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Abstract

We propose two new classes of non-adaptive pooling desigmes first one is
guaranteed to bé-error-detecting and thqgj—error—correcting given any positive
integerd. Also, this construction induces a construction of a bineoge with
minimum Hamming distance at leasf 4 2. The second design is tlgeanalogue
of a known construction od-disjunct matrices.

1 Introduction

The basic problem of group testing is to identify the set of defectives in a jpagela-
tion of items. We assume some testing mechanism exists which if appkecetditrary
subset of the population givesnegative outcomé the subset contains no defective
andpositive outcometherwise. Objectives of group testing vary from minimizing the
number of tests, limiting number of pools, limiting pool sizes to tolerating agears.
It is conceivable that these objectives are often contradicting, thus testaiggies are
application dependent.

Group testing algorithms can roughly be divided into two categoriéembinato-
rial Group Testing(CGT) andProbabilistic Group TestindPGT). In CGT, it is often
assumed that the number of defectives ameiitgms is equal to or at mosgtfor some
fixed positive integet. In PGT, we fix some probability of having a defective. Group
testing strategies can also be eithdaptiveor non-adaptive A group testing algorithm
is non-adaptive if all tests must be specified without knowing the outcomes of other
tests. A group testing algorithmesror tolerantif it can detect or correct someerrors
in test outcomes. Test errors could be eithep 1, i.e. a negative pool is identified as
positive, or0 — 1 in the contrast.

In this paper, we propose two new classes of non-adaptive and error-tolerance CGT
algorithms. Non-adaptive algorithms found its applications in a wide range of gahcti
areas such as DNA library screening [2, 5] and multi-access communicfligjngtc.
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For a general reference on CGT, the reader is referred to a monograph by Dwand H
[6]. Ngo and Du [11] gave a survey on non-adaptive pooling designs.

The rest of the paper is organized as follows. Section 2 presents basic desiniti
notations and related works. Section 3 provides our results and section 4 corhbkides

paper.

2 Preliminaries

Throughout this paper, for any positive integere shall usév] to denote{1,2,...v}.
Also, given any seX andk € N () denotes the collection of attsubsets ofX .

2.1 The Matrix Representation

Consider a x n 01-matrix M. Let R; andC; denote rowi and columry respectively.
Abusing notation, we also ldt; (resp.C;) denote the set of column (resp. row) indices
corresponding to thé-entries. Theveightof a row or a column is the number ©F it
has.

Definition 1 M is said to bed-disjunctif the union of any/ columns does not contain
another column.

A d-disjunctv xn matrix M can be used to design a non-adaptive group testing algorithm
onn items by associating the columns with the items and the rows with the pools to be
tested. IfM;; = 1 then item; is contained in poof (and thus test). If there are
no more than/ defectives and the test outcomes are error-free, then it is easy to see
that the test outcomes uniquely identify the set of defectives. We simply fig¢iné
items contained in negative pools masgativeggood items) and the rest a®sitives
(defected items). Notice thdtdisjunct property implies that each set<ofd defectives
corresponds uniquely to a test outcome vector, thus decoding test outcomes involves
only a table lookup. The design of &disjunct matrix is thus also naturally called
a non-adaptive pooling designwWe shall use this term interchangeably with the long
“non-adaptive combinatorial group testing algorithm”.

Let S(d,n) denotes the set of all subsetsroftems (or columns) with size at most
d, called the set ofamples Fors € S(d, n), let P(s) denote the union of all columns
corresponding t@, i.e. P(s) = [ J,., Ci. A pooling design is-error detecting (correct-
ing) if it can detect (correct) up teerrors in test outcomes. In other words, if a design
Is e-error detecting then the test outcome vectors forrrdamensional binary code with
minimum Hamming distance at least- 1. Similarly, if a design is-error correcting
then the test outcome vectors fornt-dimensional binary code with minimum Ham-
ming distance at leage + 1. The following remarks are simple to see, however useful
later on.

Remark 1 Supposell has the property that for any, s’ € S(d,n), s (
P(s") viewed as vectors have Hamming distarck. In otherwords]P( ) (
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where @ denotes the symmetric difference. Théh,is (k — 1)-error detecting and
| 2L |-error correcting.

Remark 2 M beingd-disjunct is equivalent to the fact that for any set/of 1 distinct
columnsCj,, ... C;, with one column (say’;,) designated(’;, has al in some row
where allC},’s, 1 < k < d contain0’s.

2.2 Related Works

Previous works on error-tolerance designs are those of Aigner [1], Muthukrishnan [10],
Balding and Torney [3] and Macula [9]. Aigner [1] and Muthukrishnan [10], discussed
optimal strategies whet = 1 and the number of errors is small, although in a slightly
more general setting where each test outcome couldarg instead of binary. Balding
and Torney [3] studied several instances of the problem when2. In some specific
case, they showed that an optimal strategy is possible if and only ifc&tainer system
exists. Macula [9] showed that his construction is error-tolerant with highatility.

On construction of disjunct matrices, the most well-known method is to congteic
matrix from set packing designsThis method was introduced by Kautz and Singleton
[7] in the context of superimposed codes. tAv, k, \) packing is a collectionF of
k-subsets ofv] such that any-subset ofv] is contained in at most members ofF.

By limiting A = 1, we can construct d-disjunct matrix from a&-(v, k, 1) packing if

k > d(t — 1). Little is known about optimal set packing designs except for the case
t < 4 (see, for example, [4, 11] for more details). Besides taking results lgifecin
Design Theory, the only other work known on directly constructirgjsjunct matrices

is that of Macula [8].

3 Main Results

We first describe oud-disjunct matrices. Given integers > k£ > d > 1. A matching
of sizel (i.e. it hasl edges) is called akhmatching.

Definition 2 Let M (m, k, d) be the01-matrix whose rows are indexed by the set of all
d-matchings onk,,,, and whose columns are indexed by the set of-ailatchings on
K,,,. All matchings are to be ordered lexicographically/ (m, k, d) has al in row i
and columnyj if and only if thei” d-matching is contained in thg" k-matching.

For ¢ being a prime power, Ieff, denotes7F(q). Let (") denotes the set of alt
dimensional subspacesgubspaces for short) of the-dimensional vector space o).

Definition 3 Let A, (m, k, d) be the01-matrix whose rows (resp. columns) are indexed
by elements of 7') (resp. (*)). We also order elements of these set lexicographically.
M,(m, k,d) has al in row and columry if and only if thei’” d-subspace is a subspace
of the ;" k-subspace of".



We now show that\/ (m, k, d) and M, (m, k, d) ared-disjunct.

Theorem 1 Letg(m, 1) = (3" 20 v = g(m,d), andn = g(m, k). Form > k > d >
1, M(m, k,d) is av x n d-disjunct matrix with row weighg(m — d, k — d) and column

weightg(k, d).

Proof. It is easy to see thag(m,[) is the number of-matchings ofK,,. Thus,
M(m, k,d) is av x n matrix with row weightg(m — d, k — d) and column weight
g(k, d).

To show M (m, k,d) is d-disjunct, we recall Remark 2. Considér+ 1 distinct
columnsC;,, Cj,,...C;, of M(m, k, d). Since all these columns are distiretmatchings,
for eachi, 1 < i < d there exists an edge € Cj, \ Cj,. Clearly, there exists a
d-matchingR C Cj, which contains alk;’s. We simply add more edges i;, to
{e; : 1 < i < d}if necessary. Sinc& ¢ C;,, Vi € [d], Cj, has al in row R where all
otherC), contains).

O

m] . (g"=D(g™ " —1)..(¢" 1) _ [m _ [m
Theorem 2 Let [] = "o v = [}], andn = [}] . For
m >k >d>1, My(m,k,d) is av x n d-disjunct matrix with row weigh{7 9] and

q
column weight"]

.
Proof. It is standard that the Gaussian coeﬁici{éﬁ}q counts the number dfsubspaces
of I} (see, for example, Chapter 24 of [12]). The weight of any coldhuf M, (m, k, d)
is the number ofi-subspaces af’, hence it is[’;]q. The weightw of any rowR is the

number ofk-subspaces df?" which contains thé-subspacez. To showw = [lej]q,
we employ a standard trick (double counting). Lét, &, d) be the number of ordered
tuples(vi, ... , v, q) Of k — d vectorsinF}" \ R such that each; is not in the span of
and othew;’s, j # i. Notice thaiF’"| = ¢ and|R| = ¢“. Countingl (m, k, d) directly,
there arg;™ — ¢? ways to choose,, theng™ — ¢%*!' ways to choose, and so on. Thus,

I(m, k,d) = (¢" — ¢ (g™ = ¢"") ... (¢" = ¢" ") (1)

Now, (v, ... ,v;q) can be obtained by first pickingkasubspac€’ of Fi* which con-
tains R in w ways, then(vy, ... ,v;_4) is chosen fromC' \ R in I(k, k,d) ways. This
yields

I(m, k,d) = wl(k, k,d) ()

Combining (1) and (2) gives = [’”’d]q as desired. The fact that,(m, k, d) is d-

k—d
disjunct can be shown in a similar fashion to the previous theorem.
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The following lemma tells us how to chooéeso that the test to item ratig ) is mini-
mized. The proof is easy to see and we omit it here.

Lemma 1l For/ € [m], we have
(i) The sequencg(m, ) is unimodal and gets its peak &t= |m — /™ |.
(i) The sequenc¢;] , is unimodal and gets its peak &t= [ 7 |.

The following results further explore properties/af(m, k, d). We first need two more
definitions.

Definition 4 Let Cy,C4,...C,; be anyd + 1 distinct columns ofV (m, k,d). A d-
matching 2 is said to beprivate for C, with respect to (wrt for shorty’,...Cy if
R € Cy\ U Cj. Letp(Cy;Cy,...Cy) denote the number of privatématchings
of Cy wrt C1,...CYy.

Theorem 3 Givenm > d > 1, and any set ofl + 1 distinct columng’y, C;, ... Cy of
M(m,m,d), thenp(Cyo; Cy,...Cy) > d+ 1.

Proof. Observe that fot < j < d, C, U C} is a loopless multigraph which isregular.
Cy U C; consists of cycles with even lengths. Moreovgy,# C; implies thatC, U C;
must have a cycle of length at least 1; consequentlyiCy \ C;| > 2, V) € [d].

Let £; = Cy \ C;, @ € [d]. We can assumi;| = 2, Vi. We just remove edges from
E; to reduce its size to be exactlyfor the ease of analysis. Lét be the graph with
V(G) = Cy, E(G) = {E4,... E4}. Then,G is a simple graph having: vertices and
< d edges|E(G)| < d because th&;’s are not necessarily distinct. Arjsubsetr of
Cy such thatk N E; # 0, Vi is a privated-matching ofC,. Note thatR is nothing but a
vertex cover of size (d-cover for short) of. To showp(Cy; C4,...Cy) > d + 1, we
shall show that the number dfcovers ofG is at leastl. Since adding more edges into
(G can only decrease the numberwletovers, we also assume tliahas exactlyl edges.

Decompose& into its connected components. Suppése. .. , G, are connected
components which are not trees, &d. . . , GG, are the rest of the components. Isolated
points are also considered to be trees. Fer 1,...z, letv; = |V(G;)| ande; =
E(G;)]. Fori =1,...y, letv; = |V(G))| ande;, = |E(G})|. The following equations
are straight from the definitions :

x

y
Z”“LZ”; = m (3)
i—1 i—1
x

et Y e = @
=1

=1

hence,
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Note that for any connected simple grafh picking any|V (H)| — 1 vertices out of
V(H) gives us a vertex cover. Hence, the numbe(|df(H)| — 1)-covers ofH is at
least viH ) 'V(H)|. Now, ad-cover of G could be formed by two methods as

|V (H)|—
follows.

(a) Method 1 For each € [z], pick inv; ways a(v; — 1)-cover forG;, then cover all
otherG;, j # i with all their vertices. We have used ¢p_; , v;) — 1 vertices,
and need — ("7 , v;) + 1 more to cover all7}’s. Firstly, there should be enough
vertices. Indeed,

Yy T T

Z?);:m—27)i2d+1—27)i

=1 =1 =1

Secondly, to cover all7}’s, we need at most_?_, (v} — 1) vertices.(3) and(5)
assure that

] T T

Z(v;—l):m—Zvi—y<d+l—Zvi

i=1 i=1 =1

In conclusion, this method gives us at le@sl;_, v;) d-covers forG.

(b) Method 2 This time, we are greedier by first taking all verticegdyis, i € [z]
to cover them.a = d — > , v; vertices are needed to cover the rest. These
vertices can be chosen as follows. For eaeh— d)-subsety” of [y], cover each
G',i € Y with v] — 1 vertices. Cover eacty,i ¢ Y using all of its vertices.

Indeed, the total number of vertices used is

T

Z?)—l +ZH—ZU—\Y\ (m — Z?)Z =a

i€y gy i€[y] =1

Moreover, obviously there are at leddt_, v; ways to pickd-covers for each
particularY”. In total, noticing thay > m — d > 1, method 2 gives us at least
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Hence, Methods 1 and 2 combined yields at |¢dst 1) privated-matchings of’j.

Corollary 1 Givenm > d > 1, the following holds :
(i) M(m,m,d)is d-error detecting and £ |-error correcting.

(i) Moreover, if the number of defectives is known to be exattthen M (m, m, d)
is 2d + 1-error-detecting andi-error-correcting.

Proof. For anys, s' € S(d,n),s # s, without loss of generality we can assume there
existsCy € s\ s’. Theorem 3 impliesP(s) @ P(s')| > d + 1, hence Remark 1 shows
(). If the number of defectives is exactlly we need to only consideés| = |s'| = d;
hence there exists; € s\ s’ andCj € 5"\ s. Again, Theorem 3 and Remark 1 yields
(i1).

O

Corollary 2 Givenm > d > 1, then there exists a binamrerror-correcting code of
dimensiory(m, d) and size(?"™;™).

Proof. The code can be constructed by taking all the uniomsomlumns inM (m, m, d).

O

Borrowing an idea from Macula [9], we get the following algorithm which uses
M (m, k, 2) for the at mostl defective problem, and show that with very high probability,
our algorithm gives the correct answer. Notice that each row/o¢fn, k, 2) is a 2-
matching consisting of some two parallel edges e2) of Ky,,.

Algorithm 1 Use M (m, k, 2) to design the pools as usual. For each edge F(K3,,)
such that the total number of positive outcomes involving & — 1, i.e. |{(e,z) :
the test(e, x) is positive}| = k£ — 1, identify the itenC' = {e} U{x : (e, z) is positive}
as a defective.



Theorem 4 Algorithm 1 gives correct answer with probabilitym, &, d) where

SNSRIl Eheol 1 ()stm—ik=) I
p(m”“’d){ By )}

For examplep(8, 6,9) > 98.5%, which means that we could udé(s, 6, 2) to solve the

at most9 defectives problem with8.5% of success.

Proof. Given a set ofl distinct columns”;, Cy, ... Cy. e € E(K,,) is called a mark of
C;if e € C; bute ¢ C;, j # i, in which case’; is called marked. IU; is marked bye
then exactlyk — 1 tests involvinge and another edge ifi; is positive. Thus, algorithm

1 gives correct answer if the set @fdefectives is a marked set, i.e. every element is
marked.

The probability that algorithm 1 gives correct answer is thus the probability that a
randomd set of columns of\/ (m, k, 2) is marked. For a fixed';, there are(g(mdfi’l)
ways to pick the othetl — 1 columns. LetE; be the event that; is marked relative to
the otherd — 1 columns, then

p(m, k,d) = P(E,)P(Ey|E\)P(Es|Ey, Bs) ... > (P(E)))"

To calculateP(E;), we count number of ways to piek— 1 columns other than’
such that”; is marked by some € (. Let A; be the collection of all — 1-set of
columns other thad’, such thate; € C; marksC, with respect tod;. The answer is
then| [ J{A4;,1 < i < k}|. This number can be obtained by applying inclusion-exclusion
principle twice. Dividing it by(g(";fffl) gives usP(E;) and proves the theorem.

4 Discussions

We have given the constructions of two different classes of pooling desigs, &, d)
has good performance when the number of defectives is rare comparing to the num-
ber of items. Deterministically, a larger ratio of defectives taris is sometime pre-
ferred. Probabilistically, however/ (m, k, 2) could be used to solve th#(d, n) prob-
lem with very high probability of success. The main strength of this consbrucgithat
M (m,m,d) is d-error-detecting. It also yields the construction of-arror-correcting
code. M, (m, k, d) is theg-analogue of the construction given by Macula [8]. An inter-
esting question is: “what is theanalogue of a matching?”

One could think of several different variations of the matching idea. For example
a possible generalization is to index the rows (resp. columns) of a nidifix, &, d, [)
with all graphs havingl (resp. k) edges whose vertex degrees aré. M (m, k,d) is
nothing butM (m, k,d, 1). Further investigations in this direction might lead to better
designs.



Lastly, in reality given a specific problem with certain parameterandk has to be
chosen appropriately to suit one’s need. More careful analysis need to be done to help
pick thebestm andk givenn, d and/or any other constraints from practice. We need
some reasonably good asymptotic formulas to estimate them.
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