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Abstract

We propose two new classes of non-adaptive pooling designs.The first one is
guaranteed to bed-error-detecting and thusbd2c-error-correcting given any positive
integerd. Also, this construction induces a construction of a binarycode with
minimum Hamming distance at least2d + 2. The second design is theq-analogue
of a known construction ond-disjunct matrices.

1 Introduction

The basic problem of group testing is to identify the set of defectives in a largepopula-
tion of items. We assume some testing mechanism exists which if applied toan arbitrary
subset of the population gives anegative outcomeif the subset contains no defective
andpositive outcomeotherwise. Objectives of group testing vary from minimizing the
number of tests, limiting number of pools, limiting pool sizes to tolerating a fewerrors.
It is conceivable that these objectives are often contradicting, thus testingstrategies are
application dependent.

Group testing algorithms can roughly be divided into two categories :Combinato-
rial Group Testing(CGT) andProbabilistic Group Testing(PGT). In CGT, it is often
assumed that the number of defectives amongn items is equal to or at mostd for some
fixed positive integerd. In PGT, we fix some probabilityp of having a defective. Group
testing strategies can also be eitheradaptiveor non-adaptive. A group testing algorithm
is non-adaptive if all tests must be specified without knowing the outcomes of other
tests. A group testing algorithm iserror tolerant if it can detect or correct somee errors
in test outcomes. Test errors could be either0 ! 1, i.e. a negative pool is identified as
positive, or0! 1 in the contrast.

In this paper, we propose two new classes of non-adaptive and error-tolerance CGT
algorithms. Non-adaptive algorithms found its applications in a wide range of practical
areas such as DNA library screening [2, 5] and multi-access communications[13], etc.�Department of Computer Science and Engineering, University of Minnesota,200 Union street, EE/CS
Building, room 4-192, Minneapolis, MN 55455, USA. e-mail:fhngo, dzdg@cs.umn.edu. Support
in part by by the National Science Foundation under grant CCR-9530306.
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For a general reference on CGT, the reader is referred to a monograph by Du and Hwang
[6]. Ngo and Du [11] gave a survey on non-adaptive pooling designs.

The rest of the paper is organized as follows. Section 2 presents basic definitions,
notations and related works. Section 3 provides our results and section 4 concludesthe
paper.

2 Preliminaries

Throughout this paper, for any positive integerv we shall use[v] to denotef1; 2; : : : vg.
Also, given any setX andk 2 N �Xk� denotes the collection of allk-subsets ofX.

2.1 The Matrix Representation

Consider av � n 01-matrixM . LetRi andCj denote rowi and columnj respectively.
Abusing notation, we also letRi (resp.Cj) denote the set of column (resp. row) indices
corresponding to the1-entries. Theweightof a row or a column is the number of1’s it
has.

Definition 1 M is said to bed-disjunctif the union of anyd columns does not contain
another column.

A d-disjunctv�nmatrixM can be used to design a non-adaptive group testing algorithm
onn items by associating the columns with the items and the rows with the pools to be
tested. IfMij = 1 then itemj is contained in pooli (and thus testi). If there are
no more thand defectives and the test outcomes are error-free, then it is easy to see
that the test outcomes uniquely identify the set of defectives. We simply identify the
items contained in negative pools asnegatives(good items) and the rest aspositives
(defected items). Notice thatd-disjunct property implies that each set of� d defectives
corresponds uniquely to a test outcome vector, thus decoding test outcomes involves
only a table lookup. The design of ad-disjunct matrix is thus also naturally called
a non-adaptive pooling design. We shall use this term interchangeably with the long
“non-adaptive combinatorial group testing algorithm”.

Let S( �d; n) denotes the set of all subsets ofn items (or columns) with size at mostd, called the set ofsamples. For s 2 S( �d; n), let P (s) denote the union of all columns
corresponding tos, i.e. P (s) = Si2sCi. A pooling design ise-error detecting (correct-
ing) if it can detect (correct) up toe errors in test outcomes. In other words, if a design
is e-error detecting then the test outcome vectors form av-dimensional binary code with
minimum Hamming distance at leaste + 1. Similarly, if a design ise-error correcting
then the test outcome vectors form at-dimensional binary code with minimum Ham-
ming distance at least2e + 1. The following remarks are simple to see, however useful
later on.

Remark 1 SupposeM has the property that for anys; s0 2 S( �d; n); s 6= s0, P (s) andP (s0) viewed as vectors have Hamming distance� k. In other words,jP (s)�P (s0)j � k
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where� denotes the symmetric difference. Then,M is (k � 1)-error detecting andbk�12 c-error correcting.

Remark 2 M beingd-disjunct is equivalent to the fact that for any set ofd+ 1 distinct
columnsCj0; : : : Cjd with one column (sayCj0) designated,Cj0 has a1 in some row
where allCjk ’s, 1 � k � d contain0’s.

2.2 Related Works

Previous works on error-tolerance designs are those of Aigner [1], Muthukrishnan [10],
Balding and Torney [3] and Macula [9]. Aigner [1] and Muthukrishnan [10], discussed
optimal strategies whend = 1 and the number of errors is small, although in a slightly
more general setting where each test outcome could beq-ary instead of binary. Balding
and Torney [3] studied several instances of the problem whend � 2. In some specific
case, they showed that an optimal strategy is possible if and only if certain Steiner system
exists. Macula [9] showed that his construction is error-tolerant with high probability.

On construction of disjunct matrices, the most well-known method is to construct the
matrix fromset packing designs. This method was introduced by Kautz and Singleton
[7] in the context of superimposed codes. At-(v; k; �) packing is a collectionF ofk-subsets of[v] such that anyt-subset of[v] is contained in at most� members ofF .
By limiting � = 1, we can construct ad-disjunct matrix from at-(v; k; 1) packing ifk > d(t � 1). Little is known about optimal set packing designs except for the caset < 4 (see, for example, [4, 11] for more details). Besides taking results directly from
Design Theory, the only other work known on directly constructingd-disjunct matrices
is that of Macula [8].

3 Main Results

We first describe ourd-disjunct matrices. Given integersm � k > d � 1. A matching
of sizel (i.e. it hasl edges) is called anl-matching.

Definition 2 LetM(m; k; d) be the01-matrix whose rows are indexed by the set of alld-matchings onK2m, and whose columns are indexed by the set of allk-matchings onK2m. All matchings are to be ordered lexicographically.M(m; k; d) has a1 in row i
and columnj if and only if theith d-matching is contained in thejth k-matching.

For q being a prime power, letFq denotesGF (q). Let
�Fmql � denotes the set of alll-

dimensional subspaces (l-subspaces for short) of them-dimensional vector space onFq.
Definition 3 LetMq(m; k; d) be the01-matrix whose rows (resp. columns) are indexed
by elements of

�Fmqd � (resp.
�Fmqk �). We also order elements of these set lexicographically.Mq(m; k; d) has a1 in row i and columnj if and only if theith d-subspace is a subspace

of thejth k-subspace ofFmq .
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We now show thatM(m; k; d) andMq(m; k; d) ared-disjunct.

Theorem 1 Let g(m; l) = �2m2l � (2d)!2dd! , v = g(m; d), andn = g(m; k). Form > k > d �1,M(m; k; d) is av� n d-disjunct matrix with row weightg(m� d; k� d) and column
weightg(k; d).
Proof. It is easy to see thatg(m; l) is the number ofl-matchings ofK2m. Thus,M(m; k; d) is a v � n matrix with row weightg(m � d; k � d) and column weightg(k; d).

To showM(m; k; d) is d-disjunct, we recall Remark 2. Considerd + 1 distinct
columnsCj0; Cj1; : : : Cjd ofM(m; k; d). Since all these columns are distinctk-matchings,
for eachi, 1 � i � d there exists an edgeei 2 Cj0 n Cji. Clearly, there exists ad-matchingR � Cj0 which contains allei’s. We simply add more edges inCj0 tofei : 1 � i � dg if necessary. SinceR =2 Cji, 8i 2 [d], Cj0 has a1 in rowR where all
otherCji contains0. 2
Theorem 2 Let

�ml �q := (qm�1)(qm�1�1):::(qm�k+1�1)(qk�1)(qk�1�1):::(q�1) , v = �md �q, and n = �mk �q. Form > k > d � 1, Mq(m; k; d) is a v � n d-disjunct matrix with row weight
�m�dk�d�q and

column weight
�kd�q.

Proof. It is standard that the Gaussian coefficient
�ml �q counts the number ofl-subspaces

ofFmq (see, for example, Chapter 24 of [12]). The weight of any columnC ofMq(m; k; d)
is the number ofd-subspaces ofC, hence it is

�kd�q. The weightw of any rowR is the

number ofk-subspaces ofFmq which contains thed-subspaceR. To showw = �m�dk�d�q,
we employ a standard trick (double counting). LetI(m; k; d) be the number of ordered
tuples(v1; : : : ; vk�d) of k� d vectors inFmq nR such that eachvi is not in the span ofR
and othervj ’s, j 6= i. Notice thatjFmq j = qm andjRj = qd. CountingI(m; k; d) directly,
there areqm� qd ways to choosev1, thenqm� qd+1 ways to choosev2 and so on. Thus,I(m; k; d) = (qm � qd)(qm � qd+1) : : : (qm � qk�1) (1)

Now, (v1; : : : ; vk�d) can be obtained by first picking ak-subspaceC of Fmq which con-
tainsR in w ways, then(v1; : : : ; vk�d) is chosen fromC n R in I(k; k; d) ways. This
yields I(m; k; d) = wI(k; k; d) (2)

Combining (1) and (2) givesw = �m�dk�d�q as desired. The fact thatMq(m; k; d) is d-
disjunct can be shown in a similar fashion to the previous theorem. 2
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The following lemma tells us how to choosek so that the test to item ratio (vn ) is mini-
mized. The proof is easy to see and we omit it here.

Lemma 1 For l 2 [m], we have

(i) The sequenceg(m; l) is unimodal and gets its peak atl = bm�qm+12 c.
(ii) The sequence

�ml �q is unimodal and gets its peak atl = bm2 c.
The following results further explore properties ofM(m; k; d). We first need two more
definitions.

Definition 4 Let C0; C1; : : : Cd be anyd + 1 distinct columns ofM(m; k; d). A d-
matchingR is said to beprivate forC0 with respect to (wrt for short)C1; : : : Cd ifR 2 C0 n Sj�1Cj. Let p(C0;C1; : : : Cd) denote the number of privated-matchings
ofC0 wrt C1; : : : Cd.
Theorem 3 Givenm > d � 1, and any set ofd + 1 distinct columnsC0; C1; : : : Cd ofM(m;m; d), thenp(C0;C1; : : : Cd) � d+ 1.

Proof. Observe that for1 � j � d, C0 [ Cj is a loopless multigraph which is2-regular.C0 [ Cj consists of cycles with even lengths. Moreover,C0 6= Cj implies thatC0 [ Cj
must have a cycle of length at leastd+ 1; consequently,jC0 n Cjj � 2, 8j 2 [d].

LetEi = C0 n Ci, i 2 [d]. We can assumejEij = 2; 8i. We just remove edges fromEi to reduce its size to be exactly2 for the ease of analysis. LetG be the graph withV (G) = C0, E(G) = fE1; : : : Edg. Then,G is a simple graph havingm vertices and� d edges.jE(G)j � d because theEi’s are not necessarily distinct. Anyd-subsetR ofC0 such thatR \ Ei 6= ;, 8i is a privated-matching ofC0. Note thatR is nothing but a
vertex cover of sized (d-cover for short) ofG. To showp(C0;C1; : : : Cd) � d + 1, we
shall show that the number ofd-covers ofG is at least4. Since adding more edges intoG can only decrease the number ofd-covers, we also assume thatG has exactlyd edges.

DecomposeG into its connected components. SupposeG1; : : : ; Gx are connected
components which are not trees, andG01; : : : ; G0y are the rest of the components. Isolated
points are also considered to be trees. Fori = 1; : : : x, let vi = jV (Gi)j and ei =jE(Gi)j. For i = 1; : : : y, let v0i = jV (G0i)j ande0i = jE(G0i)j. The following equations
are straight from the definitions :xXi=1 vi + yXi=1 v0i = m (3)xXi=1 ei + yXi=1 e0i = d (4)

hence,
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0 � xXi=1 ei � xXi=1 vi = y � (m� d) (5)

Note that for any connected simple graphH, picking anyjV (H)j � 1 vertices out ofV (H) gives us a vertex cover. Hence, the number of(jV (H)j � 1)-covers ofH is at
least

� jV (H)jjV (H)j�1� = jV (H)j. Now, ad-cover ofG could be formed by two methods as
follows.

(a) Method 1. For eachi 2 [x], pick in vi ways a(vi � 1)-cover forGi, then cover all
otherGj, j 6= i with all their vertices. We have used up(Pxi=1 vi) � 1 vertices,
and needd� (Pxi=1 vi)+1 more to cover allG0i’s. Firstly, there should be enough
vertices. Indeed, yXi=1 v0i = m� xXi=1 vi � d+ 1� xXi=1 vi
Secondly, to cover allG0i’s, we need at most

Pyi=1(v0i � 1) vertices.(3) and(5)
assure that yXi=1 (v0i � 1) = m� xXi=1 vi � y < d+ 1� xXi=1 vi
In conclusion, this method gives us at least(Pxi=1 vi) d-covers forG.

(b) Method 2. This time, we are greedier by first taking all vertices inGi’s, i 2 [x]
to cover them.a = d �Pxi=1 vi vertices are needed to cover the rest. Thesea
vertices can be chosen as follows. For each(m � d)-subsetY of [y], cover eachG0i; i 2 Y with v0i � 1 vertices. Cover eachG0i; i =2 Y using all of its vertices.
Indeed, the total number of vertices used isXi2Y (v0i � 1) +Xi=2Y v0i =Xi2[y] v0i � jY j = (m� xXi=1 vi)� (m� d) = a
Moreover, obviously there are at least

Qi2Y v0i ways to pickd-covers for each
particularY . In total, noticing thaty � m� d � 1, method 2 gives us at least
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XY 2( [y]m�d)Yi2Y v0i = XY 2( [y]m�d)Yi2Y (e0i + 1)� yXi=1 e0i + � ym� d�� ( yXi=1 v0i � y) + (y �m+ d+ 1)= d+ 1� xXi=1 vi
Hence, Methods 1 and 2 combined yields at least(d+ 1) privated-matchings ofC0. 2
Corollary 1 Givenm > d � 1, the following holds :

(i) M(m;m; d) is d-error detecting andbd2c-error correcting.

(ii) Moreover, if the number of defectives is known to be exactlyd, thenM(m;m; d)
is 2d+ 1-error-detecting andd-error-correcting.

Proof. For anys; s0 2 S( �d; n); s 6= s0, without loss of generality we can assume there
existsC0 2 s n s0. Theorem 3 impliesjP (s)� P (s0)j � d + 1, hence Remark 1 shows(i). If the number of defectives is exactlyd, we need to only considerjsj = js0j = d;
hence there existsC0 2 s n s0 andC 00 2 s0 n s. Again, Theorem 3 and Remark 1 yields(ii). 2
Corollary 2 Givenm > d � 1, then there exists a binaryd-error-correcting code of
dimensiong(m; d) and size

�g(m;m)d �
.

Proof.The code can be constructed by taking all the unions ofd columns inM(m;m; d).2
Borrowing an idea from Macula [9], we get the following algorithm which usesM(m; k; 2) for the at mostd defective problem, and show that with very high probability,

our algorithm gives the correct answer. Notice that each row ofM(m; k; 2) is a 2-
matching consisting of some two parallel edges(e1; e2) of K2m.

Algorithm 1 UseM(m; k; 2) to design the pools as usual. For each edgee 2 E(K2m)
such that the total number of positive outcomes involvinge is k � 1, i.e. jf(e; x) :
the test(e; x) is positivegj = k�1, identify the itemC = feg[fx : (e; x) is positiveg
as a defective.
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Theorem 4 Algorithm 1 gives correct answer with probabilityp(m; k; d) wherep(m; k; d) � 24Pkj=1(�1)j+1�kj��Pji=0(�1)i(ji)g(m�i;k�i)d�1 ��g(m;k)�1d�1 � 35d
For example,p(8; 6; 9) � 98:5%, which means that we could useM(8; 6; 2) to solve the
at most9 defectives problem with98:5% of success.
Proof. Given a set ofd distinct columnsC1; C2; : : : Cd. e 2 E(K2m) is called a mark ofCi if e 2 Ci but e =2 Cj; j 6= i, in which caseCi is called marked. IfCi is marked bye
then exactlyk � 1 tests involvinge and another edge inCi is positive. Thus, algorithm
1 gives correct answer if the set ofd defectives is a marked set, i.e. every element is
marked.

The probability that algorithm 1 gives correct answer is thus the probability that a
randomd set of columns ofM(m; k; 2) is marked. For a fixedC1, there are

�g(m;k)�1d�1 �
ways to pick the otherd � 1 columns. LetEi be the event thatCi is marked relative to
the otherd� 1 columns, thenp(m; k; d) = P (E1)P (E2jE1)P (E3jE1; E2) : : : � (P (E1))d

To calculateP (E1), we count number of ways to pickd� 1 columns other thanC1
such thatC1 is marked by somee 2 C1. Let Ai be the collection of alld � 1-set of
columns other thanC1 such thatei 2 C1 marksC1 with respect toAi. The answer is
thenjSfAi; 1 � i � kgj. This number can be obtained by applying inclusion-exclusion
principle twice. Dividing it by

�g(m;k)�1d�1 �
gives usP (E1) and proves the theorem. 2

4 Discussions

We have given the constructions of two different classes of pooling designs.M(m; k; d)
has good performance when the number of defectives is rare comparing to the num-
ber of items. Deterministically, a larger ratio of defectives to items is sometime pre-
ferred. Probabilistically, however,M(m; k; 2) could be used to solve theS( �d; n) prob-
lem with very high probability of success. The main strength of this construction is thatM(m;m; d) is d-error-detecting. It also yields the construction of ad-error-correcting
code.Mq(m; k; d) is theq-analogue of the construction given by Macula [8]. An inter-
esting question is: “what is theq-analogue of a matching?”

One could think of several different variations of the matching idea. For example,
a possible generalization is to index the rows (resp. columns) of a matrixM(m; k; d; l)
with all graphs havingd (resp. k) edges whose vertex degrees are� l. M(m; k; d) is
nothing butM(m; k; d; 1). Further investigations in this direction might lead to better
designs.
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Lastly, in reality given a specific problem with certain parameters,m andk has to be
chosen appropriately to suit one’s need. More careful analysis need to be done to help
pick thebestm andk givenn, d and/or any other constraints from practice. We need
some reasonably good asymptotic formulas to estimate them.
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