F − γ̃1∪̇F and δ(f̃F − γ̃F ), respectively, each of which is (j+1)-dimensional precisely
when F is j-dimensional.) Since ∆(L) is the complement of ∆(Q) with respect to
∆(K), then,

dim(A′
LQ)j+1 = dim((im δ ∩ Q̃)/(δQ̃))j+1 = dim(im δ ∩ Q̃)j+1 − dim(δQ̃)j+1

≤ |{F ∈ ∆(L)j : 1 6∈ F, 1 ∪̇ F ∈ ∆(Q)}|

= |(CLQ)j|,

and so

dim(ALQ)j = dim(A′
LQ)j+1 ≤ |(CLQ)j| = |(C ′

LQ)j+1|

Equation (11) then implies

dim(AKL)j ≥ |(CKL)j|,

so by equation (12),

dim(AKQ)j ≤ |(CKQ)j|,

and so finally

βj(K,L) = dim(AKQ)j + dim(A′
LQ)j ≤ |(CKQ)j|+ |(C ′

LQ)j| = βj(∆(K),∆(L)).
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