Technical Report

Department of Computer Science and Engineering University of Minnesota
4-192 EECS Building 200 Union Street SE Minneapolis, MN 55455-0159 USA

TR 00-006

New Constructions of Non-Adaptive and Error-Tolerance Pooling Designs

Hung Q. Ngo and Ding-zhu Du

February 04, 2000

New Constructions of Non-Adaptive and Error-Tolerance Pooling Designs

Hung Q. Ngo* Ding-Zhu Du*

Abstract

We propose two new classes of non-adaptive pooling designs. The first one is guaranteed to be d-error-detecting and thus $\left\lfloor\frac{d}{2}\right\rfloor$-error-correcting given any positive integer d. Also, this construction induces a construction of a binary code with minimum Hamming distance at least $2 d+2$. The second design is the q-analogue of a known construction on d-disjunct matrices.

1 Introduction

The basic problem of group testing is to identify the set of defectives in a large population of items. We assume some testing mechanism exists which if applied to an arbitrary subset of the population gives a negative outcome if the subset contains no defective and positive outcome otherwise. Objectives of group testing vary from minimizing the number of tests, limiting number of pools, limiting pool sizes to tolerating a few errors. It is conceivable that these objectives are often contradicting, thus testing strategies are application dependent.

Group testing algorithms can roughly be divided into two categories : Combinatorial Group Testing (CGT) and Probabilistic Group Testing (PGT). In CGT, it is often assumed that the number of defectives among n items is equal to or at most d for some fixed positive integer d. In PGT, we fix some probability p of having a defective. Group testing strategies can also be either adaptive or non-adaptive. A group testing algorithm is non-adaptive if all tests must be specified without knowing the outcomes of other tests. A group testing algorithm is error tolerant if it can detect or correct some e errors in test outcomes. Test errors could be either $0 \rightarrow 1$, i.e. a negative pool is identified as positive, or $0 \rightarrow 1$ in the contrast.

In this paper, we propose two new classes of non-adaptive and error-tolerance CGT algorithms. Non-adaptive algorithms found its applications in a wide range of practical areas such as DNA library screening [2,5] and multi-access communications [13], etc.

[^0]For a general reference on CGT, the reader is referred to a monograph by Du and Hwang [6]. Ngo and Du [11] gave a survey on non-adaptive pooling designs.

The rest of the paper is organized as follows. Section 2 presents basic definitions, notations and related works. Section 3 provides our results and section 4 concludes the paper.

2 Preliminaries

Throughout this paper, for any positive integer v we shall use $[v]$ to denote $\{1,2, \ldots v\}$. Also, given any set X and $k \in \mathrm{~N}\binom{X}{k}$ denotes the collection of all k-subsets of X.

2.1 The Matrix Representation

Consider a $v \times n 01$-matrix M. Let R_{i} and C_{j} denote row i and column j respectively. Abusing notation, we also let R_{i} (resp. C_{j}) denote the set of column (resp. row) indices corresponding to the 1 -entries. The weight of a row or a column is the number of 1 's it has.

Definition $1 M$ is said to be d-disjunct if the union of any d columns does not contain another column.

A d-disjunct $v \times n$ matrix M can be used to design a non-adaptive group testing algorithm on n items by associating the columns with the items and the rows with the pools to be tested. If $M_{i j}=1$ then item j is contained in pool i (and thus test i). If there are no more than d defectives and the test outcomes are error-free, then it is easy to see that the test outcomes uniquely identify the set of defectives. We simply identify the items contained in negative pools as negatives (good items) and the rest as positives (defected items). Notice that d-disjunct property implies that each set of $\leq d$ defectives corresponds uniquely to a test outcome vector, thus decoding test outcomes involves only a table lookup. The design of a d-disjunct matrix is thus also naturally called a non-adaptive pooling design. We shall use this term interchangeably with the long "non-adaptive combinatorial group testing algorithm".

Let $S(\bar{d}, n)$ denotes the set of all subsets of n items (or columns) with size at most d, called the set of samples. For $s \in S(\bar{d}, n)$, let $P(s)$ denote the union of all columns corresponding to s, i.e. $P(s)=\bigcup_{i \in s} C_{i}$. A pooling design is e-error detecting (correcting) if it can detect (correct) up to e errors in test outcomes. In other words, if a design is e-error detecting then the test outcome vectors form a v-dimensional binary code with minimum Hamming distance at least $e+1$. Similarly, if a design is e-error correcting then the test outcome vectors form a t-dimensional binary code with minimum Hamming distance at least $2 e+1$. The following remarks are simple to see, however useful later on.

Remark 1 Suppose M has the property that for any $s, s^{\prime} \in S(\bar{d}, n), s \neq s^{\prime}, P(s)$ and $P\left(s^{\prime}\right)$ viewed as vectors have Hamming distance $\geq k$. In other words, $\left|P(s) \oplus P\left(s^{\prime}\right)\right| \geq k$
where \oplus denotes the symmetric difference. Then, M is $(k-1)$-error detecting and $\left\lfloor\frac{k-1}{2}\right\rfloor$-error correcting.

Remark $2 M$ being d-disjunct is equivalent to the fact that for any set of $d+1$ distinct columns $C_{j_{0}}, \ldots C_{j_{d}}$ with one column (say $C_{j_{0}}$) designated, $C_{j_{0}}$ has a 1 in some row where all $C_{j_{k}}$'s, $1 \leq k \leq d$ contain 0 's.

2.2 Related Works

Previous works on error-tolerance designs are those of Aigner [1], Muthukrishnan [10], Balding and Torney [3] and Macula [9]. Aigner [1] and Muthukrishnan [10], discussed optimal strategies when $d=1$ and the number of errors is small, although in a slightly more general setting where each test outcome could be q-ary instead of binary. Balding and Torney [3] studied several instances of the problem when $d \leq 2$. In some specific case, they showed that an optimal strategy is possible if and only if certain Steiner system exists. Macula [9] showed that his construction is error-tolerant with high probability.

On construction of disjunct matrices, the most well-known method is to construct the matrix from set packing designs. This method was introduced by Kautz and Singleton [7] in the context of superimposed codes. A $t-(v, k, \lambda)$ packing is a collection \mathcal{F} of k-subsets of $[v]$ such that any t-subset of $[v]$ is contained in at most λ members of \mathcal{F}. By limiting $\lambda=1$, we can construct a d-disjunct matrix from a $t-(v, k, 1)$ packing if $k>d(t-1)$. Little is known about optimal set packing designs except for the case $t<4$ (see, for example, [4,11] for more details). Besides taking results directly from Design Theory, the only other work known on directly constructing d-disjunct matrices is that of Macula [8].

3 Main Results

We first describe our d-disjunct matrices. Given integers $m \geq k>d \geq 1$. A matching of size l (i.e. it has l edges) is called an l-matching.

Definition 2 Let $M(m, k, d)$ be the 01-matrix whose rows are indexed by the set of all d-matchings on $K_{2 m}$, and whose columns are indexed by the set of all k-matchings on $K_{2 m}$. All matchings are to be ordered lexicographically. $M(m, k, d)$ has a 1 in row i and column j if and only if the $i^{\text {th }} d$-matching is contained in the $j^{\text {th }} k$-matching.

For q being a prime power, let F_{q} denotes $G F(q)$. Let $\binom{\mathrm{F}_{q}^{m}}{l}$ denotes the set of all l dimensional subspaces (l-subspaces for short) of the m-dimensional vector space on F_{q}.

Definition 3 Let $M_{q}(m, k, d)$ be the 01-matrix whose rows (resp. columns) are indexed by elements of $\binom{\mathrm{F}_{q}^{m}}{d}$ (resp. $\binom{\mathrm{F}_{q}^{m}}{k}$). We also order elements of these set lexicographically. $M_{q}(m, k, d)$ has a 1 in row i and column j if and only if the $i^{\text {th }} d$-subspace is a subspace of the $j^{\text {th }} k$-subspace of F_{q}^{m}.

We now show that $M(m, k, d)$ and $M_{q}(m, k, d)$ are d-disjunct.
Theorem 1 Let $g(m, l)=\binom{2 m}{2 l} \frac{(2 d)!}{2^{d} d!}, v=g(m, d)$, and $n=g(m, k)$. For $m>k>d \geq$ $1, M(m, k, d)$ is a $v \times n d$-disjunct matrix with row weight $g(m-d, k-d)$ and column weight $g(k, d)$.

Proof. It is easy to see that $g(m, l)$ is the number of l-matchings of $K_{2 m}$. Thus, $M(m, k, d)$ is a $v \times n$ matrix with row weight $g(m-d, k-d)$ and column weight $g(k, d)$.

To show $M(m, k, d)$ is d-disjunct, we recall Remark 2. Consider $d+1$ distinct columns $C_{j_{0}}, C_{j_{1}}, \ldots C_{j_{d}}$ of $M(m, k, d)$. Since all these columns are distinct k-matchings, for each $i, 1 \leq i \leq d$ there exists an edge $e_{i} \in C_{j_{0}} \backslash C_{j_{i}}$. Clearly, there exists a d-matching $R \subset C_{j_{0}}$ which contains all e_{i} 's. We simply add more edges in $C_{j_{0}}$ to $\left\{e_{i}: 1 \leq i \leq d\right\}$ if necessary. Since $R \notin C_{j_{i}}, \forall i \in[d], C_{j_{0}}$ has a 1 in row R where all other $C_{j_{i}}$ contains 0 .

Theorem 2 Let $\left[\begin{array}{c}m \\ l\end{array}\right]_{q}:=\frac{\left(q^{m}-1\right)\left(q^{m-1}-1\right) \ldots\left(q^{m-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \ldots(q-1)}, v=\left[\begin{array}{c}m \\ d\end{array}\right]_{q^{\prime}}$, and $n=\left[\begin{array}{c}m \\ k\end{array}\right]_{q}$. For $m>k>d \geq 1, M_{q}(m, k, d)$ is a $v \times n d$-disjunct matrix with row weight $\left[\begin{array}{c}m-d \\ k-d\end{array}\right]_{q}$ and column weight $\left[\begin{array}{c}k \\ d\end{array}\right]_{q}$.

Proof. It is standard that the Gaussian coefficient $\left[\begin{array}{c}m \\ l\end{array}\right]_{q}$ counts the number of l-subspaces of F_{q}^{m} (see, for example, Chapter 24 of [12]). The weight of any column C of $M_{q}(m, k, d)$ is the number of d-subspaces of C, hence it is $\left[\begin{array}{c}k \\ d\end{array}\right]_{q}$. The weight w of any row R is the number of k-subspaces of F_{q}^{m} which contains the d-subspace R. To show $w=\left[\begin{array}{c}m-d \\ k-d\end{array}\right]_{q}$, we employ a standard trick (double counting). Let $I(m, k, d)$ be the number of ordered tuples $\left(v_{1}, \ldots, v_{k-d}\right)$ of $k-d$ vectors in $\mathrm{F}_{q}^{m} \backslash R$ such that each v_{i} is not in the span of R and other v_{j} 's, $j \neq i$. Notice that $\left|\mathrm{F}_{q}^{m}\right|=q^{m}$ and $|R|=q^{d}$. Counting $I(m, k, d)$ directly, there are $q^{m}-q^{d}$ ways to choose v_{1}, then $q^{m}-q^{d+1}$ ways to choose v_{2} and so on. Thus,

$$
\begin{equation*}
I(m, k, d)=\left(q^{m}-q^{d}\right)\left(q^{m}-q^{d+1}\right) \ldots\left(q^{m}-q^{k-1}\right) \tag{1}
\end{equation*}
$$

Now, $\left(v_{1}, \ldots, v_{k-d}\right)$ can be obtained by first picking a k-subspace C of F_{q}^{m} which contains R in w ways, then $\left(v_{1}, \ldots, v_{k-d}\right)$ is chosen from $C \backslash R$ in $I(k, k, d)$ ways. This yields

$$
\begin{equation*}
I(m, k, d)=w I(k, k, d) \tag{2}
\end{equation*}
$$

Combining (1) and (2) gives $w=\left[\begin{array}{c}c-d \\ k-d\end{array}\right]_{q}$ as desired. The fact that $M_{q}(m, k, d)$ is d disjunct can be shown in a similar fashion to the previous theorem.

The following lemma tells us how to choose k so that the test to item ratio $\left(\frac{v}{n}\right)$ is minimized. The proof is easy to see and we omit it here.

Lemma 1 For $l \in[m]$, we have
(i) The sequence $g(m, l)$ is unimodal and gets its peak at $l=\left\lfloor m-\sqrt{\frac{m+1}{2}}\right\rfloor$.
(ii) The sequence $\left[\begin{array}{c}m \\ l\end{array}\right]_{q}$ is unimodal and gets its peak at $l=\left\lfloor\frac{m}{2}\right\rfloor$.

The following results further explore properties of $M(m, k, d)$. We first need two more definitions.

Definition 4 Let $C_{0}, C_{1}, \ldots C_{d}$ be any $d+1$ distinct columns of $M(m, k, d)$. A dmatching R is said to be private for C_{0} with respect to (wrt for short) $C_{1}, \ldots C_{d}$ if $R \in C_{0} \backslash \bigcup_{j \geq 1} C_{j}$. Let $p\left(C_{0} ; C_{1}, \ldots C_{d}\right)$ denote the number of private d-matchings of C_{0} wrt $C_{1}, \ldots C_{d}$.

Theorem 3 Given $m>d \geq 1$, and any set of $d+1$ distinct columns $C_{0}, C_{1}, \ldots C_{d}$ of $M(m, m, d)$, then $p\left(C_{0} ; C_{1}, \ldots C_{d}\right) \geq d+1$.

Proof. Observe that for $1 \leq j \leq d, C_{0} \cup C_{j}$ is a loopless multigraph which is 2-regular. $C_{0} \cup C_{j}$ consists of cycles with even lengths. Moreover, $C_{0} \neq C_{j}$ implies that $C_{0} \cup C_{j}$ must have a cycle of length at least $d+1$; consequently, $\left|C_{0} \backslash C_{j}\right| \geq 2, \forall j \in[d]$.

Let $E_{i}=C_{0} \backslash C_{i}, i \in[d]$. We can assume $\left|E_{i}\right|=2$, $\forall i$. We just remove edges from E_{i} to reduce its size to be exactly 2 for the ease of analysis. Let G be the graph with $V(G)=C_{0}, E(G)=\left\{E_{1}, \ldots E_{d}\right\}$. Then, G is a simple graph having m vertices and $\leq d$ edges. $|E(G)| \leq d$ because the E_{i} 's are not necessarily distinct. Any d-subset R of C_{0} such that $R \cap E_{i} \neq \emptyset, \forall i$ is a private d-matching of C_{0}. Note that R is nothing but a vertex cover of size d (d-cover for short) of G. To show $p\left(C_{0} ; C_{1}, \ldots C_{d}\right) \geq d+1$, we shall show that the number of d-covers of G is at least 4 . Since adding more edges into G can only decrease the number of d-covers, we also assume that G has exactly d edges.

Decompose G into its connected components. Suppose G_{1}, \ldots, G_{x} are connected components which are not trees, and $G_{1}^{\prime}, \ldots, G_{y}^{\prime}$ are the rest of the components. Isolated points are also considered to be trees. For $i=1, \ldots x$, let $v_{i}=\left|V\left(G_{i}\right)\right|$ and $e_{i}=$ $\left|E\left(G_{i}\right)\right|$. For $i=1, \ldots y$, let $v_{i}^{\prime}=\left|V\left(G_{i}^{\prime}\right)\right|$ and $e_{i}^{\prime}=\left|E\left(G_{i}^{\prime}\right)\right|$. The following equations are straight from the definitions :

$$
\begin{align*}
& \sum_{i=1}^{x} v_{i}+\sum_{i=1}^{y} v_{i}^{\prime}=m \tag{3}\\
& \sum_{i=1}^{x} e_{i}+\sum_{i=1}^{y} e_{i}^{\prime}=d \tag{4}
\end{align*}
$$

hence,

$$
\begin{equation*}
0 \leq \sum_{i=1}^{x} e_{i}-\sum_{i=1}^{x} v_{i}=y-(m-d) \tag{5}
\end{equation*}
$$

Note that for any connected simple graph H, picking any $|V(H)|-1$ vertices out of $V(H)$ gives us a vertex cover. Hence, the number of $(|V(H)|-1)$-covers of H is at least $\binom{|V(H)|}{|V(H)|-1}=|V(H)|$. Now, a d-cover of G could be formed by two methods as follows.
(a) Method 1. For each $i \in[x]$, pick in v_{i} ways a $\left(v_{i}-1\right)$-cover for G_{i}, then cover all other $G_{j}, j \neq i$ with all their vertices. We have used up $\left(\sum_{i=1}^{x} v_{i}\right)-1$ vertices, and need $d-\left(\sum_{i=1}^{x} v_{i}\right)+1$ more to cover all G_{i}^{\prime} 's. Firstly, there should be enough vertices. Indeed,

$$
\sum_{i=1}^{y} v_{i}^{\prime}=m-\sum_{i=1}^{x} v_{i} \geq d+1-\sum_{i=1}^{x} v_{i}
$$

Secondly, to cover all G_{i}^{\prime} 's, we need at most $\sum_{i=1}^{y}\left(v_{i}^{\prime}-1\right)$ vertices. (3) and (5) assure that

$$
\sum_{i=1}^{y}\left(v_{i}^{\prime}-1\right)=m-\sum_{i=1}^{x} v_{i}-y<d+1-\sum_{i=1}^{x} v_{i}
$$

In conclusion, this method gives us at least $\left(\sum_{i=1}^{x} v_{i}\right) d$-covers for G.
(b) Method 2. This time, we are greedier by first taking all vertices in G_{i} 's, $i \in[x]$ to cover them. $a=d-\sum_{i=1}^{x} v_{i}$ vertices are needed to cover the rest. These a vertices can be chosen as follows. For each $(m-d)$-subset Y of [y], cover each $G_{i}^{\prime}, i \in Y$ with $v_{i}^{\prime}-1$ vertices. Cover each $G_{i}^{\prime}, i \notin Y$ using all of its vertices. Indeed, the total number of vertices used is

$$
\sum_{i \in Y}\left(v_{i}^{\prime}-1\right)+\sum_{i \notin Y} v_{i}^{\prime}=\sum_{i \in[y]} v_{i}^{\prime}-|Y|=\left(m-\sum_{i=1}^{x} v_{i}\right)-(m-d)=a
$$

Moreover, obviously there are at least $\prod_{i \in Y} v_{i}^{\prime}$ ways to pick d-covers for each particular Y. In total, noticing that $y \geq m-d \geq 1$, method 2 gives us at least

$$
\begin{aligned}
\sum_{Y \in\binom{[y]}{m-d}} \prod_{i \in Y} v_{i}^{\prime} & =\sum_{Y \in\binom{[y]}{m-d}} \prod_{i \in Y}\left(e_{i}^{\prime}+1\right) \\
& \geq \sum_{i=1}^{y} e_{i}^{\prime}+\binom{y}{m-d} \\
& \geq\left(\sum_{i=1}^{y} v_{i}^{\prime}-y\right)+(y-m+d+1) \\
& =d+1-\sum_{i=1}^{x} v_{i}
\end{aligned}
$$

Hence, Methods 1 and 2 combined yields at least $(d+1)$ private d-matchings of C_{0}.

Corollary 1 Given $m>d \geq 1$, the following holds :
(i) $M(m, m, d)$ is d-error detecting and $\left\lfloor\frac{d}{2}\right\rfloor$-error correcting.
(ii) Moreover, if the number of defectives is known to be exactly d, then $M(m, m, d)$ is $2 d+1$-error-detecting and d-error-correcting.

Proof. For any $s, s^{\prime} \in S(\bar{d}, n), s \neq s^{\prime}$, without loss of generality we can assume there exists $C_{0} \in s \backslash s^{\prime}$. Theorem 3 implies $\left|P(s) \oplus P\left(s^{\prime}\right)\right| \geq d+1$, hence Remark 1 shows (i). If the number of defectives is exactly d, we need to only consider $|s|=\left|s^{\prime}\right|=d$; hence there exists $C_{0} \in s \backslash s^{\prime}$ and $C_{0}^{\prime} \in s^{\prime} \backslash s$. Again, Theorem 3 and Remark 1 yields (ii).

Corollary 2 Given $m>d \geq 1$, then there exists a binary d-error-correcting code of dimension $g(m, d)$ and size $\binom{g(m, m)}{d}$.

Proof. The code can be constructed by taking all the unions of d columns in $M(m, m, d)$.

Borrowing an idea from Macula [9], we get the following algorithm which uses $M(m, k, 2)$ for the at most d defective problem, and show that with very high probability, our algorithm gives the correct answer. Notice that each row of $M(m, k, 2)$ is a 2 matching consisting of some two parallel edges $(e 1, e 2)$ of $K_{2 m}$.

Algorithm 1 Use $M(m, k, 2)$ to design the pools as usual. For each edge $e \in E\left(K_{2 m}\right)$ such that the total number of positive outcomes involving e is $k-1$, i.e. $\mid\{(e, x)$: the test (e, x) is positive $\} \mid=k-1$, identify the item $C=\{e\} \cup\{x:(e, x)$ is positive $\}$ as a defective.

Theorem 4 Algorithm 1 gives correct answer with probability $p(m, k, d)$ where

$$
p(m, k, d) \geq\left[\frac{\sum_{j=1}^{k}(-1)^{j+1}\binom{k}{j}\binom{\sum_{i=0}^{j}(-1)^{i}\binom{j}{i} g(m-i, k-i)}{d-1}}{\binom{g(m, k)-1}{d-1}}\right]^{d}
$$

For example, $p(8,6,9) \geq 98.5 \%$, which means that we could use $M(8,6,2)$ to solve the at most 9 defectives problem with 98.5% of success.
Proof. Given a set of d distinct columns $C_{1}, C_{2}, \ldots C_{d} . e \in E\left(K_{2 m}\right)$ is called a mark of C_{i} if $e \in C_{i}$ but $e \notin C_{j}, j \neq i$, in which case C_{i} is called marked. If C_{i} is marked by e then exactly $k-1$ tests involving e and another edge in C_{i} is positive. Thus, algorithm 1 gives correct answer if the set of d defectives is a marked set, i.e. every element is marked.

The probability that algorithm 1 gives correct answer is thus the probability that a random d set of columns of $M(m, k, 2)$ is marked. For a fixed C_{1}, there are $\binom{g(m, k)-1}{d-1}$ ways to pick the other $d-1$ columns. Let E_{i} be the event that C_{i} is marked relative to the other $d-1$ columns, then

$$
p(m, k, d)=P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1}, E_{2}\right) \ldots \geq\left(P\left(E_{1}\right)\right)^{d}
$$

To calculate $P\left(E_{1}\right)$, we count number of ways to pick $d-1$ columns other than C_{1} such that C_{1} is marked by some $e \in C_{1}$. Let A_{i} be the collection of all $d-1$-set of columns other than C_{1} such that $e_{i} \in C_{1}$ marks C_{1} with respect to A_{i}. The answer is then $\left|\bigcup\left\{A_{i}, 1 \leq i \leq k\right\}\right|$. This number can be obtained by applying inclusion-exclusion principle twice. Dividing it by $\binom{g(m, k)-1}{d-1}$ gives us $P\left(E_{1}\right)$ and proves the theorem.

4 Discussions

We have given the constructions of two different classes of pooling designs. $M(m, k, d)$ has good performance when the number of defectives is rare comparing to the number of items. Deterministically, a larger ratio of defectives to items is sometime preferred. Probabilistically, however, $M(m, k, 2)$ could be used to solve the $S(\bar{d}, n)$ problem with very high probability of success. The main strength of this construction is that $M(m, m, d)$ is d-error-detecting. It also yields the construction of a d-error-correcting code. $M_{q}(m, k, d)$ is the q-analogue of the construction given by Macula [8]. An interesting question is: "what is the q-analogue of a matching?"

One could think of several different variations of the matching idea. For example, a possible generalization is to index the rows (resp. columns) of a matrix $M(m, k, d, l)$ with all graphs having d (resp. k) edges whose vertex degrees are $\leq l . M(m, k, d)$ is nothing but $M(m, k, d, 1)$. Further investigations in this direction might lead to better designs.

Lastly, in reality given a specific problem with certain parameters, m and k has to be chosen appropriately to suit one's need. More careful analysis need to be done to help pick the best m and k given n, d and/or any other constraints from practice. We need some reasonably good asymptotic formulas to estimate them.

References

[1] M. Aigner, Searching with lies, J. Combin. Theory Ser. A, 74 (1996), pp. 43-56.
[2] D. J. Balding, W. J. Bruno, E. Knill, and D. C. Torney, A comparative survey of non-adaptive pooling designs, in Genetic mapping and DNA sequencing (Minneapolis, MN, 1994), Springer, New York, 1996, pp. 133-154.
[3] D. J. Balding and D. C. Torney, Optimal pooling designs with error detection, J. Combin. Theory Ser. A, 74 (1996), pp. 131-140.
[4] T. Beth, D. Jungnickel, and H. Lenz, Design theory, Cambridge University Press, Cambridge, 1986.
[5] W. J. Bruno, E. Knill, D. J. Balding, D. C. Bruce, N. A. Doggett, W. W. Sawhill, R. L. Stallings, C. C. Whittaker, and D. C. Torney, Efficient pooling designs for library screening, Genomics, (1995), pp. 21-30.
[6] D. Z. Du and F. K. Hwang, Combinatorial group testing and its applications, World Scientific Publishing Co. Inc., River Edge, NJ, 1993.
[7] W. H. Kautz and R. C. Singleton, Nonrandom binary superimposed codes, IEEE Trans. Inf. Theory, 10 (1964), pp. 363-377.
[8] A. J. Macula, A simple construction of d-disjunct matrices with certain constant weights, Discrete Math., 162 (1996), pp. 311-312.
[9] ——, Probabilistic nonadaptive group testing in the presence of errors and dna library screening, Annals of Combinatorics, (1999), pp. 61-69.
[10] S. Muthukrishnan, On optimal strategies for searching in presence of errors, in Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (Arlington, VA, 1994), New York, 1994, ACM, pp. 680689.
[11] H. Q. Ngo and D. Z. Du, A survey on combinatorial group testing algorithms with applications to dna library screening, in Proceedings of the DIMACS Workshop on Discrete Mathematical Problems and Medical Applications, Providence, RI, 1999, Amer. Math. Soc.
[12] J. H. van Lint and R. M. Wilson, A course in combinatorics, Cambridge University Press, Cambridge, 1992.
[13] J. K. Wolf, Born again group testing: multiaccess communications, IEEE Transaction on Information Theory, IT-31 (1985), pp. 185-191.

[^0]: *Department of Computer Science and Engineering, University of Minnesota, 200 Union street, EE/CS Building, room 4-192, Minneapolis, MN 55455, USA. e-mail: \{hngo, dzd\}@cs.umn. edu. Support in part by by the National Science Foundation under grant CCR-9530306.

