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1 IntroductionAn assignment for a Boolean function of n variables can be considered as a binary string oflength n, i.e., a string in f0; 1gn. An assignment x of Boolean function f(x) is called a truth-assignment if f(x) = 1, and false-assignment if f(x) = 0. We denote by truth(x) and false(x)respectively sets of variables with value 1 and with value 0 in the assignment x.For two assignments of a Boolean function f(x1; x2; � � � ; xn), say, x = (x1; x2; � � � ; xn) andy = (y1; y2; � � � ; yn), if xi � yi for all i, then we write x � y. A Boolean function f(x) isincreasing if f(x) = 1 and x � y imply f(y) = 1, and decreasing if f(y) = 1 and x � yimply f(x) = 1, monotone if it is either increasing or decreasing. f(x) is nontrivial if it is not aconstant function.A decision tree of a Boolean function f is a rooted binary tree, whose nonleaf vertices arelabeled by its variables, and leaves are labeled by 0 and 1. Edges of this binary tree are alsolabeled by 0 and 1 such that edges from an non-leaf vertex to its two children are labeled by 0and 1 respectively, and every variable appears at most once in a path from the root to a leaf.Given an assignment to variables of a Boolean function f(x1; x2; � � � ; xn), we can compute thefunction value of f by its decision tree as follows: starting from the root, we look at its label. Ifits label is xi, then we make a decision according to the value of xi, to decide where we go. Ifxi = 0, then we go to the next vertex along the edge with label 0; if xi = 1, then we go to thenext vertex along the edge with label 1. Once a leaf is reached, the function value for the givenassignment is obtained from the label of the leaf.Each decision tree of f gives an algorithm to compute the function value. The computationtime depends on the length of root-leaf path that is the number of variables on the path. Thedepth of a decision tree is the maximum length of all paths from the root to leaves.A Boolean function generally has many decision trees. We denote by D(f) the minimumdepth of all decision trees computing Boolean function f . D(f) is called the decision treecomplexity of f . Clearly, D(f) � n if f has n variables. f(x1; � � � ; xn) is said to be elusive ifD(f) = n.The decision tree complexity is closely related to several other combinatorial and complexityissues, such as the certi�cate complexity (see [1]), the block sensitivity ([2]), the packing ofgraphs (see [3]), and the time-complexity of a CREW PRAM (see [2]).A group G of permutations on f1; 2; � � � ; ng is called transitive if for any i; j 2 f1; 2; � � � ; ng,there exists � 2 G such that �(i) = j. Let f(x1; x2; � � � ; xn) be a Boolean function and G be agroup of permutations on f1; 2; � � � ; ng. f(x1; x2; � � � ; xn) is said to be invariant under group Gif for any � 2 G, f(x1; x2; � � � ; xn) = f(x�(1); x�(2); � � � ; x�(n)):A Boolean function f(x1; x2; � � � ; xn) is said to be weakly symmetric if there exists a transitivepermutation group G on f1; 2; � � � ; ng such that f(x1; x2; � � � ; xn) is invariant under G. There isan interesting conjecture on monotone weakly symmetric Boolean functions.2



Rivest-Vuillemin Conjecture (1975): Any nontrivial monotone weakly symmetric Booleanfunction f(x1; x2; � � � ; xn) is elusive.Rivest and Vuillemin [11] proved that this conjecture is true when n is a prime power.1 Gaoet al [6, 7] showed that Rivest-Vuillemin conjecture is true for n = 6; 10. In this paper, we showthat Rivest-Vuillemin Conjecture is true for n = 12. The proof involves some new techniquesdeveloped based on some facts on permutation groups.2 PreliminaryAn abstract complex � on a �nite set X is a family of subsets of X, such that if A is a member of�, so is every subset of A. Each member of � is called a face of �. A maximal face of abstractcomplex � is a face that is not contained by another face. A free face is a non-maximal facethat is contained by only one maximal face. An elementary collapse is an operation that deletesa free face together with all faces containing it. An abstract complex � is collapsible if it canbe collapsed to the empty abstract complex through a sequence of elementary collapses.The complex of a monotone Boolean function f(x1; x2; � � � ; xn) is an abstract complex de�nedby �f = ( ffalse(x) j f(x) = 1g; if f is increasingftruth(x) j f(x) = 1g; if f is decreasing:Each vertex of �f is a variable of f . The following can be found in [9].Lemma 2.1 Let f be a nontrivial monotone Boolean function. If f is not elusive, then �f iscollapsible.For an abelian group G, an abstract complex � is G-acyclic if the homology groups of �under G are H0(�; G) = G; i = 0;Hi(�; G) = 0; i > 0:The following can be found in [9].Lemma 2.2 If � is collapsible, then � is Zp-acyclic.The following follows immediately from Lemma 2.1 and Lemma 2.2.Corollary 2.1 Let f be a nontrivial monotone Boolean function. If f is not elusive, then �fis Zp-acyclic.1Actually, they proved that if f(0; � � � ; 0) 6= f(1; � � � ; 1) and n is a prime power, then weakly symmetric Booleanfunction f(x1; � � � ; xn) is elusive. They also made a conjecture for general n with condition f(0; � � � ; 0) 6= f(1; � � � ; 1)instead of monotoneness. Illies in 1978 found a counterexample for Rivest-Vuillemin's original conjecture (see [5]).Current Rivest-Vuillemin conjecture is a modi�cation suggested by this counterexample.3



The Euler characteristic of an abstract complex � is de�ned by�(�) = XA2�;A 6=;(�1)jAj�1 = XA2�(�1)jAj�1 + 1;in particular, �(f;g) = 0 and de�ne �(;) = 1.A permutation � on the vertex set of an abstract complex � is called an automorphism of �,if for each face A 2 �, �(A) = f�(a) j a 2 Ag is still a face of �. Every invariant permutationof Boolean function f induces an automorphism of �f .Let G be a group of automorphisms on �, an orbit of G is a minimal subset of vertices of� which is closed under actions of G. Clearly, G has only one orbit on � if and only if G istransitive on vertices of �.De�ne�G = ffH1; � � � ;Hkg j H1; � � � ;Hk are orbits of G, and H1 [ � � � [Hk 2 �g [ f;g:�G is an abstract complex (see [5]).For p and q primes, denote by Yqp the class of �nite groupsG with normal subgroups P /H/G,such that P is of p-power order, the quotient group G=H is of q-power order, and the quotientgroup H=P is cyclic; denote by Yp the class of �nite groups G with normal p-subgroups P / Gsuch that the quotient group G=P is cyclic. The following lemma comes from [10].Lemma 2.3 Let G be a group of automorphisms on a collapsible abstract complex �.(1) If G is a cyclic group or G 2 Yp for some prime p, then �(�G) = 1.(2) If G 2 Yqp for some primes p and q, then �(�G) � 1 (mod q).The following lemma follows from previous ones.Lemma 2.4 If a nontrivial monotone Boolean function f has a transitive cyclic invariant groupor has a transitive invariant group in Yp or in Yqp , then f is elusive.Proof. Let G be a group that meets the conditions of the current lemma, then G has only oneorbit in �f since it is transitive. This orbit cannot be a face of �f . In fact, if it is a face, thenthe monotonicity of f forces that f must be a constant, contradicting the hypothesis that f isnontrivial. Thus, �Gf = f;g and �(�Gf ) = 0. By Lemma 2.3, �f is not collapsible. By Lemma2.1, f is elusive. 2This lemma will be used extensively together with many facts on group theory in the nextsection, such as facts about block systems. For a transitive permutation group G on a set 
,a partition (
1; � � � ;
k) of 
 is called a block system of G if each 
i is transformed to some
j under the action of any element of G. G is primitive if G has no nontrivial block system;otherwise, G is imprimitive. 4



For simplicity, all involved terminologies and concepts on group theory are employed fromthe same reference [4] while results come from di�erent sources.3 Main ResultIn this section, we prove the following main result.Main Theorem. Every nontrivial monotone weakly symmetric Boolean function f(x1; x2; � � � ; xn)is elusive when n = 12.To prove it, we �rst show some lemmas.Lemma 3.1 [13] Any transitive permutation group of twelve degree contains one of followingminimal transitive groups as its subgroup:T1 = h(1; 3; 5; 7; 9; 11; 2; 4; 6; 8; 10; 12)i;T2 = h(1; 6; 9; 2; 5; 10)(3; 8; 11; 4; 7; 12); (1; 7)(2; 8)(3; 9)(4; 10)(5; 11)(6; 12)i;T3 = h(1; 10; 5; 2; 9; 6)(3; 12; 7; 4; 11; 8); (1; 3)(2; 4)(5; 11)(6; 12)(7; 9)(8; 10)i;T4 = h(1; 6; 9; 2; 5; 10)(3; 8; 11; 4; 7; 12); (1; 3; 2; 4)(5; 11; 6; 12)(7; 10; 8; 9)i;T5 = h(1; 9; 5)(2; 10; 6)(3; 11; 7)(4; 12; 8); (1; 12; 7)(2; 11; 8)(3; 10; 5)(4; 9; 6)i;T6 = h(1; 8; 11)(2; 7; 12)(3; 5; 10)(4; 6; 9); (1; 9; 7; 4; 11; 5)(2; 10; 8; 3; 12; 6)i;T7 = h(1; 4)(2; 3)(5; 12)(6; 11)(7; 10)(8; 9); (1; 11; 7)(2; 12; 8)(3; 10; 6)(4; 9; 5)i;T8 = h(1; 8; 4; 10)(2; 7; 3; 9)(5; 12; 6; 11); (1; 3; 6)(2; 4; 5)(7; 12; 10)(8; 11; 9)i;T9 = h(1; 2)(3; 4)(5; 7; 6; 8)(9; 11; 10; 12); (1; 11; 6)(2; 12; 5)(3; 10; 8)(4; 9; 7)i;T10 = h(1; 7)(2; 8)(3; 9; 5; 11)(4; 10; 6; 12); (1; 6; 3; 2; 5; 4)(7; 8)(9; 10)(11; 12)i;T11 = h(1; 9)(2; 10)(3; 11)(4; 12)(5; 7)(6; 8); (1; 6; 3; 2; 5; 4)(7; 10)(8; 9)(11; 12)i;T12 = h(1; 11; 3; 10)(2; 12)(4; 7)(5; 8; 6; 9); (1; 4; 10; 7; 2; 6; 11; 9)(3; 5; 12; 8)i;T13 = h(1; 5; 3; 4)(2; 6)(7; 12; 9; 11)(8; 10); (1; 8)(2; 9; 3; 7)(4; 11)(5; 10; 6; 12)i;T14 = h(1; 5; 12; 2; 6; 11)(3; 8; 10; 4; 7; 9); (1; 7; 11; 2; 8; 12)(3; 6; 10; 4; 5; 9)i;T15 = h(1; 9; 6; 12; 2; 10; 5; 11)(3; 8; 4; 7); (1; 2)(5; 6)(7; 12; 10)(8; 11; 9)i;T16 = h(1; 12; 5; 3; 11; 6; 2; 10; 7)(4; 9; 8); (1; 3; 2)(5; 8; 6)(9; 11; 12)i;T17 = h(1; 7)(2; 9; 3; 8)(4; 11; 6; 10; 5; 12); (1; 4; 2; 6; 3; 5)(7; 12; 8; 11)(9; 10)i;where h�; �i denotes the group generated by permutations � and �. All of these groups areimprimitive groups and their orders are as follows:group : T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17order : 12 12 12 12 12 24 24 36 48 72 72 72 72 96 576 576 2592Lemma 3.2 T2; T3 2 Y2.Proof. For T2, considerH = h(1; 7)(2; 8)(3; 9)(4; 10)(5; 11)(6; 12)i= f(1); (1; 7)(2; 8)(3; 9)(4; 10)(5; 11)(6; 12)g:5



Note that H is a normal subgroup of T2 and the quotient groupT2=H �= h(1; 6; 9; 2; 5; 10)(3; 8; 11; 4; 7; 12)i:Thus, T2 2 Y2.T3 2 Y2 can be shown similarly. 2Lemma 3.3 T4 2 Y3.Proof. Denote a = (1; 6; 9; 2; 5; 10)(3; 8; 11; 4; 7; 12)b = (1; 3; 2; 4)(5; 11; 6; 12)(7; 10; 8; 9):Then T4 = ha; bi = f(1); a; a2; a3; a4; a5; b; b3; ab; ba; a�1b�1; b�1a�1g:Consider H = ha2i = f(1); a2; a�2g:It is easy to verify that(1) H is a normal subgroup of T4,(2) jHj = 3, and(3) T4=H �= hbi.Therefore, T4 2 Y3. 2Lemma 3.4 T5 2 Y2.Proof. Denote a = (1; 9; 5)(2; 10; 6)(3; 11; 7)(4; 12; 8)b = (1; 12; 7)(2; 11; 8)(3; 10; 5)(4; 9; 6):Then T5 = ha; bi = f(1); a; b; a2; b2; ab; ba; a2b; ab2; a2b2; b2a2; a2bab2g:Consider H = f(1); a2bab2; a2b; ab2g:Note that a�1 = a2, b�1 = b, a2b = b2a and ab2 = ba2. It is easy to verify the following:(1) H is a normal subgroup of T5.(2) jHj = 4:(3) T5=H �= hai.Thus, T5 2 Y2. 26



Lemma 3.5 T6 2 Y2.Proof. Denote a = (1; 8; 11)(2; 7; 12)(3; 5; 10)(4; 6; 9)b = (1; 9; 7; 4; 11; 5)(2; 10; 8; 3; 12; 6):Then T6 = ha; bi= f(1); a; a2; b; b2; b3; b4; b5; ab; ab2; ab3; ab4; ab5; a2b; a2b2; a2b3; a2b4;ba; ba2; b2a2; b4a; b4a2; b5a; ab2a; ab5agand the following equalities can be derived by simple computations:a�1 = a; b�1 = b5; ab3 = b3a; ab4 = b2a2; b4a = a2b2; a2b3 = b3a2;a2b5 = ba; b5a2 = ab; (b2a2)(a2b2) = (a2b2)(b2a2) = (ab)(ba):ConsiderH = f(1); (1; 2)(3; 4)(5; 6)(7; 8); (1; 2)(3; 4)(9; 10)(11; 12); (5; 6)(7; 8)(9; 10)(11; 12)g= f(1); a2b2; b2a2; (a2b2)(b2a2)gThe following can be veri�ed easily by using above equalities:(1) H is a normal subgroup of T6;(2) jHj = 4;(3) T6=H �= hbi:Therefore, T6 2 Y2. 2Lemma 3.6 T7 2 Y22Proof. Denote a = (1; 4)(2; 3)(5; 12)(6; 11)(7; 10)(8; 9)b = (1; 11; 7)(2; 12; 8)(3; 10; 6)(4; 9; 5):Then T7 = ha; bi= f(1); a; b; b2 ; ab; ab2; ba; b2a; (ab)2; (ba)2; (ab)(ba); aba; bab; b2ab; bab2; b2ab2;b2aba; abab2; ab2ab; bab2a; ab2aba; abab2a; (ab)2(ba)2; a(ab)2(ba)2gand the following equalities can be derived by simple computations:a�1 = a; b�1 = b2; (ab)�1 = b2a; (ba)�1 = ab2; (ba)(ab) = b2;ab = (b2a)3; (ab)2 = (b2a)2; (ab)3 = b2a; ba = (ab2)3; (ba)2 = (ab2)2;(ba)3 = ab2; babab = ab2a; (bab)2 = (ab)2(ba)2 = a(bab)2a:7



LetH = hb; abai= f(1); b; b2; aba; (aba)2; (aba)b; b(aba); b2(aba); (aba)b2; b(aba)2; (aba)2b; (aba)b2(aba)g= f(1); (1; 2)(3; 4)(5; 6)(7; 8); (1; 2)(3; 4)(9; 10)(11; 12); (5; 6)(7; 8)(9; 10)(11; 12);(1; 11; 7)(2; 12; 8)(3; 10; 6)(4; 9; 5); (1; 7; 11)(2; 8; 12)(3; 6; 10)(4; 5; 9);(1; 11; 8)(2; 12; 7)(3; 10; 5)(4; 9; 6); (1; 8; 11)(2; 7; 12)(3; 5; 10)(4; 6; 9);(1; 12; 7)(2; 11; 8)(3; 9; 6)(4; 10; 5); (1; 7; 12)(2; 8; 12)(3; 6; 9)(4; 5; 10);(1; 12; 8)(2; 11; 7)(3; 9; 5)(4; 10; 6); (1; 8; 12)(2; 7; 11)(3; 5; 9)(4; 6; 10)gand P = f(1); abab; baba; (abab)(baba)g= f(1); (1; 2)(3; 4)(5; 6)(7; 8); (1; 2)(3; 4)(9; 10)(11; 12); (5; 6)(7; 8)(9; 10)(11; 12)g:Using above equalities, we can verify the following :(1) H is a normal subgroup of T7 and P is a normal subgroup of H;(2) jP j = 4;(3) jT7=Hj = 2;(4) H=P �= hb2i.Thus, T7 2 Y22 . 2Lemma 3.7 T8 2 Y3.Proof. Denote a = (1; 8; 4; 10)(2; 7; 3; 9)(5; 12; 6; 11)b = (1; 3; 6)(2; 4; 5)(7; 12; 10)(8; 11; 9):Then T8 = ha; bi= f(1); a; a2; a3; b; b2; ab; a2b; a3b; ab2; a2b2; a3b2; ba; ba3; b2a; b2a3;bab; bab2; ba3b; b2ab2; b2ab; b2a3b; (ab)2; (a3b)2; (ab2)2; (a3b2)2;(a2b2)(ab)2; (ab)(a3b); (a3b)(ab); a3b2ab2; a3ba; aba3; ab2a; aba; ba3b2; a2bab2g;and the following equalities can be derived by simple computations:a�1 = a3; b�1 = b2; a2 = ba2b = b2a2b2; b = a2b2a2; b2 = a2ba2; a2b2 = ba2;b2a2 = a2b; (ab)�1 = b2a3; (ba)�1 = a3b2; (ab2)�1 = ba3; (b2a)�1 = a3b:Let H = f(1); b; b2; a3ba; aba3; aba3b3; a3bab; aba3b; a3bab2g= f(1); (1; 3; 6)(2; 4; 5)(7; 12; 10)(8; 11; 9); (1; 6; 3)(2; 5; 4)(7; 10; 12)(8; 9; 11);(1; 3; 6)(2; 4; 5)(7; 10; 12)(8; 9; 11); (1; 6; 3)(2; 5; 4)(7; 12; 10)(8; 11; 9);(1; 3; 6)(2; 4; 5); (1; 6; 3)(2; 5; 4); (7; 10; 12)(8; 9; 11); (7; 12; 10)(8; 11; 9)g:8



Then one can verify the following with above equalities:(1) H is a normal subgroup of T8;(2) jHj = 9;(3) T8=H �= hai.Thus, T8 2 Y3. 2The following two lemmas can be found in [14].Lemma 3.8 Let G be an imprimitive group. Suppose 
1, 
2, � � �, 
s form a block system ofG. Each element g of G induces a permutation on this block system:�g =  
1 
2 � � � 
s
g1 
g2 � � � 
gs ! :Denote Q = f�g j g 2 Gg. Then Q is a group of permutations of degree s.Lemma 3.9 Let G be an imprimitive group. Suppose 
1;
2; � � � ;
s form a block system of G.Assume that Q is de�ned in Lemma 3.8 and H = fg 2 G j 
gi = 
i; i = 1; 2; � � � ; sg. Then H /Gand G=H �= Q.Lemma 3.10 T9 2 Y2.Proof. Let a = (1; 2)(3; 4)(5; 7; 6; 8)(9; 11; 10; 12)b = (1; 11; 6)(2; 12; 5)(3; 10; 8)(4; 9; 7):Then T9 = ha; bi. It can be easily veri�ed that
1 = f1; 2; 3; 4g;
2 = f5; 6; 7; 8g;
3 = f9; 10; 11; 12gform a block system of T9. The generators a and b of T9 induce respectively a permutation onf
1;
2;
3g: �a : 
1 ! 
1;
2 ! 
2;
3 ! 
3:�b : 
1 ! 
3;
2 ! 
1;
3 ! 
2:Obviously, �a = (1) and �b = (1; 3; 2). Since every permutation g in T9 can be written as aproduct of powers of a and b, the induced permutation �g on f
1;
2;
3g can be written as aproduct of powers of �a and �b. Therefore, Q = f�gjg 2 T9g = h�a; �bi = h�bi:By Lemma 3.1, T9 is an imprimitive group. By Lemma 3.9, there exists a subgroup H suchthat H / T9 and T9=H �= Q. jHj = jT9j=jQj = 24 since jT9j = 48 and jQj = 3. Moreover, Q is acyclic group. Thus, T9 2 Y2. 2The following two lemmas can be found in [12].9



Lemma 3.11 Any group of prime order is cyclic.Lemma 3.12 Any subgroup with index 2 is a normal subgroup.Lemma 3.13 T10; T11; T12; T13 2 Y23 .Let a10 = (1; 7)(2; 8)(3; 9; 5; 11)(4; 10; 6; 12)b10 = (1; 6; 3; 2; 5; 4)(7; 8)(9; 10)(11; 12)a11 = (1; 9)(2; 10)(3; 11)(4; 12)(5; 7)(6; 8)b11 = (1; 6; 3; 2; 5; 4)(7; 10)(8; 9)(11; 12)a12 = (1; 11; 3; 10)(2; 12)(4; 7)(5; 8; 6; 9)b12 = (1; 4; 10; 7; 2; 6; 11; 9)(3; 5; 12; 8)a13 = (1; 5; 3; 4)(2; 6)(7; 12; 9; 11)(8; 10)b13 = (1; 8)(2; 9; 3; 7)(4; 11)(5; 10; 6; 12):Then T10 = ha10; b10i, T11 = ha11; b11i, T12 = ha12; b12i, and T13 = ha13; b13i. It is easy to verifythat 
1 = f1; 3; 5g;
2 = f2; 4; 6g;
3 = f7; 9; 11g;
4 = f8; 10; 12gform a block system of T10 and T11, and
01 = f1; 2; 3g;
02 = f4; 5; 6g;
03 = f7; 8; 9g;
04 = f10; 11; 12gform a block system of T12 and T13.The generators a10 and b10 of T10 induce following permutations on f
1;
2;
3;
4g asfollows: �a10 : 
1 ! 
3;
2 ! 
4;
3 ! 
1;
4 ! 
2:�b10 : 
1 ! 
2;
2 ! 
1;
3 ! 
4;
4 ! 
3:That is, �a10 = (1; 3)(2; 4) and �b10 = (1; 2)(3; 4).The generators a11 and b11 of T11 induce following permutations on f
1;
2;
3;
4g:�a11 : 
1 ! 
3;
2 ! 
4;
3 ! 
1;
4 ! 
2:�b11 : 
1 ! 
2;
2 ! 
1;
3 ! 
4;
4 ! 
3:That is, �a11 = (1; 3)(2; 4) and �b11 = (1; 2)(3; 4).The generators a12 and b12 of T12 induce the following permutations on f
01;
02;
03;
04g:�a12 : 
01 ! 
04;
02 ! 
03;
03 ! 
02;
04 ! 
01:10



�b12 : 
01 ! 
02;
02 ! 
04;
03 ! 
01;
04 ! 
03:That is, �a12 = (1; 4)(2; 3) and �b12 = (1; 2; 4; 3).The generators a13 and b13 of T13 induce the following permutations on f
01;
02;
03;
04g:�a13 : 
01 ! 
02;
02 ! 
01;
03 ! 
04;
04 ! 
03:�b13 : 
01 ! 
03;
02 ! 
04;
03 ! 
01;
04 ! 
02:That is, �a13 = (1; 2)(3; 4) and �b13 = (1; 3)(2; 4).Since every permutation g in Ti can be generated by ai and bi, the induced permutation �gcan be generated by �ai and �bi ( i = 10; 11; 12; 13 ). Thus,Q10 = f�g j g 2 T10g = h�a10 ; �b10i = f(1); (1; 2)(3; 4); (1; 3)(2; 4); (1; 4)(2; 3)g;Q11 = f�g j g 2 T11g = h�a11 ; �b11i = f(1); (1; 3)(2; 4); (1; 2)(3; 4); (1; 4)(2; 3)g;Q12 = f�g j g 2 T12g = h�a12 ; �b12i = f(1); (1; 4)(2; 3); (1; 2; 4; 3); (1; 3; 2; 4)g;Q13 = f�g j g 2 T13g = h�a13 ; �b13i = f(1); (1; 2)(3; 4); (1; 3)(2; 4); (1; 4)(2; 3)g:All Qi for i = 10; 11; 12; 13 are groups of order 4.For i = 10; 11; 12; 13, Ti is imprimitive by Lemma 3.1. By Lemma 3.9, there exists an normalsubgroup Hi / Ti such that Ti=Hi �= Qi. Moreover, the facts that jTij = 72 and jQij = 4 implythat jHij = 18. Since 18 = 2 � 32, Hi has a Sylow subgroup Ki of order 32. By Lemma 3.12,Ki is a normal subgroup of Hi. Since jHi=Kij = 2, Hi=Ki is a cyclic group by Lemma 3.11.Therefore, Ti 2 Y23 for i = 10; 11; 12; 13. 2Lemma 3.14 T14 2 Y2.Proof. Let a = (1; 5; 12; 2; 6; 11)(3; 8; 10; 4; 7; 9)b = (1; 7; 11; 2; 8; 12)(3; 6; 10; 4; 5; 9)Then T14 = ha; bi. It is easy to verify that
1 = f1; 2; 3; 4g;
2 = f5; 6; 7; 8g;
3 = f9; 10; 11; 12gform a block system of T14. The generators a and b of T14 induce following permutations onf
1;
2;
3g: �a : 
1 ! 
2;
2 ! 
3;
3 ! 
1:�b : 
1 ! 
2;
2 ! 
3;
3 ! 
1:That is, �a = �b = (1; 2; 3). Since every permutation g of T14 can be generated by a and b, theinduced permutation �g can be generated by �a and �b.Q = f�g j g 2 T14g = h�a; �bi = h�ai;11



which is a cyclic group of order 3.Since T14 is imprimitive, by Lemma 3.9 there exists an normal subgroup H / T14 such thatT14=H �= Q. Moreover, jT14j = 96 and jQj = 3 imply that jHj = 25. Therefore, T14 2 Y2. 2The following two lemmas can be found in [10].Lemma 3.15 If a p-group P acts on the �nite complex �, then �(�P ) � �(�) (mod p), andif � is Zp-acyclic, so is �P :Lemma 3.16 Suppose Zn acts on the �nite Q-acyclic complex �. Then �(�Zn) = 1:Lemma 3.17 Let f(x1; x2; � � � ; x12) be a nontrivial monotone Boolean function, invariant underthe action of T15. If f is not elusive, then �(�T15f ) � 1 (mod 3).Proof. Let a = (1; 9; 6; 12; 2; 10; 5; 11)(3; 8; 4; 7)b = (1; 2)(5; 6)(7; 12; 10)(8; 11; 9):Then T15 = ha; bi. It is easy to verify that
1 = f1; 2; g;
2 = f3; 4g;
3 = f5; 6g;
4 = f7; 8g;
5 = f9; 10g;
6 = f11; 12gform a block system of T15. The generators a and b of T15 induce following permutations onf
1;
2;
3;
4;
5;
6g:�a : 
1 ! 
5;
2 ! 
4;
3 ! 
6;
4 ! 
2;
5 ! 
3;
6 ! 
1:�b : 
1 ! 
1;
2 ! 
2;
3 ! 
3;
4 ! 
6;
5 ! 
4;
6 ! 
5:That is, �a = (1; 5; 3; 6)(2; 4) and �b = (4; 6; 5). Since every permutation g of T15 can be generatedby a and b, �g can be generated by �a and �b. Hence,Q = f�gjg 2 T15g= h�a; �bi= f(1); (12)(45); (12)(46); (12)(56); (13)(45); (13)(46); (13)(56); (23)(45); (23)(46); (23)(56);(123); (132); (456); (465); (1; 2; 3)(456); (123)(465); (132)(456); (132)(465);(1425)(36); (1524)(36); (1426)(35); (1624)(35); (1435)(26); (1534)(26); (1436)(25);(1634)(25); (1526)(34); (1625)(34); (1536)(24); (1635)(24); (14)(2536); (14)(2635);(15)(2436); (15)(2634); (16)(2435); (16)(2534)g;which is a group of order 36.Since T15 is imprimitive, by Lemma 3.9 there exists a normal subgroup H / T15 such thatT15=H �= Q. Moreover, jT15j = 576 and jQj = 36 imply jHj = 24. LetK = h(123); (456)i= f(1); (123); (132); (456); (123)(456); (123)(465); (132)(456); (132)(465)g:12



Then K / Q, jKj = 9, jQ=Kj = 4, and Q=K �= h(1536)(24)i.If f is not elusive, then � is Z2-acyclic by Corollary 2.1. Since H and Q=K are of 2-powerorder, �H and thus (�H)Q=K are Z2-acyclic by Lemma 3.15. By Lemmas 3.15 and 3.16, wehave�(�T15) = �((�H)T15=H) = �((�H)Q) = �(((�H)Q=K)K) � �((�H)Q=K) = 1 (mod 3): 2The next lemma can be found in [8].Lemma 3.18 Suppose that G is a group of order pqt, where p and q are primes, then G haseither a normal subgroup of order qt or a normal subgroup of order pqt�1:Lemma 3.19 Let f(x1; x2; � � � ; x12) be a nontrivial monotone Boolean function, invariant underthe action of T16. If f is not elusive, then �(�T16f ) � 1 (mod 3).Proof. Let a = (1; 12; 5; 3; 11; 6; 2; 10; 7)(4; 9; 8)b = (1; 3; 2)(5; 8; 6)(9; 11; 12):Then T16 = ha; bi. It is easy to verify that
1 = f1; 2; 3; 4g;
2 = f5; 6; 7; 8g;
3 = f9; 10; 11; 12gform a block system of T16. The generators a and b of T16 induce following permutations onf
1;
2;
3g: �a : 
1 ! 
3;
2 ! 
1;
3 ! 
2:�b : 
1 ! 
1;
2 ! 
2;
3 ! 
3:That is, �a = (1; 2; 3) and �b = (1). Since every permutation g of T16 can be generated by a andb, �g can be generated by �a and �b. Thus,Q = f�gjg 2 T16g = h�a; �bi = h�ai;which is a cyclic group of order 3.Since T16 is imprimitive, by Lemma 3.9 there exists a normal subgroup H1 / T16 such thatT16=H1 �= Q. Moreover, jT16j = 576 and jQj = 3 imply that jH1j = 192 = 3 � 26. By Lemma3.18, there exists a normal subgroup H2 of H1 such that either jH2j = 26 and jH1=H2j = 3 orjH2j = 3 � 25 and jH1=H2j = 2. In the former case, T16 2 Y32 , and by Lemmas 2.1 and 2.3,�(�T16f ) � 1 (mod 3). In the latter case, applying Lemma 3.19 to H2, we can �nd there existsa normal subgroup H3 of H2 such that either jH3j = 25 and jH2=H3j = 3 or jH3j = 3� 24 andjH2=H3j = 2. Repeating this process, we can �nally reach one of the following cases:13



(1) For some integer k with 7 > k > 2, there exists a normal subgroup chainT16 . H1 . H2 . � � � . Hk�1 . Hksuch thatjT16=H1j = 3; jHi=Hi+1j = 2(i = 1; 2; � � � ; k � 2); jHk�1=Hkj = 3 and jHkj = 28�k(2) there exists a normal subgroup chainT16 . H1 . H2 . H3 . H4 . H5 . H6 . H7such that jT16=H1j = 3, jHi=Hi+1j = 2 (i = 1; 2; � � � ; 6) and jH7j = 3:In the former case, �(�T16f ) = �((�H1f )T16=H1) � �(�H1f ) (mod 3) by Lemma 3.15. Moreover,since f is not elusive, �f is Z2-acyclic by Corollary 2.1. Denote�1 = ((�H1=H2f )H2=H3 � � �)Hk�2=Hk�1 :Then �1 is Z2-acyclic by Lemma 3.15, and�(�H1f ) = �((((�H1=H2f )H2=H3 � � �)Hk�2=Hk�1)Hk�1) = �(�Hk�11 ):Furthermore, �(�Hk�1f ) = 1 by Lemma 2.3 since Hk is a normal 2-subgroup of Hk�1 andHk�1=Hk is a cyclic group of order 3. Thus, �(�T16f ) � 1 (mod 3).In the latter case, �(�T16f ) = �((�H1f )T16=H1) � �(�H1f ) (mod 3) by Lemma 3.15. If f is notelusive, then �f is Z2-acyclic by Corollary 2.1. Denote�1 = (((((�H1=H2f )H2=H3)H3=H4)H4=H5)H5=H6)H6=H7 :Then �1 is Z2-acyclic by Lemma 3.15 since jHi=Hi+1j = 2 (i = 1; 2; � � � ; 6). Thus,�(�H1f ) = �(((((((�H1=H2f )H2=H3)H3=H4)H4=H5)H5=H6)H6=H7)H7) = �(�H71 ):Moreover, �(�H71 ) = 1 by Lemma 3.16 since H7 is cyclic. This implies �(�T16f ) � 1 (mod 3).2Lemma 3.20 Suppose G acts on the �nite Zp-acyclic complex �. If there exists a sequence ofsubgroups P / H / G such that(1) G=H is of q-power order,(2) H=P is of p-power order, and(3) P is cyclic,then �(�G) � 1 (mod q). 14



Proof. Since � is Zp-acyclic and H=P is of p-power order, �H=P is Zp-acyclic by Lemma 3.15.Denote �1 = �H=P , then �1 is Zp-acyclic and hence Q-acyclic. By Lemma 3.16, �(�P1 ) = 1.This, combined with Lemma 3.15, shows that�(�G) = �((�H)G=H) � �(�H) = �((�H=P )P ) = �(�P1 ) = 1 (mod q): 2Lemma 3.21 Let f(x1; x2; � � � ; x12) be a nontrivial monotone Boolean function, invariant underthe action of T17. If f is not elusive, then �(�T17f ) � 1 (mod 2).Proof. Let H = h(1; 2; 3); (4; 5; 6); (7; 8; 9); (10; 11; 12)i:It is easy to verify that H / T17 and jHj = 34: Moreover, jT17j = 25 � 34. Thus, jT17=Hj = 25.Denote P = h(123)i. Clearly, P / H, jP j = 3, and jH=P j = 33. Furthermore, P is cyclic byLemma 3.11. By Corollary 2.1 and Lemma 3.21, �(�T17f ) � 1 (mod 2). 2Now we can prove our main theorem as follows.Proof of Main Theorem. Let f(x1; x2; � � � ; x12) be a nontrivial monotone weakly symmet-ric Boolean function. By the de�nition of weakly symmetry, there exists a transitive permutationgroup G on f1; 2; � � � ; 12g such that f is invariant under G. By Lemma 3.1, G contains a transi-tive subgroup isomorphic to one of Ti for i = 1; 2; � � � ; 17, denoted by T . Note that T1 is cyclic.When T = Ti for i = 1; � � � ; 14, by Lemma 2.4 and Lemmas 3.2-3.14, f is elusive.When T = Ti (i = 15; 16; 17), T has only one orbit on �f since it is transitive. This orbitcannot be a face of �f . Otherwise, the monotonicity of f forces f being a constant, contradictingthat f is nontrivial. Thus, �Tf = f;g and �(�Tf ) = 0. On the other hand, if f is not elusive,then by Lemmas 3.17, 3.19, and 3.21, �(�Tf ) � 1 (mod p) where p = 2 or 3, a contradiction.24 DiscussionRivest-Vuillemin conjecture is showed to be true for nontrivial monotone Boolean functions of12 variables. The proof involves many facts about permutation groups. With those facts, weestablished two new techniques which are used in dealing with groups Ti for i = 9; � � � ; 17.References[1] I. Wegener, The Complexity of Boolean Functions, Wcley-Teubner Series in Comp. Sci.,(New York{Stuttgart, 1987).[2] N. Nisan, CREW PRAM's and decision trees, SIAM J. Computing, 6 (1991) 999-1007.15
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