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Abstract. For a fixed 3-uniform hypergraph F , call a hypergraph F-free if it contains
no subhypergraph isomorphic to F . Let ex(n,F) denote the size of a largest F-free
hypergraph G ⊆ [n]3. Let Fn(F) denote the number of distinct labelled F-free G ⊆ [n]3.
We show that Fn(F) = 2ex(n,F)+o(n3), and discuss related problems.

1. Introduction

For a finite s-uniform hypergraph F , let Forbn(F) denote the set of all s-uniform
labelled hypergraphs on n vertices which do not contain F as a subhypergraph. In this
paper, we will be interested in estimating the cardinality Fn(F) of the set Forbn(F).

Let ex(n,F) be the Turán number of F , i.e. the maximum number of edges which
an s-uniform hypergraph on n vertices may have while not containing F as a subgraph.
It turns out that the problem of estimating Fn(F) is closely related to the problem of
finding Turán numbers ex(n,F).

For s = 2, it was proved in [EFR] that

Fn(F) = 2ex(n,F)(1+o(1)) = 2(1− 1
χ(F)−1

)(n
2)(1+o(1)) (1)

provided χ(F) > 2. As noted in [EFR], it seems likely that

Fn(F) = 2ex(n,F)(1+o(1))

holds for bipartite F as well. However, this is not even known for F = C4, the cycle
of length 4. For this case, the best known upper bound 2cn

3/2
is due to Kleitman and

Winston [KW].
The aim of this paper is to extend (1) to 3-uniform hypergraphs. Similarly as (1) was

proved under the condition that F is a non-bipartite graph, in the case of 3-uniform
hypergraphs we will assume that F is not a 3-partite hypergraph, i.e. we assume that
for any partition V (F) = V1 ∪ V2 ∪ V3, there is a triple f ∈ F and i ∈ [3] such that
|f ∩ Vi| ≥ 2.

Theorem 1.1. Suppose that F is a 3-uniform hypergraph which is not 3-partite. Then

Fn(F) = 2ex(n,F)(1+o(1)).

By a well known result of Erdös [E], a 3-uniform hypergraph F is 3-partite if and only

if limn→∞
ex(n,F)
n3 = 0. Hence, Theorem 1.1 is a consequence of the following:

1
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Theorem 1.2. Let F be an arbitrary 3-uniform hypergraph. Then

Fn(F) = 2ex(n,F)+o(n3).

Our approach uses an extension of the method of [EFR] which was based on Szemerédi’s
Regularity Lemma [S]. Here we use the Hypergraph Regularity Lemma for 3-uniform
hypergraphs of [FR] (see also [NR]) and the Counting Lemma of [NR]. Before we give
a proof of Theorem 1.2, we need to introduce some necessary concepts preceeding the
Hypergraph Regularity Lemma and the Counting Lemma. This will be done in Section
2. The Counting Lemma is explained in Section 3. The proof of Theorem 1.2 is given in
Section 4. Finally, in Section 5, we answer a problem raised in [EFR] and discuss possible
extensions of Theorem 1.2.

2. The Regularity Lemma and Related Topics

2.1. Graphs and Cylinders.
In this subsection, we provide background definitions and notation used in [NR].

Definition 2.1. We shall refer to any k-partite graph G with k-partition (V1, . . . , Vk)
as a k-partite cylinder, and sometimes we will write G as G =

⋃
1≤i<j≤kG

ij where Gij =
G[Vi, Vj] = {{vi, vj} ∈ G : vi ∈ Vi, vj ∈ Vj}. If B ∈ [k]3, then the 3-partite cylinder
G(B) =

⋃
{i,j}∈[B]2 G

ij will be referred to as a triad.

We note that a k-partite cylinder is just a graph with a fixed vertex k-partition.

Definition 2.2. Suppose G ⊆ [V ]2 is a graph with vertex set V = V (G), and let
X, Y ⊆ V be two nonempty disjoint subsets of V . We define the density of the pair X, Y
with respect to G, denoted dG(X, Y ), as

dG(X, Y ) =
|{x, y} ∈ G : x ∈ X, y ∈ Y }|

|X||Y |
.

Definition 2.3. Suppose G =
⋃

1≤i<j≤kG
ij is a k-partite cylinder with k-partition

(V1, . . . , Vk) and let l > 0, ε > 0 be given. We shall call G an (l, ε, k)-cylinder pro-
vided all pairs Vi, Vj, 1 ≤ i < j ≤ k, induce Gij satisfying that whenever V ′

i ⊆ Vi,
|V ′
i | > ε|Vi|, and V ′

j ⊆ Vj, |V ′
j | > ε|Vj| then

1

l
(1− ε) < dGij(V ′

i , V
′
j ) <

1

l
(1 + ε).

We now define an auxiliary set system pertaining to a k-partite cylinder G.

Definition 2.4. For a k-partite cylinder G, we will denote by Kj(G), 1 ≤ j ≤ k, that
j-uniform hypergraph whose edges are precisely those j-element subsets of V (G) which
span cliques of order j in G. Note that the quantity |Kj(G)| counts the total number of
cliques in G of order j, that is, |Kj(G)| = |{X ⊆ V (G) : |X| = j, [X]2 ⊆ G}|.
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For an (l, ε, k)-cylinder G, the quantity |Kk(G)| is easy to estimate, as the following
fact shows.

Fact 2.5. For any positive integers k, l, and positive real number θ, there exists ε such
that whenever G is an (l, ε, k)-cylinder with k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| =
m, then

(1− θ)
mk

l(
k
2)
< |Kk(G)| < (1 + θ)

mk

l(
k
2)
. (2)

2.2. 3-Uniform Hypergraphs and 3-cylinders.
In this subsection, we give definitions pertaining to 3-uniform hypergraphs. By a 3-

uniform hypergraph H on vertex set V , we mean H ⊆ [V ]3, thus the members of H are
3-element subsets of the vertex set V . For all of this paper, we identify the hypergraph
H with the set of its triples.

By a k-partite 3-uniform hypergraph H with k-partition (V1, . . . , Vk), we understand
a hypergraph H with vertex set V partitioned into k classes V = V1 ∪ . . . ∪ Vk, where
each triple {vx, vy, vz} ∈ H satisfies that for each i ∈ [k], |{vx, vy, vz} ∩ Vi| ≤ 1.

Definition 2.6. We shall refer to any k-partite, 3-uniform hypergraphH with k-partition
(V1, . . . , Vk) as a k-partite 3-cylinder. For B ∈ [k]3, we define H(B) as that subhyper-
graph of H induced on

⋃
i∈B Vi.

Definition 2.7. Suppose that G is a k-partite cylinder with k-partition (V1, . . . , Vk), and
H is a k-partite 3-cylinder. We shall say that G underlies the 3-cylinder H if H ⊆ K3(G).

As in Definition 2.4, we define an auxiliary set system pertaining to the 3-cylinder H.

Definition 2.8. If H is a k-partite 3-cylinder, then for 1 ≤ j ≤ k, Kj(H) will denote
that j-uniform hypergraph whose edges are precisely those j-element subsets of V (H)
which span a clique of order j in H. Note that the quantity |Kj(H)| counts the total
number of cliques in H of order j, that is, |Kj(H)| = |{X ⊆ V (H) : |X| = j, [X]3 ⊆ H}|.
Definition 2.9. Let H be a k-partite 3-cylinder with underlying k-partite cylinder G =⋃

1≤i<j≤kG
ij, and let B ∈ [k]3. For the triad G(B), we define the density dH(G(B)) of H

with respect to the triad G(B) as

dH(G(B)) =


|K3(G(B))∩K3(H(B))|

|K3(G(B))| if |K3(G(B))| > 0,

0 otherwise.
(3)

In other words, the density counts the proportion of triangles of the triad G(B), B ∈ [k]3,
which are triples of H.

More in general, let Q ⊆ G(B), B ∈ [k]3, where Q =
⋃
{i,j}∈[B]2 Q

ij. One can define
the density dH(Q) of H with respect to Q as

dH(Q) =


|K3(H)∩K3(Q)|

|K3(Q)| if |K3(Q)| > 0,

0 otherwise.
(4)

For our purposes, we will need an extension of the definition in (2) above, and will consider
a simultaneous density of H with respect to a fixed r-tuple of triads {Q(1), . . . , Q(r)}.
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Definition 2.10. Let H be a k-partite 3-cylinder with underlying k-partite cylinder
G =

⋃
1≤i<j≤kG

ij, and let B ∈ [k]3. Let
−→
Q =

−→
Q B = (Q(1), . . . , Q(r)) be an r-tuple of

triadsQ(s) =
⋃
{i,j}∈[B]2 Q

ij(s) satisfying that for every s ∈ [r], {i, j} ∈ [B]2, Qij(s) ⊆ Gij.

We define the density dH(
−→
Q ) of

−→
Q as

dH(
−→
Q ) =


|K3(H)∩

⋃r

s=1
K3(Q(s))|

|
⋃r

s=1
K3(Q(s))| if |⋃rs=1K3(Q(s))| > 0,

0 otherwise.
(5)

We now give a definition which provides a notion of regularity for 3-cylinders.

Definition 2.11. Let H be a k-partite 3-cylinder with underlying k-partite cylinder
G =

⋃
1≤i<j≤kG

ij, and let B ∈ [k]3. Let r ∈ N and δ > 0 be given. We say that H(B) is
(δ, r)-regular with respect to G(B) if the following regularity condition is satisfied.

Let
−→
Q =

−→
Q B = (Q(1), . . . , Q(r)) be an r-tuple of triadsQ(s) =

⋃
{i,j}∈[3]2 Q

ij(s),

where for all s ∈ [r], {i, j} ∈ [B]2, Qij(s) ⊆ Gij. Then

|
r⋃
s=1

K3(Q(s))| > δ|K3(G(B))|

implies

|dH(
−→
Q )− dH(G(B))| < δ. (6)

If, moreover, it is specified thatH is (δ, r)-regular with respect to G with density dH(G) ∈
(α− δ, α + δ) for some α, then we say that H is (α, δ, r)-regular with respect to G.

Note that this definition of (δ, r)-regularity was introduced and used in [FR], and then
later in [NR].

2.3. The Regularity Lemma.
In this section, we state a regularity lemma for 3-uniform hypergraphs established in

[FR]. First, we state a number of supporting definitions which can also be found in [FR].

Definition 2.12. Let t be an integer and let V be an n element set. We define an
equitable partition of V as a partition V = V0 ∪ V1 ∪ . . . ∪ Vt, where

(i) |V1| = |V2| = · · · = |Vt| = bn
t
c def

= m,

(ii) |V0| < t .

Definition 2.13. Let V be a set. An (l, t, γ, ε)-partition P of [V ]2 is an (auxilliary)
partition V = V0 ∪ V1 ∪ · · · ∪ Vt of V , together with a system of edge-disjoint bipartite
graphs P ij

α , 1 ≤ i < j ≤ t, 0 ≤ α ≤ lij ≤ l, such that

(i) V = V0 ∪ V1 ∪ . . . ∪ Vt is an equitable partition of V ,
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(ii)
⋃lij
α=0 P

ij
α = K(Vi, Vj) for all i, j, 1 ≤ i < j ≤ t,

(iii) all but γ
(
t
2

)
m2 pairs {vi, vj}, vi ∈ Vi, vj ∈ Vj, 1 ≤ i < j ≤ t, are edges of ε-regular

bipartite graphs P ij
α , and

(iv) for all but γ
(
t
2

)
pairs i, j, 1 ≤ i < j ≤ t, we have |P ij

0 | ≤ γm2 and

1

l
(1− ε) ≤ dP ij

α
(Vi, Vj) ≤

1

l
(1 + ε)

for all α = 1, . . . , lij.

Definition 2.14. For a 3-uniform hypergraph H ⊆ [n]3, and P , an (l, t, γ, ε)-partition
of [n]2, set mP = |V1| = |V2| = · · · = |Vt|. Let P be a triad of P ; set further

µP =
|K3(P )|
m3
P

.

We say that an (l, t, γ, ε)-partition P is (δ, r)-regular if∑{
µP : P is a (δ, r)-irregular triad of P

}
< δ

(
n

mP

)3

.

In other words, most of the triples of H belong to (δ, r)-regular triads of the partition
P . We now state the Regularity Lemma of [FR].

Theorem 2.15. For every δ and γ with 0 < γ ≤ 2δ4, for all integers t0 and l0 and
for all integer-valued functions r = r(t, l) and all functions ε(l), there exist T0, L0, and
N0 such that any 3-uniform hypergraph H ⊆ [n]3, n ≥ N0, admits a (δ, r(t, l))-regular,
(l, t, γ, ε(l))-partition for some t and l satisfying t0 ≤ t < T0 and l0 ≤ l < L0.

For future reference, we state the following definition concerning (l, t, γ, ε)-regular par-
titions P which are (δ, r)-regular with respect to a triple system H.

Definition 2.16. Let H be a triple system admitting (δ, r)-regular (l, t, γ, ε)-partition

P . Let −→s =
(
s{i,j,k}αβγ

)
, 1 ≤ i < j < k ≤ t, 1 ≤ α, β, γ ≤ l, be a vector of integers

satisfying

dH(P ij
α ∪ P

jk
β ∪ P ik

γ ) ∈ [s{i,j,k}αβγ
δ, (s{i,j,k}αβγ

+ 1)δ].

Then we say that −→s is the density vector of H over P .

3. The Counting Lemma and the Key Lemma

We begin this section by describing the general setup which we considered in [NR].
Because we will later describe variations of the following environment, we label this first
set up as Setup 1.

Setup 1:
For given constants k, δ, l, r and ε, and a given set {αB : B ∈ [k]3} of positive reals,
consider the following setup. Suppose
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(i) H is any k-partite 3-cylinder with k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| = m,

(ii) let G =
⋃

1≤i<j≤kG
ij be any underlying (l, ε, k)-cylinder of H,

(iii) suppose further that for all B ∈ [k]3, H(B) is (αB, δ, r)-regular with respect to
the triad G(B) (cf. Definition 2.11).

The main result of [NR] was the following Counting Lemma.

Lemma 3.1. The Counting Lemma Let k ≥ 4 be a fixed integer. For all sets of
positive reals {αB : B ∈ [k]3} and constants β > 0, there exists a positive constant δ
so that for all integers l ≥ 1

δ
, there exists r, ε such that the following holds: Whenever

k-partite 3-cylinder H and underlying cylinder G satisfy the conditions of Setup 1 with
constants k, δ, l, r and ε, and set {αB : B ∈ [k]3}, then

ΠB∈[k]3αB

l(
k
2)

mk(1− β) ≤ |Kk(H)| ≤
ΠB∈[k]3αB

l(
k
2)

mk(1 + β). (7)

Note that in what follows, we will only need the following consequence of Lemma 3.1.

Lemma 3.2. Let k ≥ 4 be a fixed integer. For all positive reals α and constants β > 0,
there exists a positive constant δ so that for all integers l ≥ 1

δ
, there exists r, ε such that

the following holds: Whenever k-partite 3-cylinder H and underlying cylinder G satisfy
the conditions of Setup 1 with constants k, δ, l, r and ε, and any set {αB : B ∈ [k]3} of
reals satisfying that for all B ∈ [k]3, αB ≥ α, then

ΠB∈[k]3αB

l(
k
2)

mk(1− β) ≤ |Kk(H)| . (8)

For our purposes in this paper, we work with the following weaker setup, which we refer
to as Setup 2.

Setup 2:
For given constants k, δ, l, r and ε and sets {αB : B ∈ [k]3} of nonnegative reals, consider
the following setup. Suppose J ⊆ [k]3 is a triple system, and let J (2) ⊆ [k]2 be that set
of pairs covered by a triple in J . Suppose that triple system H, together with a graph
G, satisfy the following conditions:

(i) H is a k-partite 3-cylinder with k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| = m.
Moreover, for B ∈ [k]3, H(B) 6= ∅ only if B ∈ J .

(ii) Suppose G =
⋃
{i,j}∈J (2) Gij is an underlying cylinder of H satisfying that for all

{i, j} ∈ J (2), Gij is an (l, ε, 2)-cylinder.

(iii) Suppose further that for each B ∈ J , H(B) is (αB, δ, r)-regular with respect to
the triad G(B). (cf. Definition 2.11).



THE ASYMPTOTIC NUMBER OF TRIPLE SYSTEMS NOT CONTAINING A FIXED ONE 7

We will often refer to the triple system J as the cluster triple system of H.
In their survey paper [KS], Komlós and Simonovits present a lemma for graphs, The-

orem 2.1, which they call The Key Lemma. This lemma has been implemented in many
applications of the Szemerédi Regularity Lemma for graphs. The following corollary to
Lemma 3.2 is an analogous statement for triple systems. For that reason, we preserve
the title of Key Lemma.

Corollary 3.3. The Key Lemma Let k ≥ 4 be a fixed integer. For all positive reals
α, there exists δ > 0 so that for all integers l ≥ 1

δ
, there exists r, ε such that the

following holds: Whenever k-partite 3-cylinder H, underlying cylinder G, and cluster
triple system J satisfy the conditions of Setup 2 with constants k, δ, l, r and ε and any
set {αB : B ∈ [k]3} of nonnegative reals such that for all B ∈ J , αB ≥ α, then J ⊆ H
(i.e. J is a subsystem of H).

We will show how to derive the Key Lemma from Lemma 3.2. However, first note
that essentially the same proof gives the following strengthening of the consequence
of Corollary 3.3: For a fixed triple system J , and an integer s, define the blow up
of J , denoted J (s), as that triple system obtained by replacing each vertex v of J
with a set V = V (v), of s independent vertices, and replace each triple {u, v, w} ∈ J
with the complete 3-partite triple system K(3)(U(u), V (v),W (w)). Then under the same
hypothesis of Corollary 3.3, one can conclude not only that J ⊆ H, but also J (s) ⊆ H.
We now proceed to the definitions of the constants promised by the Key Lemma.

Definitions of the Constants:
Let k ≥ 4 be an arbitrary integer, and let α be a given positive real. Let β = 1

2
. Let

δ = δ(α, β =
1

2
) (9)

be that constant guarenteed to exist by the Lemma 3.2. Let l > 1
δ

be any integer. Let

r = r(l), (10)

ε = ε(l) (11)

be those constants guarenteed to exist by the Counting Lemma.
We now proceed directly to the proof of the Key Lemma.

Proof of the Key Lemma:
Let k ≥ 4 be an arbitrary integer and let α be a given positive real. Let δ > 0 be

that constant in (9). Let l > 1
δ

be an arbitrary integer, and let r and ε be given in (10)
and (11) respectively. Suppose that for the constants k, α, δ, l, r and ε described above
and a set {αB : B ∈ [k]3} of nonnegative reals, k-partite 3-cylinder H with cluster triple
system J and underlying system Gij, {i, j} ∈ J (2), all together satisfy the conditions of
Setup 2. We will show that

J ⊆ H. (12)

To that effect, we consider the following procedure on H. For each triple {i1, i2, i3} ∈
[k]3 satisfying {i1, i2, i3} /∈ J , we replace the empty triple system H({i1, i2, i3}) with the
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3-partite 3-cylinder H0({i1, i2, i3}) = K3(G({i1, i2, i3}) (cf. Definition 2.4) on partite sets
Vi1 , Vi2 , Vi3 . Note that the triple system H0({i1, i2, i3}) is trivially (1, δ, r)-regular with
respect to the (l, ε, 3)-cylinder Gi1i2 ∪Gi1i3 ∪Gi2i3 . Otherwise, for each triple {i1, i2, i3} ∈
J , let H0({i1, i2, i3}) = H({i1, i2, i3}). Let H0 be the resulting triple system obtained by
applying the process above over all {i1, i2, i3} ∈ [k]3.

Similarly, for each pair {i, j} /∈ J (2), replace the empty graph Gij with any (l, ε, 2)-
cylinder Gij

0 on partite sets Vi, Vj. Otherwise, for any {i, j} ∈ J (2), set Gij
0 = Gij. Note

that this may be done without effecting any of the triples of H. Let G0 =
⋃
{i,j}∈[k]2 G

ij
0 be

the resulting (l, ε, k)-cylinder obtained by applying the process above over all {i, j} ∈ [k]2.
After implementing the process described above, we obtain a k-partite 3-cylinder H0

with underlying (l, ε, k)-cylinder G0. Let the set {αB : B ∈ [k]3} be defined in the
following way: for B ∈ J , let αB = αB, otherwise, for B /∈ J , let αB = 1. Note that
H0 and G0 satisfy the conditions in Set Up 1 with the constants k, δ, l, r, ε, and the set
of positive reals {αB : B ∈ [k]3} defined above. Though some of the triples of H0 are
not original triples of H, the crucial observation is that the cluster triple system J still
marks original triples of H. If {i1, i2, i3} ∈ J , then H0({i1, i2, i3}) = H({i1, i2, i3}).

Now we apply Lemma 3.2. By our choice of constants δ, r and ε in (9), (10) and
(11) respectively, we note that Lemma 3.2 applies (with the constant β = 1

2
), and thus

conclude

|Kk(H0)| ≥
ΠB∈[k]3αB

l(
k
2)

nk(1− 1

2
) ≥ α|J |

l(
k
2)

nk

2
> 0.

We thus conclude that K
(3)
k ⊆ H0. Using the triples {i1, i2, i3} ∈ J , we find a copy

J ⊆ H0, and due to the observation that H0({i1, i2, i3}) = H({i1, i2, i3}) on these triples,
conclude that J ⊆ H. 2

4. Proof of Theorem 1.2

Recall that in Theorem 1.2, we promised to show that for any triple system F ,

Fn(F) = 2ex(n,F)+o(n3). (13)

To that end, let F be a fixed triple system. We show the equality in (13). We begin by
first showing the easy lower bound for Fn(F) below

Fn(F) ≥ 2ex(n,F). (14)

Indeed, the inequality in (14) holds. Let G ∈ Forbn(F) be of size |G| = ex(n,F). Since
each subhypergraph D ⊆ G also satisfies D ∈ Forbn(F), it follows that

Fn(F) ≥ 2ex(n,F).

Thus, the inequality in (14) is established.
What remains to be shown is the more difficult upper bound. We now show this upper

bound. We will show that for any ν > 0, the inequality

Fn(F) ≤ 2ex(n,F)+νn3

(15)

holds for sufficiently large n.
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To that end, let ν > 0 be given. In order to show (15), we need to first define
some auxiliary constants. We define constants σ, ζ, γ, α0, δ, l0 and t0, and functions
r = r(l) and ε = ε(l). The following description of these auxiliary constants will be rather
technical. Therefore, for the Reader not interested in these details, we give the following
hierarchy in (16) below relating these values, and encourage the reader to skip down to
the discussion Proof of (15) below.

ν � σ, ζ � γ, α0,
1

t0
� δ >

1

l0
� 1

r
� ε >>>

1

n
. (16)

We note that for convenience, we will denote in our calculations that o(1) is a function
of n satisfying o(1) → 0 as n → ∞. Due to the fact that the integer n satisfies that 1

n
is much smaller than any other value above in (16), we can therefore assume that o(1) is
smaller as well.

Definitions of the Auxiliary Constants:
We define auxiliary constants σ, ζ, γ, α0, δ, l0 and t0, and functions r = r(l) and

ε = ε(l). For the given constant ν > 0, define

ζ = ζ(ν), (17)

σ = σ(ν), (18)

θ = θ(ν) (19)

such that the following inequality

(ex(n,F) + ζn3)(1 + θ) + o(n3) + n3σ log
1

σ
< ex(n,F) + νn3 (20)

holds for sufficiently large integers n. We note that the function denoted by o(n3) in (20)
above will be seen to be of the order O(n2), thus the inequality in (20) is easily seen to
hold for the appropriate choice of constants ζ, σ and θ, and sufficiently large n.

Next, recall Fact 2.5 which guarentees to every k, l, and θ an ε > 0 such that for any
(l, ε, k)-cylinder G, (2) holds. For k = 3, l an arbitrary integer, and θ given in (19) above,
let

ε1 = ε1(l) (21)

be the function guarenteed by Fact 2.5.
For the constant ζ given in (17), let

t1 = t1(ζ) (22)

be an integer satisfying that for all integers n and t, n ≥ t ≥ t1,∣∣∣∣∣∣ex(t,F)(
t
3

) − ex(n,F)(
n
3

)
∣∣∣∣∣∣ < ζ. (23)

Note that the existence of t1 follows from the fact that limn→∞
ex(n,F)

(n
3)

exists for all triple

systems F (cf. [B]).
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For the constant σ given in (18), let

γ =
σ

100
, (24)

δ1 =
σ

100
, (25)

α0 =
σ

100
, (26)

t2 = d100

σ
e. (27)

Note that as defined, the constants γ, δ1, α0 and t2 satisfy

(o(1) +
1

t2
+ γ + 4δ1 +

α0

3
) < σ. (28)

Set

t0 = max{t1, t2} (29)

where t1 and t2 and in (22) and (27) respectively.
The remainder of our discussion on defining the auxiliary constants will concern the

Key Lemma, Corollary 3.3. Recall that regarding the constants involved, Corollary 3.3
states

“∀k ∀α ∃δ : ∀l > 1

δ
∃ r, ε′ so that . . . ”.

Set

k = |V (F)|. (30)

For the constant α0 given in (26), let

δ2 = δ2(k, α0) (31)

be the constant guarenteed by Corollary 3.3. Set

δ = min{δ1, δ2} (32)

where δ1 and δ2 were given in (25) and (31) respectively.
For any integer l > 1

δ
, let

r = r(l), (33)

ε′ = ε′(l) (34)

be those values guarenteed by Corollary 3.3. Set

ε = ε(l) = min{ε1(l), ε′(l)} (35)

where ε1(l) and ε′(l) are given in (21) and (34) respectively.
Finally, set

l0 >
1

δ
(36)

to be any integer, where δ is given in (32). This concludes our definitions of the constants
σ, ζ, γ, α0, δ, l0 and t0, and functions r = r(l) and ε = ε(l). We note that with the
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constants described above, we may assume that the hierarchy in (16) is satisfied.

Proof of (15):
We begin our proof of the upper bound

Fn(F) ≤ 2ex(n,F)+o(n3)

as follows. For each G ∈ Forbn(F), we use the Hypergraph Regularity Lemma, Theo-
rem 2.15, to obtain a (δ, r)-regular (l, t, γ, ε)-partition P = PG. To that end, we must
first disclose the input constants and functions required by Theorem 2.15. Recall that
regarding the constants involved, Theorem 2.15 states that

“∀δ, γ, t0, l0, r(t, l), ε(l) ∃T0, L0, N0 such that . . . ”

Let δ be that constant given in (32), γ be that constant given in (24), t0 be that integer
given in (29), and l0 be that integer given in (36). Further, let r = r(l) be that function
given in (33) and ε = ε(l) be that function given in (35).

With the above disclosed input values, Theorem 2.15 guarentees constants T0, L0, N0

so that any triple system G on n > N0 vertices admits a (δ, r)-regular, (l, t, γ, ε)-partition
P , for some t and l satisfying t0 ≤ t ≤ T0 and l0 ≤ l ≤ L0.

We stress here that what is important for us is that provided n > N0, every G ∈
Forbn(F) admits a (δ, r)-regular, (l, t, γ, ε)-partition PG. For each G ∈ Forbn(F),
choose one (δ, r)-regular, (l, t, γ, ε)-partition PG guarenteed by Theorem 2.15 and let
P = {P1, . . . ,Pp} be the set of all such partitions over the family Forbn(F). Consider
an equivalence on Forbn(F) with classes C(Pi,−→s ) defined by

G ∈ C(Pi,−→s ) ⇐⇒

Pi ∈ P is the partition associated with G,
G has density vector −→s over Pi.

Set q to be the number of equivalence classes C(Pi,−→s ). We show that

q = 2O(n2). (37)

Further, for any equivalence class C(Pi,−→s ), we show

|C(Pi,−→s )| = 2(ex(n,F)+ζn3)(1+θ)+o(n3)+n3σ log 1
σ . (38)

Therefore, as a result of (37) and (38), combined with the inequality in (20), we have

Fn(F) =
∑
|C(Pi,−→s )|,

≤ 2O(n2)2(ex(n,F)+ζn3)(1+θ)+o(n3)+n3σ log 1
σ ,

= 2(ex(n,F)+ζn3)(1+θ)+o(n3)+n3σ log 1
σ ,

≤ 2ex(n,F)+νn3

(39)

where the inequality in (39) follows from the inequality in (20). Thus, we will be finished
proving (15) once we have established (37) and (38). We now do this below.

We begin first by estimating the value q.

Estimation of q:



12 BRENDAN NAGLE AND VOJTĚCH RÖDL

Theorem 2.15 guarentees a partition into at most
(
T0+1

2

)
(L0 + 1) graphs. Since there

are at most
(

1
δ

)(T0+1
3 )(L0+1)3

density vectors which could be associated to any one P ∈
{P1, . . . ,Pp}, the number q of classes is at most

(
1

δ

)(T0+1
3 )(L0+1)3

((
T0 + 1

2

)
(L0 + 1)

)(n
2)
≤ 2O(n2).

Thus, the bound

q = 2O(n2)

is established.
Our second task is to estimate |C(Pi,−→s )| for any class C(Pi,−→s ). To that effect, fix

C(Pi,−→s ), and for simplicity, set C = C(Pi,−→s ) and P = Pi. For the partition P , let P
have equitable partition [n] = V0 ∪ V1 ∪ . . .∪ Vt, |V1| = . . . = |Vt| = m = bn

t
c, and system

of bipartite graphs P ij
α , 1 ≤ i < j ≤ t, 0 ≤ α ≤ lij ≤ l.

Estimation of |C|:
Once again, we estimate the number of G ∈ Forbn(F) which are members of the

equivalence class C. The main tool we use to count |C| is that the partition P is a
(δ, r)-regular, (l, t, γ, ε)-partition with respect to all G ∈ C. Due to the highly regular
structure of P , we are able to efficiently count |C|, and specifically, show

|C| ≤ 2(ex(n,F)+ζn3)(1+θ)+o(n3)+n3σ log 1
σ .

To that effect, fix G ∈ C. We define the following set E0 to consist of all triples
{vi, vj, vk} ∈ G which fall under any of the following categories:

(i) {vi, vj, vk} ∩ V0 6= ∅,

(ii) |{vi, vj, vk} ∩ Vq| ≥ 2 for some q ∈ [t],

(iii) {vi, vj} ∈ P ij
0 ,

(iv) {vi, vj} ∈ P ij
α , for some α, 1 ≤ α ≤ l, where P ij

α satisfies that either
(a) P ij

α is ε-irregular,

(b) dP ij
α

(Vi, Vj) /∈
(

1
l
(1− ε2),

1
l
(1 + ε2)

)
.

Note that |E0| satisfies

|E0| ≤ tn2 + n
(
n

t0

)2

+ γ

(
t

2

)
n+ 2γ

(
t

2

)(
n

t

)2

n. (40)

Further define the set E1 to consist of all triples {vi, vj, vk} ∈ G \ E0 which fall under any
of the following categories:
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(a) {vi, vj} ∈ P ij
α , {vj, vk} ∈ P jk

β , {vi, vk} ∈ P ik
γ , 1 ≤ α, β, γ ≤ l, where P =

P ij
α ∪ P

jk
β ∪ P ik

γ is not a (δ, r)-regular triad with respect to G({i, j, k}),

(b) {vi, vj} ∈ P ij
α , {vj, vk} ∈ P jk

β , {vi, vk} ∈ P ik
γ , 1 ≤ α, β, γ ≤ l, where P =

P ij
α ∪ P

jk
β ∪ P ik

γ satisfies

dG(P ) < α0.

Note that |E1| satisfies

|E1| ≤ 2δt3l3
(
n

t

)3

(1 + θ) + α0

(
t

3

)
l3
(
n

t

)3 1

l3
. (41)

Set EG = E0 ∪ E1. Note that as a result of (40) and (41), |EG| satisfies

|EG| ≤ (o(1) +
1

t
+ γ + 4δ +

α0

3
)n3.

Due to (28), we may further bound |EG| by

|EG| ≤ σn3.

Set G ′ = G \ EG. Thus, upon deleting triples EG from G, we delete less than σn3 triples
to obtain the hypergraph G ′.

We now construct the cluster hypergraph J C = J C(G) ⊆ [t]3× [l]× [l]× [l] for G ′. We
define {i, j, k}αβγ ∈ J C , 1 ≤ i < j < k ≤ t, 1 ≤ α, β, γ ≤ l, if and only if the following
conditions are satisfied:

(i) P = P ij
α ∪ P

jk
β ∪ P ik

γ is a (l, ε2, 3)-cylinder,

(ii) G ′({i, j, k}) is (α, δ, r)-regular with respect to P , where α ≥ α0.

We will view the cluster hypergraph J C as a multi-set, where for fixed {i, j, k}, 1 ≤ i <
j < k ≤ t, parallel triples

{i, j, k}αβγ ∈ J C

are possible.
We now state and prove the following fact about the cluster hypergraph J C .

Fact 4.1. There exists ψ : [t]2 −→ [l] such that∣∣∣{({i, j, k}αβγ ∈ J C : ψ({i, j}) = α, ψ({j, k}) = β, ψ({i, k}) = γ, 1 ≤ i < j < k ≤ t
}∣∣∣ ≥ |J C |

l3
.

Proof of Fact 4.1:
We appeal to the Pigeon Hole Principle. Let

Ψ =
{
ψ : [t]2 −→ [l]

}
.

Note that

|Ψ| = l(
t
2). (42)
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Define an auxiliary bipartite graph G = (V (G), E(G)) with bipartition

V (G) = Ψ ∪ J C

and adjacency rule as follows: we define {ψ, {i, j, k}αβγ} ∈ E(G) if and only if ψ ∈ Ψ,
{i, j, k}αβγ ∈ J C , and ψ({i, j}) = α, ψ({j, k}) = β, ψ({i, k}) = γ. Note that for each
{i, j, k}αβγ ∈ J C

degG({i, j, k}αβγ) = l(
t
2)−3.

It thus follows that

|E(G)| = |J C |l(
t
2)−3. (43)

On the other hand, due to the equality in (42) and the equality in (43), we infer from
the Pigeon Hole Principle that there exists a vertex ψ0 ∈ Ψ such that

degG(ψ0) ≥
|J C |l(

t
2)−3

l(
t
2)

=
|J C |
l3

.

However, it follows by definition of the graph G that

NG(ψ0) =
{
({i, j, k}αβγ ∈ J C : ψ({i, j}) = α, ψ({j, k}) = β, ψ({i, k}) = γ, 1 ≤ i < j < k ≤ t

}
and thus Fact 4.1 follows. 2

We thus have the following claim about the cluster hypergraph J C which follows from
Fact 4.1.

Claim 4.2.
|J C | ≤ l3ex(t,F).

Proof of Claim 4.2:
On the contrary, assume

|J C | > l3ex(t,F). (44)

Using Fact 4.1, we see that there exists a function ψ : [t]2 −→ [l] such that∣∣∣{({i, j, k}αβγ ∈ J C : ψ({i, j}) = α, ψ({j, k}) = β, ψ({i, k}) = γ, 1 ≤ i < j < k ≤ t
}∣∣∣ ≥ |J C |

l3
.

Let J be the set of triples

J =
{
({i, j, k} : ψ({i, j}) = α, ψ({j, k}) = β, ψ({i, k}) = γ, and {i, j, k}αβγ ∈ J C

}
and note that J is a triple system on t vertices without parallel edges.

Under the assumption in (44), it follows that

|J | ≥ |J C |
l3

> ex(t,F).

Therefore, we immediately see that F ⊆ J , which leads to a contradiction. Indeed, due
to the Key Lemma, Corollary 3.3, F ⊆ J implies F ⊆ G ′ ⊆ G ∈ Forbn(F). Thus, to
conclude the proof of Claim 4.2, we need only confirm that the Key Lemma applies.
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To that end, for the copy of F in J , let VF = V (F) be the vertex set of F . Note
that as given in (30), |V (F)| = k. Let G ′′ consist of those triples {vi1 , vi2 , vi3} ∈ G ′(VF)
which satisfy that vi1 ∈ Vi1 , vi2 ∈ Vi2 , vi3 ∈ Vi3 and ψ({vi1 , vi2}) = α, ψ({vi2 , vi3}) = β,
ψ({vi1 , vi3}) = γ, and {vi1 , vi2 , vi3}αβγ ∈ J C . Observe that we may assume that G ′′
(replacing H) together with cluster triple system F and system of bipartite graphs Gij =
P ij
ψ({i,j}), {i, j} ∈ F (2) satisfies the conditions of Setup 2: Indeed, that the properties (i)

and (iii) are satisfied for G ′′ ⊂ G follows from our deletion of the triples E1. Similarly,
(ii) is satisfied by our deletion of the triples of E0.

By our choice of constants k, α, δ, l, r, ε in (30), (26), (32), (33) and (35), it follows
that the Key Lemma applies to the triple system G ′′, the underlying cylinder

⋃{P ij
α :

{i, j} ∈ [VF ]2, α = ψ({i, j})}, and cluster triple system F . 2

We now bound |C| from above. To that end, define

SC =
⋃

{i,j,k}αβγ∈JC

K3(P
ij
α ∪ P

jk
β ∪ P ik

γ ).

It follows from Fact 2.5 that for the constant θ in (19) and our choice of ε in (35), any

(l, ε, 3)-cylinder P ij
α ∪P

jk
β ∪P ik

γ on partite sets Vi, Vj, Vk, |Vi| = |Vj| = |Vk| = m, satisfies

|K3(P
ij
α ∪ P

jk
β ∪ P ik

γ )| < m3

l3
(1 + θ). (45)

Using Claim 4.2 and (45), we see that |SC | satisfies

|SC | ≤ m3

l3
(1 + θ)|J C |,

≤ m3ex(t,F)(1 + θ). (46)

The essential observation now is that for every G ∈ C, G ′ ∈ SC . Thus

|{G ′ : G ∈ C}| ≤ 2n
3ex(t,F)(1+θ). (47)

On the other hand, for each G ∈ C,

G = G ′ ∪ EG,

where recall |EG| satisfies

|EG| ≤ σn3.

Therefore,

|{EG,G ∈ C}| ≤
(
n3

σn3

)
≤ 2n

3σ log 1
σ . (48)

Combining (47) with (48), we infer that

|C| ≤ 2ex(t,F)n3

t3
(1+θ)+o(n3)+n3σ log( 1

σ
). (49)

The major work in bounding |C| from above is finished. However, to establish (15), we
need to replace ex(t,F) by ex(n,F). Recall that we chose t0 in (29) so that for the
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auxilliary constant ζ > 0, for all n ≥ t ≥ t0,∣∣∣∣∣∣ex(t,F)(
t
3

) − ex(n,F)(
n
3

)
∣∣∣∣∣∣ < ζ

or equivalently ∣∣∣∣∣∣ex(t,F)(
t
3

) (
n

3

)
− ex(n,F)

∣∣∣∣∣∣ < ζ

(
n

3

)
.

The above inequality implies

ex(t,F)
n3

t3
≤ ex(n,F) + ζn3. (50)

Combining (49) with (50) implies

|C| = 2(ex(n,F)+ζn3)(1+θ(ε2))+o(n3)+n3σ log( 1
σ

).

Therefore, our proof of (15) is complete.

5. Remarks

By Theorem 1.1, the problem of estimating Fn(F) for non 3-partite triple systems F
is essentially equivalent to finding the Turán number ex(n,F). For s > 2, the problem of

determining Turán numbers, however, is notoriously open, and limn→∞
ex(n,F)
n3 is unknown

for nearly all non 3-partite 3-uniform hypergraphs F .
For s = 2, the situation is much clearer due to well known results of Turán [T] and

Erdös and Stone [ES].
The complete r-partite graph K(X1, . . . , Xr) consists of all edges connecting distinct

Xi and Xj. Note that this graph contains no Kr+1 and has chromatic number r if Xi 6= ∅
for all i ∈ [r]. To maximize |K(X1, . . . Xr)|, one chooses the Xi to have as equal sizes as
possible, i.e. bn

r
c ≤ |Xi| ≤ dn

r
e. Then Turán’s Theorem states

Theorem 5.1.

ex(n,Kr+1) = |K(X1, . . . , Xr)| =
(
n

2

)
(1− 1

r
+ o(1)).

Let χ(F) denote the chromatic number of F . An old result of Erdös, Stone, and
Simonovits shows that ex(n,F) and ex(n,Kχ(F)) are closely related:

Theorem 5.2. Set χ(F) = r, r ≥ 3. Then

ex(n,Kr) ≤ ex(n,F) ≤ (1 + o(1))ex(n,Kr).

The following extension of Theorem 5.2 was proved in [EFR].

Theorem 5.3. Let ε0 be an arbitrary positive number and G an F-free graph on n
vertices. Then for n ≥ n0(ε0,F), one can remove less than ε0n

2 edges from G so that the
remaining graph is Kr-free, where r = χ(F).
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Unfortunately, in the case of 3-uniform hypergraphs, there is no extension of Theorem
5.1 and Theorem 5.2 known. One can however give an extension to Theorem 5.3.

Definition 5.4. Suppose F1 and F2 are two triple systems. We say a function ψ :
V (F1) −→ V (F2) is a homomorphism if for every {a, b, c} ∈ F1, {ψ(a), ψ(b), ψ(c)} ∈ F2.
We say that F2 is a proper image of F1 if ψ is not 1-1 and if every f ∈ F2 is an image of
some triple of F1.

Theorem 5.5. Let F be a fixed triple system, and let F ′ be any homomorphic image of
F . For any ε > 0, there exists n0 = n0(ε,F ,F ′) such that if G ∈ Forbn(F), n ≥ n0, then
there exists a set E ⊆ G, |E| < εn3, such that G \ E ∈ Forbn(F ′).

We remark that Theorem 5.5 may be proved along the same lines as Theorem 1.2.
Let Kt(l, s) be the complete t-partite l-uniform hypergraph on partite sets V1∪ . . .∪Vt,

|V1| = . . . = |Vt| = s. That is,

Kt(l, s) =
{
{vi1 , . . . , vil} : vij ∈ Vij , 1 ≤ ij ≤ t, 1 ≤ j ≤ l

}
For s = 1, we write Kt(l, 1) simply as K

(l)
t . The following problem was raised in Problem

6.1 of [EFR].

Problem 5.6. Let integers t, l, t ≥ l ≥ 3, be given, along with arbitrary integer s and
positive real ε. Suppose G ⊆ [n]l is a Kt(l, s)-free hypergraph on n > n0(t, l, s, ε) vertices.

Is it possible to remove less that εnl edges of G to obtain a K
(l)
t -free hypergraph?

Note that Theorem 5.5 provides an answer to Problem 5.6 for l = 3. Indeed, set

F = Kt(3, s) and F ′ = K
(3)
t . Since K

(3)
t is a homomorphic image of Kt(3, s), the

statement of Theorem 5.5 immediately answers Problem 5.6 affirmatively.
From Theorem 5.5, we also have the following corollary.

Corollary 5.7. Let F ′ be a homomorphic image of F . Then

ex(n,F ′) ≥ ex(n,F)− o(n3).

It is conceivable that equality can hold above in the following sense: call an s-uniform
hypergraph G irreducible if every pair of vertices is covered by an edge of G. We formulate
the following question.

Question 5.8. Is it true that any 3-uniform hypergraph F which is not irreducible has
a proper image F ′ so that

ex(n,F) = ex(n,F ′) + o(n3)

holds?

The above question can be reformulated and generalized as follows:

Question 5.9. Is it true that any s-uniform hypergraph F has an irreducible image F ′

so that
ex(n,F ′) = ex(n,F) + o(ns)

holds?
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If true, this would give an extension of Theorem 5.2 to s-uniform hypergraphs.
As a final remark, one may extend Theorem 1.2 forbidding more than just one hy-

pergraph F . Let {Fi}i∈I be a set of s-uniform hypergraphs and let Forbn({Fi}i∈I) be
the set of all s-uniform hypergraphs on n vertices not containing any F ∈ {Fi}i∈I as a
subhypergraph. Set Fn({Fi}i∈I) = |Forbn({Fi}i∈I)| and ex(n, {Fi}i∈I) to be the Turán
number for the class {Fi}i∈I , that is,

ex(n, {Fi}i∈I) = max {|G| : G ⊆ [n]s is F -free for all F ∈ {Fi}i∈I} .
By using the proof of Theorem 1.2, one may analogously establish the following theorem.

Theorem 5.10. For any set of triple systems {Fi}i∈I ,

|Fn({Fi}i∈I)| = 2ex(n,{Fi}i∈I)+o(n3).

The following related problem was considered by Alekseev in [A] and Bollobás and
Thomason in [BT]. Let {Fi}i∈I be a set of s-uniform hypergraphs and let ForbIndn({Fi}i∈I)
be the set of all s-uniform hypergraphs on n vertices not containing any F ∈ {Fi}i∈I as
an induced subhypergraph, and set FIn({Fi}i∈I) = |ForbIndn({Fi}i∈I)|. Observe that
the class ForbInd({Fi}i∈I) =

⋃∞
n=1 ForbIndn({Fi}i∈I) is closed under taking induced

subhypergraphs (Bollobás and Thomason [BT] call such classes hereditary). For an in-
teger n and a given class {Fi}i∈I of s-uniform hypergraphs, consider sets M,N ⊆ [n]s

with the following two properties:

(i) M∩N = ∅.
(ii) For G = [n]s \ (M ∪ N ), for all G ′ ⊆ G, ∀F ∈ {Fi}i∈I , F is not an induced

subhypergraph of G ′ ∪M.

Define

exind(n, {Fi}i∈I) = max{|[n]s\(M∪N )| : M, N have the properties in (i) and (ii) above }.
For s = 2, Bollobás and Thomason [BT] used Szemerèdi’s Regularity Lemma to show

that for all sets of graphs {Fi}i∈I , if one writes

FIn({Fi}i∈I) = 2cn(
n
2),

then

lim
n→∞

cn = lim
n→∞

exind(n, {Fi}i∈I)(
n
2

) = 1− 1

r − 1
, (51)

where r = r({Fi}i∈I) is an integer valued function of {Fi}i∈I .
Together with Y. Kohayakawa in the upcoming paper [KNR], the present authors

extend (51) for s = 3 to say that for all sets of triple systems {Fi}i∈I ,

FIn({Fi}i∈I = 2exind(n,{Fi}i∈I)+o(n3).
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[EFR ] P. Erdös, P. Frankl, V. Rödl, The asymptotic number of graphs not containing
a fixed subgraph and a problem for hypergraphs have no exponent, Graphs and
Combinatorics 2, 113-121 (1986)

[ES ] P. Erdös, A. H. Stone, On the structure of linear graphs,J Bull. Amer. Math.
Soc., 52, 1087-1091 (1946)
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