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Abstract

A partially ordered set is r-thick if every nonempty open interval
contains at least r elements. This paper studies the flag vectors of
graded, r-thick posets and shows the smallest convex cone containing
them is isomorphic to the cone of flag vectors of all graded posets. It
also defines a k-analogue of the Möbius function and k-Eulerian posets,
which are 2k-thick. Several characterizations of k-Eulerian posets are
given. The generalized Dehn-Sommerville equations are proved for flag
vectors of k-Eulerian posets. A new inequality is proved to be valid
and sharp for rank 8 Eulerian posets.

Résumé

Un ensemble partiellement ordonné est r-épais si chacun de ses
intervals ouverts non-vides contient au moins r éléments. Dans cet
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article nous étudions les vecteurs f drapeau des ensembles partielle-
ment ordonnés gradués r-épais. Nous démontrons que le cône le plus
petit contenant ces vecteurs est isomorphe au cône des vecteurs f
drapeau des ensembles partiellement ordonnés gradués quelconques.
Nous définissons aussi un k-analogue de la fonction de Möbius et
des ensembles partiellement ordonnés k-Eulériens qui sont 2k-épais.
Nous caractérisons les ensembles partiellement ordonnés Eulériens de
plusieurs manières, et montrons la généralisation des équations de
Dehn-Sommerville pour le vecteur f drapeau d’un ensemble partielle-
ment ordonné k-Eulérien. Nous montrons une nouvelle inegalité opti-
male pour les ensembles partiellement ordonnés Eulériens de rang 8.

1 Introduction

In this paper we study certain classes of graded partially ordered sets (posets),
defined by conditions on the sizes of rank sets in intervals. We are concerned
with numerical parameters of the posets, in particular, flag vectors and the
Möbius function.

A graded poset P is a finite partially ordered set with a unique minimum
element 0̂, a unique maximum element 1̂, and a rank function ρ : P −→ N
satisfying ρ(0̂) = 0, and ρ(y) − ρ(x) = 1 whenever y ∈ P covers x ∈ P .
The rank ρ(P ) of a graded poset P is the rank of its maximum element.
Given a graded poset P of rank n+1 and a subset S of {1, 2, . . . , n} (which
we abbreviate as [1, n]), define the S–rank–selected subposet of P to be the
poset

PS = {x ∈ P : ρ(x) ∈ S} ∪ {0̂, 1̂}.

Denote by fS(P ) the number of maximal chains of PS . Equivalently, fS(P ) is
the number of chains x1 < · · · < x|S| in P such that {ρ(x1), . . . , ρ(x|S|)} = S.
(Call such a chain an S-chain of P .) The vector (fS(P ) : S ⊆ [1, n]) is
called the flag f -vector of P . Whenever it does not cause confusion, we
write fs1 ... sj rather than f{s1,...,sj}; in particular, f{i} is always denoted fi.

In the last twenty years there has grown a body of work on numerical
conditions on flag vectors of posets and complexes, especially those arising
in geometric contexts. A major recent contribution is the determination of
the closed cone of flag vectors of all graded posets by Billera and Hetyei
([5]). In [3] the authors study the closed cone of flag vectors of Eulerian
posets. These are graded posets for which every (closed) interval has the
same number of elements of even rank and of odd rank.

A poset is r-thick if every nonempty open interval has at least r elements.
Thus, every poset is 1-thick, and Eulerian posets are 2-thick. In the first
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part of this paper we show that the closed cone of flag vectors of r-thick
posets is linearly equivalent to the Billera-Hetyei cone, the closed cone of
flag vectors of all graded posets.

The second part of the paper defines a k-analogue of the Möbius func-
tion and k-Eulerian posets (which are 2k-thick). We show that the general-
ized Dehn-Sommerville equations of [1] transfer to k-Eulerian posets. These
equations have a particularly nice representation in terms of the Lk-vector,
introduced here as a relative of the cd-index. The results of this paper can be
used to find inequalities valid for flag vectors of Eulerian posets. In the last
section we give as an example a new, sharp inequality for rank 8 Eulerian
posets.

Part I

r-thick posets

2 Flag vectors of arbitrary graded posets

We describe first the cone of flag vectors of all graded posets. This is due
to Billera and Hetyei ([5]).

An interval system on [1, n] is any set of subintervals of [1, n] that form
an antichain (that is, no interval is contained in another). A set S ⊆ [1, n]
blocks the interval system I if it has a nonempty intersection with every
I ∈ I. The family of all subsets of [1, n] blocking I is denoted by B[1,n](I).
The main result of [5] is the following.

Theorem 2.1 An expression
∑

S⊆[1,n] aSfS(P ) is nonnegative for all graded
posets P of rank n+ 1 if and only if

∑

S∈B[1,n](I)

aS ≥ 0 for every interval system I on [1, n]. (1)

Here is an outline of the proof from [5]. The proof of the necessity of the con-
dition (1) involves constructing for every interval system I on {1, 2, . . . , n}
a family of posets {P (n,I, N) : N ∈ N} of rank n+ 1 such that

lim
N−→∞

1

f[1,n](P (n,I, N))

∑

S⊆[1,n]

aSfS(P (n,I, N))) =
∑

S∈B[1,n](I)

aS .

For the other implication, let P be an arbitrary graded poset, and assume
that its Hasse-diagram is drawn in the plane. Given an interval [x, y] of P , let
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φ(x, y) denote the leftmost atom in [x, y]. (If y covers x then set φ(x, y) = y.)
The operation φ has the following crucial property:

if p ∈ [x, y] ⊆ [x, z] and p = φ([x, z]) then p = φ([x, y]). (2)

For every S ⊆ [1, n] and i ∈ [1, n] defineMS(i) to be the smallest j ∈ [i, n+1]
such that j ∈ S ∪ {n+ 1} Consider the set of maximal chains

FS =
{

0̂ = p0 < p1 < · · · < pn < pn+1 = 1̂ : ∀i ∈ [1, n], pi = φ([pi−1, pMS(i)])
}

.

It is easy to verify that FS contains exactly fS(P ) elements. Moreover,
there is a way of associating a family of intervals IC to every maximal chain
C = {0̂ = p0 < p1 < · · · < pn < pn+1 = 1̂} such that C belongs to FS if and
only if S blocks IC . The fact that one may find such a family of intervals is
a direct consequence of property (2).

3 Flag vectors of r-thick posets

It is easy to expand any graded poset to obtain an r-thick poset. Let P be
a graded poset of rank n+ 1. Write DrP for the poset obtained from P by
replacing every x ∈ P \{0̂, 1̂} with r elements x1, x2, . . . xr, such that 0̂ and
1̂ remain the minimum and maximum elements of the partially ordered set,
and xi < yj if and only if x < y in P . The poset DrP is an r-thick graded
poset of rank n+ 1. Clearly fS(D

rP ) = r|S|fS(P ).

Theorem 3.1 For every positive integer r,
∑

S⊆[1,n] aSfS(P ) ≥ 0 for every

graded poset P of rank n + 1 if and only if
∑

S⊆[1,n] aSr
n−|S|fS(Q) ≥ 0 for

every r-thick poset Q of rank n+ 1.

Proof: First assume
∑

S⊆[1,n] aSr
n−|S|fS(Q) ≥ 0 for every r-thick poset Q

of rank n+1. Let P be any graded poset of rank n+1. Since DrP is r-thick,

0 ≤
∑

S⊆[1,n]

aSr
n−|S|fS(D

rP )

=
∑

S⊆[1,n]

aSr
n−|S|r|S|fS(P )

=
∑

S⊆[1,n]

aSr
nfS(P ).

Dividing by rn gives the desired inequality for all graded posets.
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Now assume
∑

S⊆[1,n] aSfS(P ) ≥ 0 for every graded poset P of rank
n+ 1. Let Q be an r-thick poset of rank n+ 1. For each rank i, fix a total
order of the elements of Q of rank i. Given an interval [x, y] of Q of rank at
least 2, let φ(x, y) denote the set of the first r atoms in [x, y]. (If y covers
x, set φ(x, y) = {y}.)

The operation φ satisfies the following:

if p ∈ [x, y] ⊆ [x, z] and p ∈ φ([x, z]) then p ∈ φ([x, y]). (3)

Let

FS =
{

0̂ = p0 < p1 < · · · < pn < pn+1 = 1̂ : ∀i ∈ [1, n], pi ∈ φ([pi−1, pMS(i)])
}

.

How many sequences are in the set FS? Given any S-chain of Q, extend it to
sequences in FS one rank at a time. Having fixed p0 through pi−1 (1 ≤ i ≤
n), if i 6∈ S, then there are exactly r choices for pi. Thus |FS | = rn−|S|fS(Q).

To each maximal chain C: 0̂ = p0 < p1 < · · · < pn < pn+1 =
1̂ of Q is assigned an interval system as follows. For 1 ≤ i ≤ n, let
ψ(C, i) be the largest j such that pi ∈ φ(pi−1, pj). Let I ′

C = {[i, ψ(C, i)] :
1 ≤ i ≤ n, ψ(C, i) 6= n+ 1}, and let IC be the interval system consisting of
minimal intervals in I ′

C . We show C belongs to FS if and only if S blocks
IC . Suppose C: 0̂ = p0 < p1 < · · · < pn < pn+1 = 1̂ is in FS . Then for all
i, pi ∈ φ([pi−1, pMS(i)]), so by the maximality of ψ(C, i), ψ(C, i) ≥ MS(i).
So for all i the interval [i, ψ(C, i)] contains the element MS(i) of S. Thus
S blocks IC . For the reverse implication, suppose C is a maximal chain of
Q and S blocks IC . Let 1 ≤ i ≤ n and [i, ψ(C, i)] ∈ IC . Since S blocks
IC , S ∩ [i, ψ(C, i)] contains an element s. So MS(i) ≤ s ≤ ψ(C, i). Apply
condition (3): pi ∈ [pi−1, pMS(i)] ⊆ [pi−1, pψ(C,i)] and pi ∈ φ([pi−1, pψ(C,i)]),
so pi ∈ φ([pi−1, pMS(i)

]). Thus C is in FS .
Given a system of intervals I denote by fI the number of those maximal

chains C of Q for which IC = I. (Note that fI depends not only on Q but
also on the ordering of the elements of each rank.) Then

∑

S⊆[1,n]

aSr
n−|S|fS(Q) =

∑

S⊆[1,n]

aS |FS | =
∑

S⊆[1,n]

aS
∑

S∈B[1,n](I)

fI

=
∑

I

fI
∑

S∈B[1,n](I)

aS.

By Theorem 2.1 the sums
∑

S∈B[1,n](I)
aS are all nonnegative, and so

∑

S⊆[1,n]

aSr
n−|S|fS(Q) ≥ 0. ✷
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Let Cr,n+1 be the smallest closed convex cone containing the flag vectors
of all r-thick posets of rank n+ 1.

Corollary 3.2 For all positive integers q and r, the invertible linear trans-
formation αq,r : Q2n → Q2n defined by αq,r((xS)) = ((r/q)|S|xS) maps
Cq,n+1 onto Cr,n+1.

To determine if a graded poset is r-thick, it is enough to check that
between every x and y with x < y and ρ(y) − ρ(x) = 2, there are at least
r elements. The definition of r-thick posets can then be generalized by
allowing the lower bound r to vary through the levels of the poset. The
results of this section have straightforward analogues in that context.

Part II

k-Eulerian posets

4 The k-Möbius function

Definition 1 The Möbius function of a graded poset P is defined recur-
sively for any subinterval of P by the formula

µ([x, y]) =

{

1 if x = y,
−

∑

x≤z<y µ([x, z]) otherwise.

A graded poset P is Eulerian if the Möbius function of every interval
[x, y] is given by µ([x, y]) = (−1)ρ(x,y).

(Here ρ(x, y) = ρ([x, y]) = ρ(y)− ρ(x).)
See [9] for a survey of Eulerian posets. The first characterization of all

linear equalities holding for the flag vectors of all Eulerian posets was given
by Bayer and Billera in [1].

Theorem 4.1 (Bayer and Billera) For every Eulerian poset of rank n+ 1,
every subset S ⊆ [1, n], and every maximal interval [i, ℓ] of [1, n] \ S,

(

(−1)i−1 + (−1)ℓ+1
)

fS(P ) +
ℓ

∑

j=i

(−1)jfS∪{j}(P ) = 0.

Furthermore, every linear equality holding for the flag vector of all Eulerian
posets of rank n+ 1 is a consequence of these equations.
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Next we present generalizations of the Möbius function and of Eulerian
posets.

Definition 2 The k-Möbius function of a graded poset is defined recursively
by the formula

µk([x, y]) =

{

1 if x = y,
−1− 1

k

∑

x<z<y µk([x, z]) otherwise.

The following proposition gives the k-Möbius function of a poset P as
a k-analogue of the reduced Euler characteristic of the order complex of
P . It is a generalization of Philip Hall’s theorem, and is easy to prove by
induction.

Proposition 4.2 If P is a graded poset of rank n+ 1, then

µk(P ) = −
∑

S⊆[1,n]

(−
1

k
)|S|fn+1

S (P ).

A graded poset is k-Eulerian if for every interval [x, y] ⊆ P , µk([x, y]) =
(−1)ρ(x,y). Note that 1-Eulerian is the same as Eulerian. The following
proposition follows easily from the definitions.

Proposition 4.3 If P is a k-Eulerian poset of rank n+ 1, then

1. every interval of P is k-Eulerian

2.
n
∑

i=1

(−1)i−1fi(P ) = k(1 − (−1)n)

The thickening operation introduced in Section 3 connects the k-Möbius
function for different values of k.

Proposition 4.4 Let [x, y] be an interval of a graded poset P and ℓ a posi-
tive integer. Consider an interval [xi, yj] ⊆ DℓP corresponding to [x, y] ⊆ P .
Then

µk([x, y]) = µkℓ([xi, yj]).

Proof: Recall that fS(D
ℓP ) = ℓ|S|fS(P ). Since the interval [xi, yj ] of D

ℓP
is isomorphic to Dℓ[x, y], the result is obtained by substitution in Proposi-
tion 4.2. ✷

Corollary 4.5 A poset P is k-Eulerian if and only if DℓP is kℓ-Eulerian.
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In [3] a half-Eulerian poset was defined to be a poset P for which D2P is
Eulerian.

Using Proposition 4.4 we can determine exactly the set of those k’s for
which k-Eulerian posets exist.

Theorem 4.6 For every positive integer n, there exists a k-Eulerian poset
of rank n + 1 if and only if k = j/2 for some positive integer j. Moreover,
every k-Eulerian poset is 2k-thick.

Proof: The chain C of rank n+1 is half-Eulerian. For every positive integer
j, DjC is a j/2-Eulerian poset. On the other hand, by the definition of the
function µk, for an interval [x, y] of rank 2 in a k-Eulerian poset,

(−1)2 = µk([x, y]) = −1− 1/k
∑

x<z<y

µ1/k([x, z]) = −1−
1

k

∑

x<z<y

(−1).

Therefore 2k is the number of elements z strictly between x and y. Thus, if
P is a k-Eulerian poset, then 2k is a positive integer, and P is 2k-thick. ✷

It is easy to check by induction that a graded poset is half-Eulerian
if and only if (1) in every interval [x, y] with ρ(x, y) odd, the number of
elements of even rank equals the number of elements of odd rank; and (2) in
every interval [x, y] with ρ(x, y) even, the number of elements z with ρ(x, z)
even is one more than the number of elements z with ρ(x, z) odd. This
characterization can be used to check that the following “vertical doubling”
of an arbitrary graded poset produces a half-Eulerian poset. Let P be any
graded poset with relation ≺P . Form the set Q = {0̂, 1̂} ∪ {x1, x2 : x ∈
P \ {0̂, 1̂}}. Define a relation ≺Q on Q by u ≺Q v if and only if one of the
following holds:

• u = 0̂, v ∈ P \ {0̂}
• v = 1̂, u ∈ P \ {1̂}
• u = x1 and v = x2 for some x ∈ P \ {0̂, 1̂}
• u = xi and v = yj for some x, y ∈ P \ {0̂, 1̂}, with x ≺P y.

If P is a rank n+1 graded poset, then the resulting poset Q is a rank 2n+1
half-Eulerian poset.

For larger k, not all k-Eulerian posets are obtained by the thickening
operation. For an example, consider the poset P of rank n + 1 ≥ 3 having
elements x1, x2, . . . , xm of rank 1, elements y1, y2, . . . , ym of rank 2, with
xi < yj if and only if i = j, and one element of each other rank. It is easy
to check that P is half-Eulerian, and so D2kP is k-Eulerian. In the Hasse
diagram of D2kP , the subgraph induced by the elements of ranks 1 and 2
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consists of m copies of the complete bipartite graph K2k,2k. Replace this
subgraph by any other 2k-regular bipartite graph on these elements. The
resulting graph is the Hasse diagram of another k-Eulerian poset. (Note
that the only relations changed in the poset are those between rank 1 and
rank 2 elements.)

The definition of k-Eulerian, like that of r-thick, can be generalized by
varying the multiplier k with the rank of the elements. The results of this
and the next section can easily be adapted for such posets.

5 The flag L
k-vector

A certain transformation of the flag f -vector was useful in [8], [5], and [3].
It has a natural adaptation to the k-Eulerian setting.

Definition 3 The flag Lk-vector of a graded partially ordered set P of rank
n+ 1 is the vector (Lk,n+1

S (P ) : S ⊆ [1, n]), where

Lk,n+1
S (P ) = (−1)n−|S|

∑

T⊇[1,n]\S

(

−
1

2k

)|T |

fn+1
T (P ).

For k = 1/2 this is the ℓ-vector of [5]; for k = 1 this is the “ce-index” of [8]
and the L-vector of [3]. The formula inverts to give

fn+1
S (P ) = (2k)|S|

∑

T⊆[1,n]\S

Lk,n+1
T (P ). (4)

The Lk-vector ignores the effect of the operator Dℓ. If P is a graded poset
of rank n+ 1, then

Lkℓ,n+1
S (DℓP ) = Lk,n+1

S (P ). (5)

A set S ⊆ [1, n] is even if S is a disjoint union of intervals of even

cardinality. The parameters Lk,n+1
S for even sets S play a special role for

k-Eulerian posets. The k-analogue of Theorem 4.1 is the following.

Theorem 5.1 For every k-Eulerian poset P of rank n + 1, every subset
S ⊆ [1, n], and every maximal interval [i, ℓ] of [1, n] \ S,

k
(

(−1)i−1 + (−1)ℓ+1
)

fS(P ) +
ℓ

∑

j=i

(−1)jfS∪{j}(P ) = 0.

Every linear equality holding for the flag vector of all k-Eulerian posets of
rank n+ 1 is a consequence of these equations.

In Lk-vector form, these equations are equivalent to the set of equations
Lk,n+1
S (P ) = 0 for all subsets S ⊆ [1, n] that are not even.
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Call these equations the generalized Dehn-Sommerville equations, and de-
note by DSk,n+1 the resulting subspace of R2n .

Proof: The fact that the equations (in flag f -vector form) hold for all k-
Eulerian posets follows from Proposition 4.3. Fix a set S with gap [i, ℓ]. For
each S-chain identify the rank i−1 element x and rank ℓ+1 element y, and
apply equation (2) to the interval [x, y]. Sum the resulting equations for all
the S-chains.

Convert the flag f -vector equations using equation (4). Writing V =
[1, n] \ S and dividing by 2|S|k|S|+1, the result is

(

(−1)i−1 + (−1)ℓ+1
)

∑

T⊆V

Lk,n+1
T + 2

ℓ
∑

j=i

(−1)j
∑

T⊆V \{j}

Lk,n+1
T = 0. (6)

From this we prove by induction that Lk,n+1
V (P ) = 0 (abbreviated as LV = 0)

for all noneven sets V . Let V ⊆ [1, n] be any noneven set, and let [i, ℓ] be
an odd maximal interval of V . Equation (6) gives

∑

T⊆V

LT +
ℓ

∑

j=i

(−1)j−i+1
∑

T⊆V \{j}

LT = 0. (7)

If T is a noneven proper subset of V , then by the induction assumption,
LT = 0. So consider an even subset T ⊆ V . Since the maximal intervals of
T contained in [i, ℓ] are even, [i, ℓ]\T = {j1, j2, . . . , jt}, where t is odd, j1− i
is even, and, for 2 ≤ p ≤ t, jp−jp−1 is odd. Thus, for 1 ≤ p ≤ t, jp−i+1 has
the same parity as p. The coefficient of LT in (7) is 1 +

∑t
p=1(−1)jp−i+1 =

1 +
∑t
p=1(−1)p = 0. So equation (7) reduces to LV = 0.

Conversely, suppose LV = 0 for all noneven sets V ⊆ [1, n]. We show
that the equations in (6) hold. Let V ⊆ [1, n] and [i, ℓ] a maximal inter-
val of V . For ℓ − i even, we need to prove equation (7). (The case of
ℓ − i odd is similar, and is omitted.) It suffices to consider the terms LT
with T an even set. For such T , [i, ℓ] \ T = {j1, j2, . . . , jt} as above, with
t odd, and jp − i + 1 ≡ p (mod 2). So the coefficient in (7) of LT is
1 +

∑t
p=1(−1)jp−i+1 = 1 +

∑t
p=1(−1)p = 0. Thus equation (7) holds.

To complete the proof, it suffices to show that the linear span of the Lk-
vectors of k-Eulerian posets of rank n+1 is the subspace of R2n determined
by the equations Lk,n+1

S (P ) = 0 for all subsets S ⊆ [1, n] that are not even.
This can be accomplished by finding a set of linearly independent vectors
in the span of the Lk-vectors of k-Eulerian posets, one vector for each even
subset S ⊆ [1, n]. In [5] Billera and Hetyei constructed, for each interval
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system I, a sequence of graded posets P (n,I, N). The construction starts
with a rank n + 1 chain, and replicates intervals of ranks in the poset. For
an even set S, let I[S] be the set of maximal intervals in S. (For example,
for S = {1, 3, 4, 7, 8, 9, 10}, I[S] = {[1], [3, 4], [7, 10]}.) If S is an even subset
of [1, n], then P (n,I[S], N) is half-Eulerian for all N . Furthermore, the
sequence of L1/2-vectors of these posets satisfies the following. Here m is
the number of intervals in I[S].

lim
N−→∞

1

Nm
L
1/2,n+1
T (P (n,I[S], N)) =

{

(−1)j if T is the union of j intervals of S,
0 otherwise.

(See [3] for details.) Using (5), we get for any positive integer 2k,

lim
N−→∞

1

Nm
Lk,n+1
T

(

D2kP (n,I[S], N)
)

=

{

(−1)j if T is the union of j intervals of S,
0 otherwise.

For fixed k the limiting Lk-vectors for each even interval system I[S] are
linearly independent, since for each even set S, the vector formed from the
sequence (P (n,I[S], N)) has T -entry 0 for all T not containing S. ✷

A flag vector can by chance lie in the subspace DSk,n+1 without the
poset being k-Eulerian. However, k-Eulerian posets are characterized by
the equations holding locally. The k = 1 case of this is in [3]. The proof
requires the convolution of flag operators, defined by Kalai [7] (see also
[6]). It is defined for the flag numbers by fmS ∗ fnT = fm+n

S∪{m}∪(T+m), and is

extended by bilinearity to linear combinations. For pm+1 and qn+1 linear
combinations of chain operators in ranks m+1 and n+1, respectively, their
convolution on a rank m+ n poset P satisfies

pm+1 ∗ qn+1(P ) =
∑

x∈P
ρ(x)=m

pm+1([0̂, x])qn+1([x, 1̂]).

Convolution behaves nicely on the flag Lk-vector. For a rank m + n + 2
poset P ,

Lk,m+1
S ∗Lk,n+1

T (P ) =
∑

x∈P
ρ(x)=m+1

Lk,m+1
S ([0̂, x])Lk,n+1

T ([x, 1̂]) = 2kLk,m+n+2
S∪(T+m+1)(P ).

(8)

Theorem 5.2 A graded partially ordered set P is k-Eulerian if and only if

for every interval [x, y] ⊆ P of positive even rank L
k,ρ(x,y)
[1,ρ(x,y)−1]([x, y]) = 0.
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Proof: Since every interval of a k-Eulerian partially ordered set is k-

Eulerian, Theorem 5.1 gives that L
k,ρ(x,y)
[1,ρ(x,y)−1]([x, y]) = 0 for all intervals

[x, y] of positive even rank.
Now assume that for every interval [x, y] of positive even rank,

L
k,ρ(x,y)
[1,ρ(x,y)−1]([x, y]) = 0. Then by equation (8), for every interval [x, y] ⊆ P

and for every S ⊆ [1, ρ(x, y) − 1] that is not even, L
k,ρ([x,y])
S ([x, y]) = 0.

For P of rank n+ 1, by Proposition 4.2,

µk(P ) = −
∑

S⊆[1,n]

(−
1

k
)|S|fn+1

S (P ) = −
∑

S⊆[1,n]

(−
1

k
)|S|(2k)|S|

∑

T⊆[1,n]\S

Lk,n+1
T (P )

= −
∑

T⊆[1,n]

Lk,n+1
T (P )

∑

S⊆[1,n]\T

(−2)|S| = −
∑

T⊆[1,n]

Ln+1
T (P )(−1)n−|T |.

Since Lk,n+1
T (P ) is nonzero only if T is an even set, and then |T | is an even

number,

µk(P ) = (−1)n+1
∑

T⊆[1,n]

Ln+1
T (P ) = (−1)n+1fn+1

∅ (P ) = (−1)n+1.

The same argument can be repeated for every interval of P , showing that it
is a k-Eulerian poset. ✷

Using this result, we get the following curious characterization via the
Möbius function.

Theorem 5.3 A graded poset P is k-Eulerian if and only if the 2k-Möbius
function of every interval [x, y] ⊆ P of even rank is zero.

Proof: Let P be a graded poset. By Corollary 4.5 P is Eulerian if and only
if D2P is 2k-Eulerian if and only if for every interval [xi, yj] of D

2P with
ρ(xi, yj) even

L
2k,ρ(xi,yj)
[1,ρ(xi,yj)−1]([xi, yj]) = 0

if and only if for every interval [xi, yj ] of D
2P with ρ(xi, yj) even

∑

T⊆[1,ρ(xi,yj)−1]

(−
1

4k
)|T |fT ([xi, yj ]) = 0

if and only if for every interval [x, y] of P with ρ(x, y) even

∑

T⊆[1,ρ(x,y)−1]

(−
1

4k
)|T |2|T |fT ([x, y]) = 0
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if and only if for every interval [x, y] of P with ρ(x, y) even

∑

T⊆[1,ρ(x,y)−1]

(−
1

2k
)|T |fT ([x, y]) = 0

if and only if for every interval [x, y] of P with ρ(x, y) even µ2k([x, y]) = 0.
✷

In particular, a graded poset P is half-Eulerian if and only if the (usual)
Möbius function of [x, y] is zero for every [x, y] ⊆ P of even rank.

The L1-vector of a graded poset is the vector of coefficients of the ce-
index, introduced in [8] as a variation of the cd-index of an Eulerian poset.
(The cd-index of an Eulerian poset, due to Fine (see [4]), is a vector linearly
equivalent to the flag vector; it embodies the generalized Dehn-Sommerville
equations of Theorem 4.1.) In [8], Stanley observed that the existence of
the cd-index for a graded poset is equivalent to the vanishing of the coeffi-
cients of ce-words containing an odd string of e’s; in our notation this says
L1,n+1
S (P ) = 0 for all subsets S ⊆ [1, n] that are not even. Thus the last

part of Theorem 5.1 (as well as the first part) is already known for k = 1.
The Lk-vector for general k can be presented in the same way. For P any

graded poset of rank n+1, write a generating function for the flag f -vector
as follows:

Υ(a, b) =
∑

S⊆[1,n]

fSuS ,

where uS = u1u2 . . . un with ui = a if i 6∈ S and ui = b if i ∈ S. then

Υ(e,
c− e

2k
) =

∑

T⊆[1,n]

LT vT ,

where vT = v1v2 . . . vn with vi = c if i 6∈ T and vi = e if i ∈ T . The equations
of Theorem 5.1 for k-Eulerian posets can then be rephrased as saying that
Υ(e, (c− e)/(2k)) is a polynomial in (the noncommuting expressions) c and
ee.

6 The cone of k-Eulerian flag vectors

Theorem 3.1, along with the description of the cone of flag vectors of general
graded posets ([5]), can be used to generate all the inequalities valid for all
r-thick posets. The inequalities for 2k-thick posets are, in particular, valid
for all k-Eulerian posets, but they may not be sharp. We would like to know
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the essential inequalities, that is, the closed cones of flag vectors of Eulerian
and of half-Eulerian posets. In [3] these cones are studied and are completely
determined up through rank 7. (See also [2] for data on the cone.) In the
context of this paper, the results can be stated as follows.

Theorem 6.1 ([3]) For rank n+ 1 ≤ 7,

1. the closed cone of flag vectors of half-Eulerian posets of rank n+ 1 is
the intersection of the cone C1,n+1 of flag vectors of all graded posets of
rank n+1 with the subspace DS1/2,n+1 determined by the half-Eulerian
equations of Theorem 5.1;

2. the closed cone of flag vectors of Eulerian posets of rank n + 1 is
the intersection of the cone C2,n+1 of flag vectors of all 2-thick graded
posets of rank n + 1 with the generalized Dehn-Sommerville subspace
DS1,n+1; and

3. the two cones are isomorphic.

We do not know if this theorem extends to higher ranks. However, for
all ranks, part 1 of the theorem implies parts 2 and 3.

Theorem 6.2 Let CONEk,n+1 be the statement,

The closed cone of flag vectors of k-Eulerian posets of rank n+ 1
is the intersection of the cone C2k,n+1 of flag vectors of all 2k-
thick graded posets of rank n + 1 with the generalized Dehn-
Sommerville space DSk,n+1.

For all k ≥ 1 (with 2k an integer) and all positive integers n,

CONE1/2,n+1 =⇒ CONEk,n+1.

Proof: Recall the map α1,2k of Corollary 3.2; it maps C1,n+1 onto C2k,n+1.
Clearly it also mapsDS1/2,n+1 onto DSk,n+1. So α1,2k(C1,n+1∩DS1/2,n+1) =
C2k,n+1 ∩ DSk,n+1, which contains the cone of k-Eulerian flag vectors. On
the other hand, for any half-Eulerian poset P , α1,2k((fS(P ))) = (fS(D

2kP )),
the flag vector of the k-Eulerian poset D2kP . If CONE1/2,n+1 holds, then
C1,n+1 ∩ DS1/2,n+1 is the cone of half-Eulerian flag vectors, and its image
is contained in the cone of k-Eulerian flag vectors. Thus, if CONE1/2,n+1

holds, then C2k,n+1 ∩ DSk,n+1 is exactly the closed cone of flag vectors of
k-Eulerian posets. ✷
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Another question raised in [3] on the structure of these cones can be
answered. For rank at most 7, all facet inequalities of the half-Eulerian
(and with slight modification, Eulerian) cone are generated from two basic
types of inequalities.

Theorem 6.3 ([3]) Let S and T be disjoint subsets of [1, n], such that every
maximal interval of the complement of S contains at most one element of
T . Then for every rank n+ 1 half-Eulerian poset P ,

∑

R⊆T

(−1)|T\R|fS∪R(P ) ≥ 0.

Let 1 ≤ i < j < ℓ ≤ n. Then for every rank n+ 1 half-Eulerian poset P ,

fiℓ(P )− fi(P )− fℓ(P ) + fj(P ) ≥ 0.

Other valid inequalities are obtained by the convolution of inequalities of
these types. The question arose whether these generate all inequalities valid
for the flag vectors of all half-Eulerian posets. They do not.

Proposition 6.4 For all half-Eulerian posets P of rank 8,

f81356(P )−f
8
135(P )−f

8
356(P )+f

8
15(P )−f

8
16(P )+f

8
35(P )+f

8
36(P )−f

8
3 (P ) ≥ 0,

or, in L1/2-vector form,

L
1/2,8
45 (P ) + L

1/2,8
2345 (P ) + L

1/2,8
56 (P ) + L

1/2,8
1256 (P )− L

1/2,8
2367 (P )

− L
1/2,8
3467 (P ) + L

1/2,8
4567 (P ) + L

1/2,8
124567(P ) ≤ 0. (9)

This inequality determines a facet of the closed cone of flag vectors of half-
Eulerian posets, and does not follow from the inequalities of Proposition 6.3.

The proposition remains valid if “half-Eulerian” is replaced by k-Eulerian,
and each fS is replaced by (2k)n−|S|fS.

Proof: We first show the inequality is not a convolution of lower rank
inequalities. In Lk-vector form the convolution satisfies the rule Lk,i+1

T ∗

Lk,j+1
V = 2kLk,i+j+2

T∪(V+i+1) (see equation 8). So the convolution of linear ex-
pressions for ranks i+1 and j+1 with n = i+j+1 gives a linear combination
of Lk,n+1

S involving only subsets S ⊆ [1, n] not containing i+1. Since each el-
ement of [1, 7] occurs in some set S in the inequality 9, it is not a convolution
of lower rank inequalities.

We now show that the inequality determines a facet of the cone. Billera
and Hetyei list the facet inequalities for the general graded cone up through
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rank 5. The inequality of the proposition comes from applying one of the
rank 5 Billera-Hetyei inequalities to the rank-selected subposet P{1,3,5,6} of
an arbitrary half-Eulerian poset P . To check it is a facet of the half-Eulerian
cone, we give twenty linearly independent limiting normalized L1/2-vectors
of half-Eulerian posets, for which the inequality holds with equality. The
first sixteen posets are Billera-Hetyei limit posets determined by interval
systems as in the following table.

P1 ∅ P7 [1, 2][5, 6] P12 [1, 4][6, 7]

P2 [1, 2] P8 [1, 2][3, 4][5, 6] P13 [4, 5][6, 7]

P3 [2, 3] P9 [3, 6] P14 [2, 3][4, 5][6, 7]

P4 [3, 4] P10 [6, 7] P15 [1, 2][4, 7]

P5 [1, 2][3, 4] P11 [1, 2][6, 7] P16 [2, 7]

P6 [2, 3][4, 5]

The next three limit posets are obtained from the rank 7 Extremes 2,
3 and 4 of [3, Theorem 4.8] by inserting a single new element of rank 1,
shifting the old elements up one rank.

To describe the last sequence of posets, let us (re)introduce the following
generalization of the operator Dr. Given a graded poset P of rank n+ 1
denote by Dr

[u,v](P ) the poset obtained from P by replacing each x ∈ P

satisfying ρ(x) ∈ [u, v] with r elements x1, x2, . . . , xr (keep every y ∈ P sat-
isfying ρ(y) 6∈ [u, v] unchanged), and by setting the following order relations.
The ([1, n]\[u, v])-rank-selected subposet of P and of Dr

[u,v](P ) are identical.

For x, y ∈ P satisfying ρ(x) ∈ [u, v] and ρ(y) 6∈ [u, v] set xi < y or xi > y
in Dr

[u,v](P ) if and only of the same relation holds between x and y in P .

Finally for x, y ∈ P satisfying u ≤ ρ(x) < ρ(y) ≤ v set xi < yj in D
r
[u,v](P )

if and only if i = j and x < y in P .
For example, Figure 1 shows D2

[1,2](C4) where C4 is a chain of rank 4.

Note that for a graded poset P of rank n + 1 the graded poset Dr(P ) is
isomorphic to Dr

[1,1]D
r
[2,2] . . . D

r
[n,n](P ). The same notation is used in [3].

Let N be an arbitrary positive integer, and C8 be a chain of rank 8.
Consider now the following four graded posets.

P I(N) = DN+1
[1,2] D

N+1
[2,3] D

N+1
[4,5] D

N
[1,7](C8)

P II(N) = DN2

[1,3]D
N+1
[1,5] D

N
[1,7](C8)

P III(N) = DN2−N+2
[1,4] DN+2

[4,5] D
N
[6,7](C8)

P IV (N) = DN+2
[1,2] D

N3−N2+2
[2,7] (C8)
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Figure 1: D2
[1,2](C4)

The {4, 5, 6, 7}-rank-selected subposets of P I(N) and P II(N) are both iso-
morphic to DN+1

[1,2] D
N
[1,4](C5), where C5 is a chain of rank 5; the {6, 7}-rank-

selected subposets of P I(N), P II(N), and P III(N) are all isomorphic to
DN

[1,2](C3) where C3 is a chain of rank 3. Let P (N) be the graded poset of

rank 8 obtained from P I(N), P II(N), P III(N), and P IV (N) by performing
the following identifications:

-identify the bottom element 0̂ of all four posets,
-identify the top element 1̂ of all four posets,
-identify P I(N){4,5,6,7} with P II(N){4,5,6,7},

-identify P I(N){6,7} with P III(N){6,7}.
Figure 2 indicates how the four posets are identified, in a schematic way.
Straightforward calculation shows that P (N) is a half-Eulerian poset, for

each positiveN . Furthermore the normalized L1/2-vectors, (L
1/2,8
S (P (N))/N4),

converge.
The rows of the matrix below are the normalized L1/2-vectors of the

twenty limit posets. In the columns are the values of L
1/2,8
S (divided by the

appropriate power of N), with the sets S in the order ∅, {1, 2}, {2, 3}, {3, 4},
{1, 2, 3, 4}, {4, 5}, {1, 2, 4, 5}, {2, 3, 4, 5}, {5, 6}, {1, 2, 5, 6}, {2, 3, 5, 6}, {3, 4, 5, 6},
{1, 2, 3, 4, 5, 6}, {6, 7}, {1, 2, 6, 7}, {2, 3, 6, 7}, {3, 4, 6, 7}, {1, 2, 3, 4, 6, 7}, {4, 5, 6, 7},
{1, 2, 4, 5, 6, 7}, {2, 3, 4, 5, 6, 7}. It is easy to check the rows are linearly in-
dependent.
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Figure 2: P (N)























































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
1 −1 0 −1 1 0 0 0 −1 1 0 1 −1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0
1 0 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0
1 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0
3 0 −1 −1 0 −1 0 1 −1 0 0 0 0 −1 0 0 0 0 1 0 0
3 0 −2 0 0 −1 0 1 −1 0 1 −1 0 −1 0 0 0 0 1 0 0
3 0 −1 −1 0 −1 0 1 0 0 0 −1 0 −2 0 0 1 0 1 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0
1 0 −1 0 0 −1 0 1 0 0 0 0 0 −1 0 1 0 0 1 0 −1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
4 −2 −1 0 −1 −2 1 1 0 0 0 0 0 −1 0 0 0 1 1 0 −1























































✷
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