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1 IntroductionFormal Concept Analysis (FCA) is a branch of the lattice theory motivated by the need for a clearmathematization of the notions of concept and conceptual hierarchy [7]. The main concern withinFCA is about the lattice structure induced by a binary relation between a pair of sets, called a Galoislattice [1] or concept lattice [21]. Initially intended as an intuitive foundation for the whole latticetheory [21], the FCA has inspired a number of studies establishing links between the Galois (concept)lattices and other known classes of partially ordered structures [22, 23, 17]. Meanwhile, the strongtheoretical foundations of FCA have attracted the interest of practitioners from various �elds such asdata mining [18, 25], knowledge acquisition [15], and software engineering [8, 19]. Today, there is aconstantly growing number of studies within the �eld about both theoretical and practical issues.Our own concern is the development of e�ective algorithms for the construction of Galois/conceptlattices from realistic datasets, i.e., large collections of possibly volatile, fragmented and noisy dataitems. The analysis of such data requires the design of a new generation of lattice-constructing al-gorithms that combine computational e�ciency, robustness and exibility. In the present paper, wetackle the problem of assembling lattices corresponding to the fragments of a binary table, a problemwhich arises with various dataset updates. For this purpose, we complete the existing theory of aposteriori fragmentation of binary tables due to Wille [24] and provide the foundation of an e�cientlattice assembly procedure. The procedure carries out a �ltering of the direct product of the partiallattices which retrieves the concepts of the global lattice and their precedence links. The procedureis further extended to a full-range lattice-constructing algorithm implementing a divide-and-conquerstrategy which, when applied to a particular class of binary relations, proved more e�cient than themost powerful lattice algorithms known to date.The bene�ts of our assembly-based strategy lie far beyond mere visualization or CPU-time gain.Aside from a better understanding of the semantics behind context and lattice composition, our struc-tural results constitute a uni�ed framework for devising new lattice algorithms.The paper is organized as follows. Section 2 gives a background on Galois/concept lattices andnested line diagrams. In Section 3, we recall the de�nition of the apposition operation and list someimportant properties of the mappings between concepts in the global lattice and those in the partialones. Section 4 presents the basic structural results that underlie our algorithmic approach. Theapproach itself is completely described in Section 5. Finally, we compare our work with some relatedprevious studies in Section 6.2 Background on formal concept analysisFormal concept analysis (FCA) [7] is a discipline that studies the hierarchical structures inducedby a binary relation between a pair of sets. The structure, made up of the closed subsets (see below)ordered by set-theoretical inclusion, satis�es the properties of a complete lattice and has been �rstmentioned in the work of Birkho� (see [2]). Later on, it has been the subject of an extensive study [1]under the name of Galois lattice. The term concept lattice and formal concept analysis are due toWille [21]. In the following, we �rst recall some basic notions of ordered structure theory1, which arewidely used in the presentation of FCA.2.1 The basics of ordered structuresP = hG;�P i is a partial order (poset) over a ground set G and a binary relation �P if �P isreexive, antisymmetric and transitive. For a pair of elements a; b in G, if b �P a we shall say that asucceeds (is greater than) b and, inversely, b precedes a. If neither b �P a nor a �P b, then a and b1An excellent introduction to the subject may be found in [5].3



are said to be incomparable. All common successors (predecessors) of a and b are called upper (lower)bounds. The precedence relation �P in P is the transitive reduction of �P , i.e. a �P b if a �P band all c such that a �P c �P b satisfy c = a or c = b. Given such a pair, a will be referred to asan immediate predecessor of b and b as an immediate successor of a. Usually, P is represented by itscovering graph Cov(P ) = (G;�P ). In this graph, each element a in G is connected to both the set ofits immediate predecessors and of its immediate successors, further referred to as lower covers (Covl)and upper covers (Covu) respectively. In the following, we shall visualize a partial order by its Hassediagram, that is the line diagram of the covering graph where each element is located \below" all itssuccessors.A subset A of G is a chain (anti-chain) in P if all elements in A are mutually comparable (in-comparable). A subset B of G is an order ideal (order �lter) if 8a 2 G; b 2 B, a �P b ) a 2 B(b �P a) a 2 B). For a given set A � X , the set #PA = fc 2 X j9a 2 A; c �P ag is the smallest orderideal containing A. Dually, "PA = fc 2 X j9a 2 A; a �P cg denotes the smallest order �lter containingA. In case of a singleton A, we shall note #Pa instead of #P fag ("Pa instead of "P fag). Moreover,the order interval [a; b] is the subset of nodes obtained by the intersections of an order �lter "Pa andan order ideal #P b. A convex subset of an order is a subset that includes for any pair of its membersthe interval they might compose. A mapping � between two posets P and Q such that � : P ! Qis said to be order preserving if an order relation between two elements of P entails an order relationbetween their respective images under � in Q:x �P y ) �(x) �Q �(y):Furthermore, � is said to be an order embedding of P into Q if the condition is also a su�cient one:x �P y , �(x) �Q �(y):A lattice L = hG;�Li is a partial order where any pair of elements a; b has a unique greatest lowerbound (GLB) and a unique least upper bound (LUB). GLB and LUB de�ne binary operators onG calledrespectively join (a _L b) and meet (a ^L b). In a complete lattice L, all the subsets A of the groundset have a GLB and a LUB. In particular, there are unique maximal (top, >) and minimal (bottom,?) elements in the lattice. Finally, the elements with a single immediate predecessor (successor) arecalled join-irreducible (meet-irreducible), and the set that they constitute is denoted by J (L) (M(L)).2.2 Fundamentals of FCAFCA considers a binary relation I (incidence) over a pair of sets O (objects) and A (attributes). Theattributes considered represent binary features, i.e., with only two possible values, present or absent.In this framework, the meaningful subsets of objects/attributes represent the closed sets of the Galoisconnection [1] induced by I on the pair O and A.2.2.1 Basic notionsThe binary relation is given by the matrix of its incidence relation I (oIa means that object o hasthe attribute a). This is called formal context or simply context (see Figure 1 for an example).De�nition 1. A formal context is a triple K = (O;A; I) where O and A are sets (objects and attributesrespectively) and I is an incidence relation, i.e., I � O �A.For convenience reasons, we shall denote objects by numbers and attribute by lower-case letters.Furthermore, we simplify the standard set notation by dropping out all the separators (e.g., 127 willstand for the set of objects f1; 2; 7g, and abdf for the set of attributes fa; b; d; fg.Two set-valued functions, f and g, summarize the links between objects and attributes establishedby the context. 4



a b c d e f g h i1 X X X2 X X X X3 X X X X X4 X X X X X5 X X X X6 X X X X X7 X X X X8 X X X X
Figure 1: A sample context (left) and its corresponding Galois/concept lattice (right). Both have beenborrowed from [7].De�nition 2. The function f maps a set of objects into the set of common attributes, whereas g isthe dual for attribute sets:� f : P(O)! P(A), f(X) = fa 2 Aj8o 2 X; oIag� g : P(A)! P(O), g(Y ) = fo 2 Oj8a 2 Y; oIagFor example, w.r.t. the context in Figure 1, f(678) = acd and g(abgh) = 23. In what follows, forbrevity, both functions will be denoted by 0. Furthermore, f and g are combined in a pair of compositeoperators, g � f(X) and f � g(Y ) which map the sets P(O) and P(A) respectively into themselves(denoted by 00). For example, the image of X = f5; 6; 7g is X 00 = f5; 6; 7; 8g. The functions f and ginduce a Galois connection [1] between P(O) and P(A) when both sets are taken with the set-inclusion� as (partial) order relation. It follows that the composite operators are actually closure operators andtherefore each of them induces a family of closed subsets over the respective power-set. The functionsf and g constitute bijective mappings between both families. A pair (X;Y ), of mutually correspondingsubsets is called a (formal) concept in [21].De�nition 3. A formal concept is a pair (X;Y ) where X 2 P(O), Y 2 P(A), X = Y 0 and Y = X 0.For example (see Figure 1), the pair c = (678; acd) is a concept since the objects 6, 7, and 8 sharethe properties a, c, and d and, conversely, the attributes a, c, and d are held by the objects 6, 7, and8. In the FCA framework, X is referred to as the concept extent and Y as the concept intent. In whatfollows, concepts will be denoted by the letter c and the auxiliary primitives Intent() and Extent() willrefer to their intent and extent respectively.The set of all concepts of the context K = (O;A; I), CK, is partially ordered by the order inducedby intent/extent set theoretic inclusion:(X1; Y1) �K (X2; Y2), X1 � X2(Y2 � Y1):In fact, set inclusion induces a complete lattice over each closed family and both lattices are isomorphicto each other with f and g as dual isomorphisms. Both lattices are thus merged into a unique structurecalled the Galois lattice [1] or the (formal) concept lattice of the context K [7].5



Property 1. The partial order L = hCK;�Ki is a complete lattice with LUB and GLB as follows:� Wki=1(Xi; Yi) = ((Ski=1Xi)00;Tki=1 Yi),� Vki=1(Xi; Yi) = (Tki=1Xi; (Ski=1 Yi)00).Figure 1 shows the concept lattice of the context in Figure 1. For example, given the conceptsc1 = (36; abc) and c2 = (56; abdf), their join and meet are computed as follows:� (36; abc) _ (56; abdf) = (12356; ab),� (36; abc) ^ (56; abdf) = (6; abcdf).The interest in FCA and Galois lattices from a theoretical viewpoint is motivated by the followingremarkable property [21] basically stating that each complete lattice is isomorphic to the concept latticeof some formal context.Property 2. Given a lattice L = hG;�Li, let J (L) and M(L) be the sets of its join-irreducible andits meet-irreducible elements respectively. Then L is isomorphic to the concept lattice of the contextKL = (J (L);M(L);J (L)�M(L)\ �L).Moreover, well-known constructs from partial order theory such as the Dedekind-McNeille hull of agiven poset P or the lattice the maximal anti-chains of P can be constructed as the concept latticesof suitably chosen contexts.2.3 Approaches towards the construction of Galois/concept latticesThere is a variety of algorithms that may be used in computing the concept lattice from the binarytable. These can be mainly divided into two groups: procedures which extract the set of concepts [4,16, 6] only, and algorithms for constructing the entire lattice, i.e., concepts together with the latticeorder [3, 9, 17]. A detailed description of these algorithms being out of the scope of this paper2, wefocus only on the most e�cient lattice algorithms known today.An e�cient algorithm has been suggested by Bordat in [3] which generates both the concept setand the Hasse diagram of the lattice. It takes advantage of the structural properties of the precedencerelation �L to generate the concepts in an increasing order. Thus, from each concept c the algorithmgenerates its upper covers - these are the concepts whose intents are maximal closed subsets of theintent of c. The obvious drawback of the method is that a concept is generated several times, once pereach lower cover. A partial remedy of the problem is a concept lookup mechanism which allows eachconcept extent to be computed only once.The design of exible algorithms was pioneered by Godin et al. [9] who designed an incrementalmethod for constructing the concept lattices. The lattice L is thus constructed starting from a singleobject o1 and gradually incorporating any new object oi (on its arrival) into the lattice Li (over acontext K = (fo1; :::; oi�1g; A; I)), each time carrying out the necessary structural updates. Thismethod avoids starting from scratch each time the context is extended (with a new object/attribute)by making a maximal reuse of the already available structure. Actually, the incremental paradigm,known elsewhere in practical applications of lattice theory [11, 20], has been introduced even earlier,with the algorithm of Norris [16] which is basically an incremental procedure even if not stated as such.Recently, Nourine and Raynaud [17] suggested a general approach towards the computation of closurestructures and showed how it could be used to construct Galois/concept lattices. The method proceedsin two steps: �rst, concepts are generated, and then their precedence links are established. Conceptgeneration is an incremental process similar to the one described in [9]. The second step is a traversalof the concept set whereby for a given concept c the entire order �lter "L c is computed. Concepts in2But an interested reader will �nd a comprehensive study (of partial scope) in [10], while [9] and and [14] could alsohelp 6



"L c are generated as joins of c and any object o which is not in Extent(c). An upper cover �c of c isdetected within "L c by considering the number of the objects in Extent(�c)�Extent(c). The followingproperty summarizes the results from [17]:Property 3. A concept �c is an upper cover of another concept c i� it is generated a number of timesequal to the size of the set di�erence between the respective extents:c �L �c, kExtent(�c)�Extent(c)k = kfo 2 Ojo0 \ Intent(c) = Intent(�c)k:It is noteworthy that extensive studies of the practical performances of most of the above citedalgorithms are provided by [9] (somewhat out-dated) and [14]. Such studies are of high importancefor the domain since all the algorithms have exponential worst-case complexity due to the exponentialnumber of concepts, and therefore are just as ine�cient as a naive algorithm that examines all possiblesubsets of attributes/objects. However, in practical cases, only a small number of concepts do occur,so it makes sense to study how each algorithm performs on realistic datasets.2.4 The evolution of requirementsA very general observation on the current state of the FCA algorithmics, on the one hand, and theintended applications, on the other hand, reveals a big performance gap. In fact, most of the existingalgorithms have been designed to work on small binary tables (less than hundred objects/attributes)stored in the memory of a single computer. However, current data in software applications, databasesand data warehouses typically give rise to huge contexts which require secondary storage, may containmissing (NULL) or invalid values, and can be distributed over a network. Moreover, databases oftenconstitute highly volatile contexts due to frequent updates to data.Actually, the one-increment, i.e., adding a single object at a time, is only a partial solution to theproblem of volatile data. As a matter of fact, in most databases and data warehouses the updates arenot object-wise but rather group-wise, meaning that a whole subset of objects �O = foi+1; :::; oi+lg areto be added at a time 3. Instead of inserting them one by one into Li, one may think of �rst extractingthe lattice �L corresponding to �O and then construct Li+l from Li and �L. The challenging problem isthen the merging or assembly of both lattices, a task which generalizes the conventional, single-objectincrementation.The decomposition of complex problems into a set of smaller problems is a solving strategy usedin every area of computer science. In the FCA �eld, such a decomposition may be carried out invarious ways. A natural way of doing it consists of splitting a large context into a set of smallercontexts that share objects and/or attributes. For example, splits of this kind might be used tosimulate batch-wise updates of a data warehouse (common attributes/di�erent objects), integration ofseveral viewpoints on a set of individuals (common objects/di�erent attributes) or a distribution of thedataset over a network (di�erent objects/di�erent attributes). Once the sub-contexts are establishedand the respective lattices constructed, these could be then merged into a unique global structure,corresponding to the entire dataset.The partition of a context over its object/attribute set has been formalized through the apposi-tion/subposition operations which have been de�ned to support visualization (see the next Section).However, to the best of our knowledge there have been no detailed studies of the relevant algorith-mic problems. In particular, the potential utility of the underlying framework for lattice-constructingpurposes has not been explored.In what follows we present a Galois (concept) lattice assembly procedure for contexts that share thesame set of objects and show a way to extend it into a full-scope lattice-constructing method. As ourapproach is rooted in the FCA theory related to the apposition/subposition operators, we �rst recallits basics.3Similar problems arise when the dataset to process comes from a distributed database.7



3 Apposition of contexts and partial latticesBeside classical order product operators for lattices (e.g., direct, subdirect, tensorial products [7]),FCA provides a set of context-oriented operators of speci�c impact on the corresponding lattices. Herewe focus on apposition/subposition operators which were initially intended to support visualization oflarge lattices.3.1 Apposition and subposition of contextsApposition is the horizontal concatenation of contexts sharing the same set of objects [7].De�nition 4. Let K1 = (O;A1; I1) and K2 = (O;A2; I2) be two contexts with the same set of objectsO. Then the context K = (O;A1 _[A2; I1 _[I2) is called the apposition of K1 and K2: K = K1jK2.Usually, the intent of K is set to the disjoint union (denoted by _[) of the involved context intents,but this constraint is not essential for our own study. For example, with a global context K = (O;A; I)as given in Figure 1, where O = f1; 2; 3; 4; 5; 6; 7; 8g and A = fa; b; c; d; e; f; g; h; ig, let A1 = fa; b; c; dgand A2 = fe; f; g; h; ig. The two lattices corresponding to K1 and K2, which will further be referred toas partial lattices4, say L1 and L2, are given in Figure 2. Some intriguing properties relating L1 andL2 to the lattice of the apposition context L will be discussed in the following paragraphs.
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#7Figure 2: Partial lattices L1 and L2 constructed from a vertical decomposition of the context in Figure 1.Subposition, or vertical assembly of contexts upon a common attribute set, is dual to apposition.Hence, the results found in this paper are dually valid for subposition.3.2 Nested line diagramsNested line diagrams (NLD) [7] are visualization aids which allow a lattice L to be drawn as a sub-structure of the direct product of a pair5 of partial lattices L1 and L2. Recall that the direct productof a pair of lattices L1 and L2, L� = L1 �L2, is itself a lattice L� = hC�;��i where:� C� = CK1 � CK2 ;� (c1; c2) �� (�c1; �c2) , c1 �L1 �c1; c2 �L2 �c2:The nodes of L� are pairs of concepts (c1; c2) where ci appears in Li for i = 1; 2. For conveniencereasons, the concrete concepts from the above example will be identi�ed by their index in the respective4As K1 and K2 are partial contexts for K.5The de�nition generalizes easily to an arbitrary number of lattices. However we only consider the two-level nesting.8



partial lattice, a unique number denoted by #i, ranging between 1 and kCKik. Within a pair (ci; cj) inL1 �L2, the index of the partial lattice where the concept c#i is to be taken corresponds to its order.Thus, the pair (c#7; c#3) denotes the product of the concept #7 of L1, i.e., the concept (678; acd),with the concept #3 of L2, (568; f).A nested line diagram basically represents the product lattice L� by combining the respective linediagrams of the lattices Li into a unique complex structure. However, neither the nodes of L� northeir precedence links are directly represented. Instead, the information about them is spread over thevarious levels of nesting. Figure 3 presents the NLD of the product lattice L� = L1 � L2. As it canbe seen, the line diagram of the lattice L1 is used as an outer frame in which the diagram of L2 isembedded. Within the NLD, a node (ci; cj) of the product is located by �rst �nding the node for ci in
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Figure 3: The nested line diagram of the lattice L1 �L2.the outer diagram and then �nding the respective node cj within the local L2 diagram. For example,the node (c#3; c#1) (see the numbering in Figure 2) of the product lattice is located within the NLDin Figure 3 at the top of the inner lattice within the outer node labeled by c.The lattice L is represented by an isomorphic sub-structure of L�. The nodes belonging to thesub-structure are drawn in a distinguishable way on the diagram (here in black as opposed to theremaining \void" nodes drawn in white). The reader may check the isomorphism between the partialorder induced by the black nodes (further referred to as full nodes) in Figure 3 and the lattice shownin Figure 1.3.3 Linking the apposition lattice to the partial latticesAny concept of L can be \projected" upon the concept lattice, L1 (L2) by restricting its intent to theset of \visible" attributes, e.g., those in A1 (A2). Combining both functions mapping the global latticeonto the partial ones results in an order homomorphism between L and the direct product (see [7]).De�nition 5. The function ' : C ! C�, maps a concept from the global lattice into a pair of conceptsof the partial lattices by splitting its intent over the partial context attribute sets A1 and A2:'((X;Y )) = (((Y \ A1)0; Y \ A1) ; ((Y \ A2)0; Y \A2)):9



For example, the concept (568; adf) is mapped by ' into the concepts (5678; ad) and (568; f) fromL1 and L2 respectively. The mapping ' is fundamental within the nesting framework, since the set ofnodes representing L within L1 �L2 are exactly the images of the concepts from L by '.The inverse mapping between L1 � L2 and L is also based on intersection, but of concept extents.Actually, the homomorphism  sends a pair of partial concepts from the product lattice into a globalconcept whose extent is the intersection of their own extents.De�nition 6. The function  : C� ! C maps a pair of concepts over partial contexts into a globalconcept by the intersection over their respective extents: (((X1; Y1) ; (X2; Y2))) = (X1 \X2 ; (X1 \X2)0):For example, the image of the pair (c#7; c#3) (see Figure 2) by  is the concept (68; acdf). A setof interesting properties of the mappings ' and  have been listed in [12], mostly based on the basicobservation that any concept intent in Li is the intersection of a concept intent in L with the attributeset Ai (see De�nition 5).First, ' maps distinctive concepts into distinctive product nodes.Property 4. The mapping ' is injective.Proof. (sketch) As partial concept intents are intersections of global intents with the sets Ai, givendistinct concepts (X;Y ) and ( �X; �Y ) in L, at least one of the following conditions holds:� Y \ A1 6= �Y \ A1,� Y \ A2 6= �Y \ A2.Hence, the images of (X;Y ) and ( �X; �Y ) under ' diverge on at least one of the product dimensions.Next, ' is compatible with the order within L�.Property 5. The mapping ' is an order embedding of L into L�:' : L ,! L�:Proof. (sketch) ' preserves the order between concepts since the intersection of intents with A1 (orwith A2) is monotonic with respect to L. The mapping is also injective; so it is an order embedding ofL into L�.Moreover, ' permutes with the join operator _, thus the function also preserves lattice joins.Property 6. The mapping ' is join-preserving:8c1; c2 2 C; '(c1 _ c2) = '(c1) _� '(c2):Proof. (sketch) Observe that joins in a concept lattice involve intersection of the intents of the argumentconcepts, just as ' involves intersection of the partial attribute sets. Furthermore, a join over theproduct is simply the product of the point-wise joins. Finally, the associative property of intersectionentails the above equality.All the above properties have practical implications that jointly enable an easy \recovery" of theapposition lattice structure from the partial lattices. For example, the injection allows the conceptsof the apposition lattice to be identi�ed with pairs of concepts from the partial lattices. Similarly, thelast two properties state that the global lattice L is isomorphic to its image under ' on L� and thatthis image is a proper sub-lattice of L�.Similar properties could be established about the  mapping. A �rst result is that  preserves orderin the product lattice. 10



Property 7. The mapping  is order-preserving:8(c1; c2); (c3; c4) 2 C�; (c1; c2) �� (c3; c4))  (c1; c2) �  (c3; c4):Proof. (sketch) Trivially follows from the de�nition of the lattice order based on the inclusion of extentsand the de�nition of the  mapping based on extent intersection.Moreover, all sets  �1(c) of antecedents for a global concept c are convex subsets of C�.Property 8. The classes of the kernel relation induced by  are convex subsets of C�:8c 2 C;8(c1; c2); (c3; c4) 2  �1(c);8(c5; c6) 2 C�((c1; c2) �� (c5; c6) �� (c3; c4))  (c5; c6) = c):Proof. (sketch) It is based upon the fact that the extent intersection is monotonic with respect to theorder in L� (see the de�nition of the function R in the next section).3.4 Exploring the apposition for lattice computationApposition/subposition operations were intended to ease the visualization of concept lattices anddo not have straightforward computational interpretation. Thus, the only related algorithmic problemis the detection of the full nodes of the NLD, i.e., the images of the global concepts by '. To ourknowledge, no e�cient algorithm has been designed up until now to solve the problem.Our claim is that, although apposition/subposition have been oriented towards visualization, theymay underlie the constructing of the global lattice from the partial ones. For this purpose, nodesand links of the global lattice may be suitably \recovered" from the product lattice. Actually, anappropriate procedure is necessary for each of the following three tasks:� identi�cation of global concepts through their respective images by ',� computation of the intent and the extent of each global concept,� computation of the cover relation of L, i.e., the set of lower covers for each concept.In this new setting, ' and  cannot be directly applied because only the product lattice is supposedknown. Therefore, new structural results are required to enable the computation of L by looking onlyat L�, i.e., without a global view of the data.4 Characterizing the global latticeIn this section, we provide some theoretical results and useful structural properties that help obtaine�cient algorithmic solutions for the above listed problems.4.1 Structural propertiesThe �rst group of problems to tackle concerns the constructing of the components of the globallattice L from the lattices L1 and L2, or, equivalently, from the lattice L�. For this purpose, weshould �rst identify a subset of the ground (concept) set in L� that reects the structure in L. Recallthat the function ' maps the lattice L into an isomorphic sub-structure of L�. Hence, our �rst concernwill be to provide characteristic properties of the sub-structure. We shall then see how these elementscompare within L� in order to establish the order in L.
11



4.1.1 Localizing '(c)Our �rst aim is to �nd a necessary and su�cient condition for an element n̂ = (c1; c2) in L� to bethe image of a concept c = (X;Y ) in L by ', i.e. '(c) = n̂. Suppose this is actually the case. Recallthat, by the de�nition of ', c1 = ((Y \A1)0; Y \A1) and c2 = ((Y \A2)0; Y \A2). We claim that c is,in turn, the image of n̂ by  . In fact, when applied to (c1; c2) with the above structure, the functiongives (see De�nition 6 in Section 3): ((Y \ A1)0 \ (Y \ A2)0; ((Y \ A1)0 \ (Y \ A2)0)0).For example, with c = (5678; ad) the respective partial concepts are c1 = (5678; ad) and c2 =(12345678; ;), (i.e., node c#4 of L1 and node c#1 of L2 in Figure 2, respectively). Hence, the productnode '(c) is n̂ = (c#4; c#1). Observe now that the extent of the above concept is made up of all theobjects which have simultaneously all the attributes in Y \A1 and those in Y \A2 (see the example inFigure 4). This basically means, since A1[A2 = A, that the extent is exactly the set of objects havingY , i.e. Y 0. Consequently, the concept may be simpli�ed to Y 0; Y 00 which is exactly X;Y . Indeed, theinverse mapping of (c#4; c#1) retrieves 5678 as the extent of the image concept  (n̂) which identi�esthe initial concept c. In summary, for any concept c, its image by ' is among the nodes mapped by  into c.Property 9. '(c) 2  �1(c).The next step is to �nd a characterization of  �1(c) within L� and a property of '(c) within that set.Observe that the use of  �1(c) as an intermediate structure will help limit the search of a particularelement to a small portion of the global lattice L�.4.1.2 Characterization of  �1(c)The characterization of  �1(c) follows from the trivial observation that a node n̂ = (c1; c2) in L�is mapped to a concept c = (X;Y ) in L by  if and only if the extent of c is exactly the intersectionof the extents of c1 and c2, say X1 and X2: X = X1 \X2. The concept pairs in  �1(c) are thereforedistinguished by the intersection of the respective extents which de�nes a set-valued function:De�nition 7. The function R : C� ! P(O) is such that R(((X1; Y1); (X2; Y2))) = X1 \X2.The values of R for a subset of product elements are listed in Table 1.Node n̂ Value of R(n̂)(c#6; c#1) f5; 6g(c#7; c#1) f6; 7; 8g(c#4; c#2) f7g(c#4; c#3) f5; 6; 8g(c#4; c#4) ;
Node n̂ Value of R(n̂)(c#7; c#2) f7g(c#7; c#3) f6; 8g(c#7; c#4) ;(c#2; c#2) ;(c#2; c#3) f5; 6gTable 1: The values of R for a selected subset of C� (see Figures 2 and 3).4.1.3 Characterization of '(c)The elements of the lattice L� may be divided into classes sharing the same value of R, [n]R. Theseclasses correspond to the equivalence classes induced by  on C�, ker . Hence, R provides a (locallycomputable) characterization for  �1(c). For example, the class [(c#7; c#2)]R including all the nodesthat share the value f7g is: [(c#7; c#2)]R = f(c#1; c#2); (c#3; c#2); (c#4; c#2); (c#7; c#2)g: Actually,12



the investigated nodes of C� are those that are minimal for their class. More formally, a given n̂ is theimage of a concept c by ' if and only if it is minimal in [n̂]R with respect to the product lattice order��. This result is expressed by the following property.Property 10. 8n̂ 2 C� ( 9c 2 C : n̂ = '(c) ) , min([n̂]R) = fn̂g.Proof. Let n̂ = (c1; c2) and let c1 = (X1; Y1) and c2 = (X2; Y2). To prove this property, it is enough toobserve that the smallest concept in Li (i = 1; 2) which incorporates X in its extent and the concept((Y \Ai)0; Y \ Ai) = ((X 0 \ Ai)0; X 0 \ Ai) are the same concept.For example, the node (c#7; c#2) is minimal, with respect to the product order, in its class, and(c#6; c#3) is minimal in the class of nodes evaluated to f5; 6g by R.4.1.4 Computing the concept intent and extentThe above property identi�es the nodes in L with the minimum of each class [n̂]R in L�. Theextents of a concept c =  (c1; c2) can be computed as the intersection of the extents of c1 and c2. Alsothe intent of c may be computed locally, i.e., without looking in the data table: it is the union of theintents of c1 and c2 where (c1; c2) = '(c).Property 11. For a pair of partial concepts c1 = (X1; Y1) and c2 = (X2; Y2) and a global conceptc = (X;Y ) such that '(c) = (c1; c2),X = X1 \X2 and Y = Y1 [ Y2:Proof. Observe that both c1 and c2 are minimal and therefore Xi = X 00, i.e., the closure of X for Ki(i = 1; 2). Thus, each Yi equals X 0 within Ki whereas their union Y1 [ Y2 is X 0 in K.4.1.5 Characterizations of the lower covers of a nodeThe next step of the lattice computation deals with the order between its nodes. This is usuallymanipulated in terms of the cover relation �L whose pairs have to be computed. Observe that �Ldoes not strictly correspond to the cover relation in L�, �� via ' but rather to the broader order ��.Thus, a straightforward computation of �L could require the exploration of the entire ��, which is arather expensive task. In the following, a characterization of �L is given that uses only the informationabout ��. It detects the set of lower covers of a concept c (denoted by Covl(c)) by only looking atthe lower covers of its image '(c) in L�.First, recall the embedding property of ', i.e., c �L c , '(c) �� '(c). Next, consider a noden̂ = (c1; c2) with c1 = (X1; Y1) and c2 = (X2; Y2) such that fn̂g = min([n̂]R) and let c =  (n̂). We arelooking for the nodes ~n with the following properties:f~ng = min([~n]R) and c �L c where c =  (~n).Consider a �xed ~n. According to the previous remark, it is less than or equal to n̂. We shall now provethat there is a node �n which is a lower cover of n̂ and has the same image by  as ~n:�n �� n̂ and  (�n) =  (~n).In fact, among the lower covers of n̂, Covl(n̂), there is no element that has the same value of R as n̂(by de�nition). Furthermore, there is at least one �n which is greater than or equal to our ~n. Accordingto the embedding property, its  image is greater than or equal to that of ~n,  (~n) �L  (�n). Similarly,the image is less than the image of n̂,  (�n) �L  (n̂). However, we already know that the latter ispreceded by  (~n) in L. We conclude that  (~n) and  (�n) are equal. In other words, for all pairsc �L c in L, there is a pair �n �� n̂ such that  (�n) = c and '(c) = n̂. For example, take the node13



n̂ = (c#2; c#1) whose value of R is 12356. n̂ is the image of c = (12356; ab) which is preceded in L byc = (56; abdf). The latter is mapped into n̂ = (c#6; c#3) by '. The node (c#6; c#3) is a predecessorof (c#2; c#1) in the product lattice but not a lower cover (for example, the node (c#2; c#3) is betweenthem). However, there is at least one lower cover of (c#2; c#1) with the same value of R as (c#6; c#3).For example, one such node is (c#6; c#1). Unfortunately, the set of lower covers of a node n̂ = '(c)is not necessarily limited to nodes whose images under  are predecessors of c. There may be othernodes in Covl(n̂) whose images, although less than c are not its lower covers. Actually, the nodes welook for are those with values of R maximal within Covl(n̂).Property 12. For each n̂ such that 9c; n̂ = '(c), and for each one of its lower covers �n 2 Covl(n̂),we have:  (�n) �L c if and only if R(�n) 2 max(fR(~n)j~n 2 Covl(n̂)g):Instead of providing a general proof, we show a detailed example of the computation of the lowercovers of the concept c = (5678; ad). The relevant parts of the lattices L� and L are drawn inFigure 4. The concepts of the global lattice are linked to their images by '. The concept's image is
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Figure 4: Part of the product lattice L� (left) representing the node (c#4; c#1) (product nodes (c#i; c#j) aredenoted by #i�#j) and its lower covers together with the corresponding part of the global lattice L (right).Nodes in L are linked to their '-images by dashed lines. Both lower covers of (5678; ad) in L correspond tolower covers of (c#4; c#1) in L� whose R values are maximal: (c#7; c#1) and (c#4; c#3).the node (c#4; c#1) whose lower covers are (c#6; c#1), (c#7; c#1), (c#4; c#2), (c#4; c#3) and (c#4; c#4).The respective R values are listed in the left part of Table 1. The maximal values of R within theset of lower covers of (c#4; c#1) are thus: max(fR(~n)j~n 2 Covl('(c))g) = f568; 678g. These valuescorrespond to the extents of the concepts (568; adf) and (678; acd) which constitute exactly the set oflower covers of the concept c, Covl(c), in the global lattice.Theorem 1. Given a pair of concept lattices L1 and L2 over contexts K1 and K2, the lattice L of thecontext K1jK2 satis�es the following 8c = (X;Y ) 2 L:� min( �1(c)) = f'(c)g,� X = R('(c)),� Covl(c) = max(f (�n)j�n 2 Covl('(c))g)5 Constructing the latticeThe results presented in the previous section are transformed into an algorithmic procedure thatphysically constructs the global lattice L from both partial lattices. This is in turn extended to a full-scale lattice constructing algorithm by integrating it into a \divide-and-conquer" procedure. In whatfollows, we present these procedures together with some results about their asymptotic complexity.14



5.1 Main algorithmThe main procedure Construct-Lattice (see Algorithm 1) constructs the Galois lattice startingfrom the initial context. It is recursive, with a base case being a single-attribute context (see nextparagraph for a description of Construct-Lattice-T). Larger contexts are �rst split into two partsby selecting a subset of attributes (function Select). Then, the main procedure is recursively calledon each subcontext, thus retrieving a pair of partial lattices. Finally, the global lattice is obtained byan assembly of the partial ones (see Section 5.3 for the description of Assembly).1: procedure Construct-Lattice(In: K = (O;A; I) a context; Out: L = hC;�Li the lattice of K)2:3: if kAk > 1 then4: A1  Select(A); A2  A - A15: K1  (O;A1; I \ O �A1) ; K2  (O;A2; I \ O �A2)6: L1  Construct-Lattice(K1) ; L2  Construct-Lattice(K2)7: L  Assembly(L1;L2)8: else9: L  Construct-Lattice-T(K)10: return LAlgorithm 1: Constructing a Galois lattice with a \divide-and-conquer"-like strategy.It is important to note that the function Select may be implemented in various ways rangingfrom straightforward equal-size splitting to an advanced calculation of balanced sub-contexts. Such afunction may have a strong impact on the practical performance of the algorithm as the sizes of thepartial lattices depend on it. We will not dwell on this point as it relates to complex combinatorialproblems and is subject to a separate on-going study.5.2 One-attribute lattice computationThe base case of the lattice computation occurs when a single-column context is reached. With sucha small attribute set, say fag, the lattice may have no more than two concepts. Indeed, all possibleintents are fag and ; corresponding respectively to the lattice in�mum and supremum. In addition,there is one case where the lattice is made up of a single concept: it occurs when a is shared by all theobjects in O, in which case the only concept that remains is (O,a).1: procedure Construct-Lattice-T(In: K = (O; fag; I) a context; Out: L = hC;�Li the lattice ofK)2:3: L  ;4: O+  foj(o; a) 2 Ig5: c  New-Concept(O+ , fag)6: L  L [ fcg7: if O+ 6= O then8: ~c  New-Concept(O, ;)9: New-Link(c,~c)10: L  L [ f~cg11: return LAlgorithm 2: Constructing a Galois lattice over a single-attribute context.In a �rst step, the procedure Construct-Lattice-T (see Algorithm 2) separates the extent of the15



lattice in�mum, i.e., objects having a and constructs the concept. Then, it creates a distinct supremumif needed (i.e., when a proper subset of O share the attribute a).5.3 Assembly of partial latticesThe fundamental operation of our lattice constructing algorithm is the assembly of two partiallattices drawn from the complementary fragments of the context.5.3.1 Principles of the algorithmThe main step of the algorithm is a traversal of the product lattice. The traversal is made in abottom-up way, following a linear extension of the lattice order. The linear extension is the result ofa sorting task over each of the partial concept sets.For each pair of concepts, the intersection of their extents is computed and checked for minimality.Pairs with minimal R values generate a new concept in L whose intent and extent are computedaccording to the results of Section 4. The concept's lower covers in L are then detected among theglobal concepts already generated by the bottom-up traversal.5.3.2 Main data structures and auxiliary primitivesThe concept lattices are stored as lists of concepts in which a concept is a record with �elds likeintent, extent and list of lower covers (accessible by dedicated primitives Extent, Intent, etc.). Anauxiliary �eld indicates the rank of a concept in the sorted list (primitive rank). The mapping  issimulated by Embed, a two-dimensional array of concepts where indices are concept ranks in the partiallattices. Embed simulates the function R through the extents of the stored concepts.Except for the above abstract structure-related primitives, the algorithm uses ProductLower-Covers to generate the lower covers in L� of a product node. Another group of primitives carry outmaintenance tasks within the physical representation of the lattices (New-Concept, New-Link).1: procedure Assembly(In: L1 = hC1;�L1i, L2 = hC2;�L2i lattices; Out: L = hC;�Li a lattice)2:3: Local : Embed : array [0..max,0..max] of concepts4:5: L  ; fInitg6: Sort(C1); Sort(C2) fSort according to a linear extension of �Lig7: for all ci in C1 do8: for all cj in C2 do9: E  Extent(ci) \ Extent(cj)10: PsiImages  ;11: for all (�c; c) in ProductLowerCovers(ci; cj) do12: PsiImages  PsiImages [ fEmbed(rank(�c), rank(c))g13: c  Find-Psi(E, PsiImages)14: if c = NULL then15: c  New-Concept(E, Intent(ci) [ Intent(cj))16: Update-Order(c, PsiImages)17: L  L [ fcg18: Embed [rank(ci), rank(cj)]  c19: return LAlgorithm 3: Assembling the global Galois lattice from a pair of partial ones.16



5.3.3 The algorithm codeFor convenience, the major tasks of the overall algorithm have been separated into distinct proce-dures, each one provided with its own description.A pre-processing step sorts both sets of concepts CK1 and CK2 according to a linear extension ofthe respective lattice orders (see Section 5.5 for the code of Sort). In the main step, a nested forloop simulates the traversal of the product lattice. At each product node, the extent intersection ofthe compound concepts is stored in E for a further test of minimality. The test also requires the setof R values over the lower covers of the current node (retrieved by ProductLowerCovers). Theseare computed as the extents of the respective images under  , retrieved from Embed. The images are�rst stored in PsiImages and then passed as a parameter to Find-Psi, the function that �nds theimage under  of the current node if it already exists (non generator node). In this case, no furtherprocessing is required. Otherwise, i.e., with a NULL result from Find-Psi meaning that the R valueis yet unknown, a new concept is created, then its lower covers are singled out among the candidatesin PsiImages. In both cases, the array Embed is updated.5.3.4 ExampleTable 2 provides an illustration of the way in which the construction of the global lattice proceeds.It contains the trace of the examination of the �rst ten nodes taken in the order of the nested loop inAlgorithm 3. For each node, its R value is given. For generator nodes (i.e., nodes (ci; cj) that generatea concept in L), the generated concept is also indicated whereas for the remaining nodes, a lower coverthat shares the same R (and thus makes the minimality test fail) is indicated. For example, the node(c#8; c#3) has R value of f6g which is minimal. It therefore generates the global concept (6; abcdf).The node (c#8; c#1) is also mapped to f6g, but as its lower cover, (c#8; c#3), also possesses that value,it generates no global concept.Node R Generated Lower cover(ci; cj) concept in [(ci; cj)]R(c#8; c#7) ; (;; abcdefghi) {(c#8; c#6) ; { (c#8; c#7)(c#8; c#5) ; { (c#8; c#6)(c#8; c#2) ; { (c#8; c#7)(c#8; c#3) f6g (6; abcdf) {(c#8; c#4) ; { (c#8; c#5)(c#8; c#1) f6g { (c#8; c#3)(c#5; c#7) ; { (c#8; c#7)(c#5; c#6) ; { (c#5; c#7)(c#5; c#5) f3g (3; abcgh) {Table 2: The trace of Algorithm 3 for the �rst ten nodes of the product lattice in Figure 3.The integration of a newly created concept, Update-Order, as well as the function Find-Psi aredescribed in Section 5.4.5.4 Key operationsIn the following, we provide a detailed description of the main operations on concepts, intents,extents and links, used by Algorithm 3. These are essential for the e�ective implementation of ourstrategy and for the assessment of its algorithmic complexity.17



5.4.1 Updating the orderThe integration of a new concept c into the partially constructed lattice structure (the L list of con-cepts) involves the computation of the lower covers of c and the physical creation of the correspondinglinks. It is a two-step process described in Algorithm 4. First, the candidate concepts are sorted(recall those are the images under  of all nodes of the product lattice which immediately precedethe generator of c, i.e., (ci; cj)). The sort is done by increasing order of the intent sizes (the Sort1: procedure Update-Order(In: c a concept, Candidates a set of concepts)2:3: Modi�es : Covl(c)4: Local : KnownIntent : set of attributes5:6: Sort(Candidates) fSort according to a linear extension of the inverse of �Lg7: KnownIntent  Intent(c)8: for all ~c in Candidates do9: if Intent(~c) \ KnownIntent = Intent(c) then10: New-Link(~c,c)11: KnownIntent  KnownIntent [ Intent(~c)Algorithm 4: Update the current part of the global lattice with a new concept.primitive is described later on). Next, the concepts are examined one by one, each time testing whethera maximality condition is met. The condition is inspired by the Bordat algorithm [3] and ensures aminimal number of set-theoretic operations. As the cover relation of the lattice is updated with eachlower cover detection, at the end of the algorithm the concept c is completely integrated in the latticestructure. Full nodes R potential covers R on Coverwith R values actual covers nodes(c#8; c#7) ; {(c#8; c#3) f6g R(c#8; c#7) = ; ; (;; abcdefghi)(c#5; c#5) f3g R(c#5; c#6) = ; ; (;; abcdefghi)R(c#8; c#5) = ;(c#5; c#1) f3; 6g R(c#5; c#2) = ;R(c#5; c#3) = f6g f6g (6; abcdf)R(c#5; c#4) = f3g f3g (3; abcgh)R(c#8; c#3) = f6g(c#6; c#3) f5; 6g R(c#6; c#7) = ;R(c#8; c#3) = f6g f6g (6; abcdf)(c#2; c#2) f7g R(c#7; c#7) = ; ; (;; abcdefghi)R(c#8; c#2) = ;(c#7; c#3) f6; 8g R(c#7; c#7) = ;R(c#8; c#3) = f6g f6g (6; abcdf)Table 3: A trace of Algorithm 4: generation of the �rst six global concepts for the example in Figure 3.As an illustration of the way Algorithm 4 works, we provide the trace of its execution on the �rstsix product nodes that generate global concepts. The related values of the R function for each of thenodes as well as for each of their lower covers in L� are given in Table 3. The table also provides theglobal concepts which are actual lower covers of the generated concept together with the respectivevalues of R which helped generate them. 18



5.4.2 Test for new extents and the computation of  The detection of the minima in the classes induced by R is e�ciently carried out by comparingset cardinalities instead of comparing sets themselves. In fact, as we have shown in Section 4.1, themapping  is monotonic and therefore the function R is monotonic too. This means, for a givennode n̂ = (c1; c2), its value for R is a superset of the value on an arbitrary lower cover of n̂, say �n:R(�n) � R(n̂). For a node n̂ which satis�es the condition of Property 10, the superset condition isstrict, i.e., R(�n) � R(n̂) for any lower cover �n. An equivalent condition holds on set cardinalities: thesize of R(n̂) is strictly greater than the size of R(�n).Consequently, the property of a node n̂ being minimal in its class can be checked by only comparingset cardinalities: n̂ is minimal if and only if kR(n̂)k is di�erent from any cardinality of R on a lowercover.1: function Find-Psi(In: E a set of objects, Candidates a set of concepts ; Out: c a concept)2: m  kEk3: for all c in Candidates do4: if kExtent(c)k = m then5: return c6: return NULL Algorithm 5: E�cient lookup for newly met extents.The test procedure is described by Algorithm 5. It is noteworthy that the second parameter is a setof global concepts which represent the images of the lower covers of the current node under  . The�rst parameter is thus to be compared to their extents.5.5 Auxiliary primitivesIn what follows, e�cient algorithms for some of the auxiliary primitives used by the previous proce-dures are suggested.5.5.1 Concept sortThe traversal of a concept set C, not necessarily equal to the entire CK, with respect to the latticeorder �K, is achieved through a preliminary sorting of C. The sorting procedure typically produces alinear extension of �K on C. Such an extension could be easily, but somewhat ine�ciently, computedby checking inclusions between concept intents/extents. In its more e�cient version, the sorting, justas the minimality check for product nodes described above, compares intent cardinalities instead ofintents. This could be done in a linear time as Algorithm 6 shows. Actually, the required operationsare the split of C into slices of equal intent cardinalities and the subsequent enumeration of thesegroups in descending order. The use of an array indexed by intent cardinality to store the slices makesslice sorting unnecessary. Thus, the whole procedure takes only a time which is linear in the numberof concepts.5.5.2 Lower covers of a node in the product latticeThe function ProductLowerCovers which computes the lower covers of a node n̂ = (ci; cj) isnot explicitly described here. In fact, it adds only a limited computational overhead since it reliesexclusively on information stored at the concepts ci and cj in the computation. In fact, the lowercovers of n̂ in the product lattice are exactly the nodes of the form (ci; c0j) or (c0i; cj) where c0i is anarbitrary lower cover of the concept ci in the lattice L1 and c0j is an arbitrary lower cover of cj in L2.19



1: procedure Sort(In/Out: C = fc1; c2; :::; clg)2:3: Local : Bunches : array [0..kAk] of sets4: : Order : list of concepts5:6: Order  ;7: for i from 1 to l do8: Bunches[kIntent(ci)k]  Bunches[kIntent(ci)k] [ fcig9: for i from 1 to kAk do10: for all c 2 Bunches[i] do11: Order  hci & Order fc becomes the head of Orderg12: C  Order Algorithm 6: Linear-time sorting of the concept set5.6 Complexity issuesLet the number of concepts in the partial lattices L1 and L2 be respectively l1 and l2 and the numberof concepts in L be l. Let also m be the total number of attributes and k the number of objects. Inour complexity assessment, we shall also use the parameter d(L) which is the branching factor, i.e.,the maximal number of lower covers of a node in the lattice L. The above notations are summarizedin the following table.Variable Stands forli the number of concepts in Li (i = 1; 2)l the number of concepts in Lm kAkk kOkd(L) maximal number of lower covers of a node in LAt this step, we consider only the cost of the assembly operationAssembly. The cost of the recursivecalls of the global procedure will be provided in Section 6.Consider the following basic facts. First, the number of lower covers in a concept lattice L, d(L),is at most equal to the number of attributes, m. Moreover, the number of lower covers in L�, d(L�),is bounded above by the sum d(L1) + d(L2). Finally, with a total order assumed both on O and Aobject/attribute sets, these collections may be canonically represented as sorted lists of integers (ranksin the respective order). This allows all set-theoretic operations (e.g., [, \, =) to be executed in timelinear in the size of the manipulated sets.Among auxiliary primitives, the Sort procedure is linear in the number of its arguments, kLk,whereas the minimality check for intent intersections (Find-Psi) is linear in the number of lowercovers in the product, O(d(L1) + d(L2))6. The update of the precedence relation (Update-Order),has time complexity which is a product of the number of the potential lower covers to check and thecost of the check (linear in m), O((d(L1) + d(L2))m). The complexity of the basic operations is givenin the following table. Primitive Asymptotic complexitySort O(l1 + l2)Find-Psi O(d(L1) + d(L2))Update-Order O((d(L1) + d(L2))m)6In fact, the comparisons are carried on cardinalities, i.e., integer numbers, and therefore take constant time. Further-more, the cardinalities of a concept intent/extent need only to be computed once, upon the concept creation. Therefore,at this point they are assumed given. 20



The cost of the assembly algorithm heavily relies on the complexity of its dominant part, the nestedfor loop. This is divided into two major parts: the �rst one is related to the �xed part of the loopand the second one concerns the if statement. The �rst part is executed once for each node of theproduct, i.e., l1l2 times. Its dominant complexity comes either from extent intersection (linear ink), or the computation of ProductLowerCover (linear in the candidate lower cover number, i.e.,d(L1) + d(L2)), or minimality test (Find-Psi) for extent intersection (linear in the actual lower covernumber, i.e., d(L)). As both d(L) and d(L1)+ d(L2) do not exceed m, the cost of the entire �xed partis O((k +m)l1l2.The if part of the loop body executes only on product nodes generating global concepts, i.e., kLktimes. Its core complexity comes from the Update-Order procedure, so the whole cost is O((d(L1)+d(L2))ml) which further simpli�es to O(lm2):In summary, the total complexity of the algorithm, beside partial lattice constructing, amounts toO(l1l2(m+ k) + lm2) which is bounded by:O((k +m)(l1l2 + lm)):6 DiscussionIt is generally admitted that the worst-case complexity of the main lattice constructing algorithmsis O((k + m)lmk), with the exception of the algorithm in [17] whose complexity is known to beO((k +m)lm). However, comparing lattice constructing algorithms with respect to their asymptoticcomplexity is a delicate task. On the one hand, there may be exponentially many concepts, a fact whichmakes any algorithm ine�cient. Fortunately, contexts contain, most of the time, only a polynomialnumber of concepts. On the other hand, there is no way of correctly evaluating the complexity ofthese algorithms with respect only to their input since the size of the lattice is hard to predict fromparameters of the binary table7. Indeed, all previous studies of the practical performance of knownalgorithms have shown that there is no clear \best" algorithm. Instead, the relative performance of thedi�erent methods vary according to the nature of the data8. A key factor is thus the density measuringthe relative number of X's in a table: !d = kIkkOk:kAk :For example, the incremental algorithm of Godin et al. is known to perform fast on sparse contexts,!d < 0:10, but seems to lag behind competing methods with dense ones, !d > 0:5. As an apparentexplanation for this fact, the algorithm relies strongly on the number of concepts, which usually growsfast with !d. An additional di�culty for practically comparing algorithms is the size of the output(previous studies only considered small-size contexts, i.e., less than a thousand objects).In summary, situating our own algorithm within the family of existing methods in an absolute wayis hard. It means, in particular, transforming the complexity formula into a canonic form, i.e., gettingrid of l1l2. The question of how l1:l2 compares to lm amounts to estimating the size of the lattice9.However, we claim that the only large contexts which are tractable at present, i.e., produce reasonable-size lattices, show linear growth of the concept set with respect to object number. In such contexts,l1:l2 is at most O(lm) regardless of the way the attribute set is split. Only for those contexts, theglobal complexity of our divide-and-conquer strategy may be estimated by:O((k +m)lm logm):7The problem of estimating the number of concepts from the context parameters was recently proved to be a hardone [13].8Here the nature of a dataset does not refer to a well de�ned notion, but rather to a set of data parameters, whoseinuence is not well understood.9Of course, but there are obvious cases where l1:l2 is orders of magnitude greater than lm.21



The logm factor reects the depth of the binary tree that results from the recursive splitting ofcontexts.A deeper insight into the divide-and-conquer strategy is provided by a set of simulation runs. Thetests include two classes of contexts, both of them involving only a linear number of concepts. Both aregenerated by a random procedure. The �rst generation uses a uniform probability distribution witha low density factor and simulates contexts from software engineering applications. The second onesimulates the contexts derived from tables in relational databases which typically contain numericaland categorical data. A table based on a set of properties P is translated into a binary relation byscaling each property p into a set of Boolean attributes Ap. The resulting context has a particularform: given a row in the database table and a property p, the object o that models the row in thecontext K can have at most one of the attributes in Ap10. Thus, for each initial p, the extents of thescaled attributes in Ap are pair-wise disjoint: \a1;a22Apfa1; a2g0 = ;. The tests have been carried out
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Figure 5: Left : CPU-time diagrams for three algorithms: Bordat, Nourine and Raynaud (R&N), andDivide-and-Conquer (D&C). Right : Evolution of l1:l2/l over object number.on an IBM PC platform (Pentium III, 192MB RAM, Windows 98). Figure 5 on the left shows thetime used by three algorithms: Bordat's, Nourine and Raynaud's and our own algorithm over the samedataset. The results have been obtained on database-like contexts, by varying the number of objectsbetween 1000 and 5000 with an increment of 500. Each point on a curve gives the average over 20di�erent runs.As it may be seen on the left part of Figure 5, the divide and conquer algorithm outperforms the restwith a time growth close to linear in the number of objects. However, jumping to the conclusion that itis the perfect algorithm for contexts with small number of concepts would be an exaggeration since theresults over randomly generated contexts (not included here for the sake of conciseness) do not con�rmit. As a possible intuition as to why the divide-and-conquer approach works better on database-likecontexts, we include a second diagram showing the evolution of the ratio between l1:l2 and l over thesame datasets (see Figure 5 on the right). With random sparse data, the ratio grows slowly and tendsto stabilize, at relatively high level indeed, whereas database-like contexts show almost no growth.To conclude, a plausible explanation of the above results seems to lie in the strong inner structureof the database-like contexts. This structure is successfully unveiled by splitting which makes thedivide-and-conquer approach perform well whereas other algorithms simply fail to take advantage ofit.10If the respective entry of the table is not NULL, then the object o has exactly one of those attributes.22



7 Conclusion and further researchWe presented an approach for lattice assembly together with its theoretical foundations. It underliesa divide-and-conquer approach for constructing Galois/concept lattices whose worst-case complexityand practical performances have been reported.An important result of our work is the complete characterization of the global Galois/concept latticeas a substructure of the direct product of the lattices related to partial contexts. This helps to estab-lish clear links between partial and global lattices and therefore enables an e�cient lattice assembly.Another contribution lies in a novel way of constructing lattices, i.e., from fragments, which may proveuseful when data comes from di�erent sources (e.g., in the process of constructing a data warehouseor mining for knowledge from a set of databases). Finally, the possibility of combining several partialresults into a single global one allows a set of new lattice constructing algorithms to be devised, inparticular algorithms implementing a hybrid batch-incremental strategies.A large set of intriguing questions are yet to be answered as the work goes on. In the short term,potential improvements of the practical performance of our algorithm are to be examined. Amongthe set of open issues, we are currently focusing on the e�ects of \optimal" splits of the contexts, i.e.,splits that keep the size of the partial lattices minimal. Another research avenue follows the removalof objects/attributes from a lattice (inverse incrementality) and goes to the challenging issue of usinga (global) lattice to discover meaningful viewpoints, i.e., splits in the corresponding context togetherwith the respective (partial) lattices. In a more general way, progress with the split-based productoperations is expected to provide the basis for a better mastering of more complex constructs likesub-direct and tensorial products of concept lattices.AcknowledgmentsThis work was supported in part by INRIA Post-Doctoral Fellowship and the Natural Sciences andEngineering Research Council of Canada (NSERC) under grant PGPIN-0041899. The authors wouldlike to thank the anonymous referees for their valuable comments and suggestions. Thanks go as wellto Robert Godin, Guy Tremblay and Srecko Brlek for the fruitful discussions that helped improve theresults of the paper, and to Timothy Walsh for his valuable language assistance.References[1] M. Barbut and B. Monjardet. Ordre et Classi�cation: Alg�ebre et combinatoire. Hachette, 1970.[2] B. Birkho�. Lattice Theory, volume 25. American Mathematical Society Colloquium Publ., Providence,revised edition, 1973.[3] J.-P. Bordat. Calcul pratique du treillis de Galois d'une correspondance. Math�ematiques et SciencesHumaines, 96:31{47, 1986.[4] M. Chein. Algorithme de recherche des sous-matrices premi�eres d'une matrice. Bull. Math. de la soc. Sci.de la R.S. de Roumanie, 13, 1969.[5] B. A. Davey and H. A. Priestley. Introduction to lattices and order. Cambridge University Press, 1992.[6] B. Ganter. Two basic algorithms in concept analysis. preprint 831, Technische Hochschule, Darmstadt,1984.[7] B. Ganter and R. Wille. Formal Concept Analysis, Mathematical Foundations. Springer-Verlag, 1999.[8] R. Godin, H. Mili, G. W. Mineau, R. Missaoui, A. Ar�, and T. T. Chau. Design of class hierarchies basedon concept (galois) lattices. Theory and Application of Object Systems, 4(2):117{134, 1998.[9] R. Godin, R. Missaoui, and H. Alaoui. Incremental concept formation algorithms based on galois (concept)lattices. Computational Intelligence, 11(2):246{267, 1995.23
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