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Abstract

Galois lattices and formal concept analysis of binary relations have proved useful in the resolu-
tion of many problems of theoretical or practical interest. Recent studies of practical applications
in data mining and software engineering have put the emphasis on the need for both efficient
and flexible algorithms to construct the lattice. Our paper presents a novel approach for lattice
construction based on the apposition of binary relation fragments. We extend the existing the-
ory to a complete characterization of the global Galois (concept) lattice as a substructure of the
direct product of the lattices related to fragments. The structural properties underlie a proce-
dure for extracting the global lattice from the direct product, which is the basis for a full-scale
lattice construction algorithm implementing a divide-and-conquer strategy. The paper provides a
complexity analysis of the algorithm together with some results about its practical performance
and describes a class of binary relations for which the algorithm outperforms the most efficient
lattice-constructing methods.

Résumé

Les treillis de Galois et ’analyse formelle des concepts de relations binaires ont démontré leur
utilité dans la résolution de nombreux probleémes d’ordre théorique ou pratique. Les applications
les plus récentes, notamment en fouille de données et en génie logiciel, ont mis en évidence le
besoin d’algorithmes efficaces et flexibles pour la construction de treillis. Dans cet article, nous
présentons une approche originale pour la construction de treillis qui repose sur I’apposition de
fragments de relations binaires. Nous complétons la théorie sous-jacente par la formulation d’une
caractérisation compléte du treillis de Galois (concepts) en tant que sous-structure du produit
direct des treillis correspondant aux fragments. Ce résultat est utilisé dans la définition d’une
procédure construisant le treillis de Galois global a partir du produit direct, qui constitue le
fondement d’une stratégie complete de construction de treillis de type “diviser pour régner”. Nous
étudions la complexité asymptotique du nouvel algorithme et fournissons des résultats concernant
ses performances pratiques. L’article décrit également une classe de relations binaires pour lesquels
notre méthode se montre plus performante que le reste des algorithmes connus.

Key Words: Galois lattice, formal concept analysis, lattice-constructing algorithms, data frag-
ments, context apposition, lattice products.
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1 Introduction

Formal Concept Analysis (FCA) is a branch of the lattice theory motivated by the need for a clear
mathematization of the notions of concept and conceptual hierarchy [7]. The main concern within
FCA is about the lattice structure induced by a binary relation between a pair of sets, called a Galois
lattice [1] or concept lattice [21]. Initially intended as an intuitive foundation for the whole lattice
theory [21], the FCA has inspired a number of studies establishing links between the Galois (concept)
lattices and other known classes of partially ordered structures [22, 23, 17]. Meanwhile, the strong
theoretical foundations of FCA have attracted the interest of practitioners from various fields such as
data mining [18, 25], knowledge acquisition [15], and software engineering [8, 19]. Today, there is a
constantly growing number of studies within the field about both theoretical and practical issues.

Our own concern is the development of effective algorithms for the construction of Galois/concept
lattices from realistic datasets, i.e., large collections of possibly volatile, fragmented and noisy data
items. The analysis of such data requires the design of a new generation of lattice-constructing al-
gorithms that combine computational efficiency, robustness and flexibility. In the present paper, we
tackle the problem of assembling lattices corresponding to the fragments of a binary table, a problem
which arises with various dataset updates. For this purpose, we complete the existing theory of a
posteriori fragmentation of binary tables due to Wille [24] and provide the foundation of an efficient
lattice assembly procedure. The procedure carries out a filtering of the direct product of the partial
lattices which retrieves the concepts of the global lattice and their precedence links. The procedure
is further extended to a full-range lattice-constructing algorithm implementing a divide-and-conquer
strategy which, when applied to a particular class of binary relations, proved more efficient than the
most powerful lattice algorithms known to date.

The benefits of our assembly-based strategy lie far beyond mere visualization or CPU-time gain.
Aside from a better understanding of the semantics behind context and lattice composition, our struc-
tural results constitute a unified framework for devising new lattice algorithms.

The paper is organized as follows. Section 2 gives a background on Galois/concept lattices and
nested line diagrams. In Section 3, we recall the definition of the apposition operation and list some
important properties of the mappings between concepts in the global lattice and those in the partial
ones. Section 4 presents the basic structural results that underlie our algorithmic approach. The
approach itself is completely described in Section 5. Finally, we compare our work with some related
previous studies in Section 6.

2 Background on formal concept analysis

Formal concept analysis (FCA) [7] is a discipline that studies the hierarchical structures induced
by a binary relation between a pair of sets. The structure, made up of the closed subsets (see below)
ordered by set-theoretical inclusion, satisfies the properties of a complete lattice and has been first
mentioned in the work of Birkhoff (see [2]). Later on, it has been the subject of an extensive study [1]
under the name of Galois lattice. The term concept lattice and formal concept analysis are due to
Wille [21]. In the following, we first recall some basic notions of ordered structure theory!, which are
widely used in the presentation of FCA.

2.1 The basics of ordered structures

P = (G,<p) is a partial order (poset) over a ground set G and a binary relation <p if <p is
reflexive, antisymmetric and transitive. For a pair of elements a,b in G, if b <p a we shall say that a
succeeds (is greater than) b and, inversely, b precedes a. If neither b <p a nor a <p b, then a and b

LAn excellent introduction to the subject may be found in [5].



are said to be incomparable. All common successors (predecessors) of a and b are called upper (lower)
bounds. The precedence relation <p in P is the transitive reduction of <p, i.e. a <p bif a <p b
and all ¢ such that a <p ¢ <p b satisfy ¢ = a or ¢ = b. Given such a pair, a will be referred to as
an immediate predecessor of b and b as an immediate successor of a. Usually, P is represented by its
covering graph Cov(P) = (G, <p). In this graph, each element a in GG is connected to both the set of
its immediate predecessors and of its immediate successors, further referred to as lower covers (Cov')
and upper covers (Cov") respectively. In the following, we shall visualize a partial order by its Hasse
diagram, that is the line diagram of the covering graph where each element is located “below” all its
SUCCESSOrs.

A subset A of G is a chain (anti-chain) in P if all elements in A are mutually comparable (in-
comparable). A subset B of G is an order ideal (order filter) if Va € G,b € B, a <p b= a € B
(b<pa=a€ B). Foragivenset A C X, theset | pA = {c € X|Ja € A,c <p a} is the smallest order
ideal containing A. Dually, TpA = {c € X|Ja € A,a <p ¢} denotes the smallest order filter containing
A. In case of a singleton A, we shall note | pa instead of |p{a} (1pa instead of tp{a}). Moreover,
the order interval [a,b] is the subset of nodes obtained by the intersections of an order filter 1 pa and
an order ideal | pb. A convex subset of an order is a subset that includes for any pair of its members
the interval they might compose. A mapping ¢ between two posets P and @) such that ¢ : P — @
is said to be order preserving if an order relation between two elements of P entails an order relation
between their respective images under ¢ in Q:

z<py= o) <q ).

Furthermore, ¢ is said to be an order embedding of P into () if the condition is also a sufficient one:

z<py e plzr) <q o).

A lattice L = (G, <r) is a partial order where any pair of elements a,b has a unique greatest lower
bound (GLB) and a unique least upper bound (LUB). GLB and LUB define binary operators on G called
respectively join (a vV, b) and meet (a A, b). In a complete lattice L, all the subsets A of the ground
set have a GLB and a LUB. In particular, there are unique maximal (top, T) and minimal (bottom,
1) elements in the lattice. Finally, the elements with a single immediate predecessor (successor) are
called join-irreducible (meet-irreducible), and the set that they constitute is denoted by J (L) (M(L)).

2.2 Fundamentals of FCA

FCA considers a binary relation I (incidence) over a pair of sets O (objects) and A (attributes). The
attributes considered represent binary features, i.e., with only two possible values, present or absent.
In this framework, the meaningful subsets of objects/attributes represent the closed sets of the Galois
connection [1] induced by I on the pair O and A.

2.2.1 Basic notions

The binary relation is given by the matrix of its incidence relation I (oI means that object o has
the attribute a). This is called formal context or simply context (see Figure 1 for an example).

Definition 1. A formal context is a triple K = (O, A, I) where O and A are sets (objects and attributes
respectively) and I is an incidence relation, i.e., I C O x A.

For convenience reasons, we shall denote objects by numbers and attribute by lower-case letters.
Furthermore, we simplify the standard set notation by dropping out all the separators (e.g., 127 will
stand for the set of objects {1,2, 7}, and abdf for the set of attributes {a,b,d, f}.

Two set-valued functions, f and g, summarize the links between objects and attributes established
by the context.
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Figure 1: A sample context (left) and its corresponding Galois/concept lattice (right). Both have been
borrowed from [7].

Definition 2. The function f maps a set of objects into the set of common attributes, whereas g is
the dual for attribute sets:

e f:P(O) = P(A), f(X)={a€ ANo € X,0la}
e g:P(A) —» P(O), gY)={oe OVa e Y, ola}

For example, w.r.t. the context in Figure 1, f(678) = acd and g(abgh) = 23. In what follows, for
brevity, both functions will be denoted by ’. Furthermore, f and g are combined in a pair of composite
operators, g o f(X) and f o g(Y) which map the sets P(O) and P(A) respectively into themselves
(denoted by ). For example, the image of X = {5,6,7} is X" = {5,6,7,8}. The functions f and ¢
induce a Galois connection [1] between P(O) and P(A) when both sets are taken with the set-inclusion
C as (partial) order relation. It follows that the composite operators are actually closure operators and
therefore each of them induces a family of closed subsets over the respective power-set. The functions
f and g constitute bijective mappings between both families. A pair (X,Y’), of mutually corresponding
subsets is called a (formal) concept in [21].

Definition 3. A formal concept is a pair (X,Y) where X € P(O), Y € P(A), X =Y andY = X"

For example (see Figure 1), the pair ¢ = (678, acd) is a concept since the objects 6, 7, and 8 share
the properties a, ¢, and d and, conversely, the attributes a, ¢, and d are held by the objects 6, 7, and
8. In the FCA framework, X is referred to as the concept extent and Y as the concept intent. In what
follows, concepts will be denoted by the letter ¢ and the auxiliary primitives Intent() and Extent() will
refer to their intent and extent respectively.

The set of all concepts of the context K = (O, A, I), Cx, is partially ordered by the order induced
by intent/extent set theoretic inclusion:

(X1,11) <k (X2, Y2) © X; C Xo(Yo C ).

In fact, set inclusion induces a complete lattice over each closed family and both lattices are isomorphic
to each other with f and g as dual isomorphisms. Both lattices are thus merged into a unique structure
called the Galois lattice [1] or the (formal) concept lattice of the context KC [7].



Property 1. The partial order £ = (Cx,<k) is a complete lattice with LUB and GLB as follows:
k k k
o Vie (X3, Vi) = (Uizy X", Nizy Ya),
k k k
o Nimt (X3, i) = (Mg X, (Ui ¥3)")-

Figure 1 shows the concept lattice of the context in Figure 1. For example, given the concepts
c1 = (36,abc) and co = (56, abdf), their join and meet are computed as follows:

e (36,abc) V (56, abdf) = (12356, ab),
e (36, abc) A (56, abdf) = (6, abedf).

The interest in FCA and Galois lattices from a theoretical viewpoint is motivated by the following
remarkable property [21] basically stating that each complete lattice is isomorphic to the concept lattice
of some formal context.

Property 2. Given a lattice L = (G, <), let J(L) and M(L) be the sets of its join-irreducible and
its meet-irreducible elements respectively. Then L is isomorphic to the concept lattice of the context

Kp = (J (L), M(L), T (L) x M(L)N <g).

Moreover, well-known constructs from partial order theory such as the Dedekind-McNeille hull of a
given poset P or the lattice the mazimal anti-chains of P can be constructed as the concept lattices
of suitably chosen contexts.

2.3 Approaches towards the construction of Galois/concept lattices

There is a variety of algorithms that may be used in computing the concept lattice from the binary
table. These can be mainly divided into two groups: procedures which extract the set of concepts [4,
16, 6] only, and algorithms for constructing the entire lattice, i.e., concepts together with the lattice
order [3, 9, 17]). A detailed description of these algorithms being out of the scope of this paper?, we
focus only on the most efficient lattice algorithms known today.

An efficient algorithm has been suggested by Bordat in [3] which generates both the concept set
and the Hasse diagram of the lattice. It takes advantage of the structural properties of the precedence
relation <, to generate the concepts in an increasing order. Thus, from each concept ¢ the algorithm
generates its upper covers - these are the concepts whose intents are maximal closed subsets of the
intent of ¢. The obvious drawback of the method is that a concept is generated several times, once per
each lower cover. A partial remedy of the problem is a concept lookup mechanism which allows each
concept extent to be computed only once.

The design of flexible algorithms was pioneered by Godin et al. [9] who designed an incremental
method for constructing the concept lattices. The lattice £ is thus constructed starting from a single
object 01 and gradually incorporating any new object o; (on its arrival) into the lattice £; (over a
context K = ({01,...,0i_1}, A, I)), each time carrying out the necessary structural updates. This
method avoids starting from scratch each time the context is extended (with a new object/attribute)
by making a maximal reuse of the already available structure. Actually, the incremental paradigm,
known elsewhere in practical applications of lattice theory [11, 20], has been introduced even earlier,
with the algorithm of Norris [16] which is basically an incremental procedure even if not stated as such.

Recently, Nourine and Raynaud [17] suggested a general approach towards the computation of closure
structures and showed how it could be used to construct Galois/concept lattices. The method proceeds
in two steps: first, concepts are generated, and then their precedence links are established. Concept
generation is an incremental process similar to the one described in [9]. The second step is a traversal
of the concept set whereby for a given concept ¢ the entire order filter 1, ¢ is computed. Concepts in

2But an interested reader will find a comprehensive study (of partial scope) in [10], while [9] and and [14] could also
help



1c ¢ are generated as joins of ¢ and any object o which is not in Exztent(c). An upper cover ¢ of ¢ is
detected within 1, ¢ by considering the number of the objects in Extent(¢) L Extent(c). The following
property summarizes the results from [17]:

Property 3. A concept ¢ is an upper cover of another concept c iff it is generated a number of times
equal to the size of the set difference between the respective extents:

¢ <c ¢ & ||Extent(c) L Extent(c)|| = ||{o € Olo' N Intent(c) = Intent(c)]|.

It is noteworthy that extensive studies of the practical performances of most of the above cited
algorithms are provided by [9] (somewhat out-dated) and [14]. Such studies are of high importance
for the domain since all the algorithms have exponential worst-case complexity due to the exponential
number of concepts, and therefore are just as inefficient as a naive algorithm that examines all possible
subsets of attributes/objects. However, in practical cases, only a small number of concepts do occur,
so it makes sense to study how each algorithm performs on realistic datasets.

2.4 The evolution of requirements

A very general observation on the current state of the FCA algorithmics, on the one hand, and the
intended applications, on the other hand, reveals a big performance gap. In fact, most of the existing
algorithms have been designed to work on small binary tables (less than hundred objects/attributes)
stored in the memory of a single computer. However, current data in software applications, databases
and data warehouses typically give rise to huge contexts which require secondary storage, may contain
missing (NULL) or invalid values, and can be distributed over a network. Moreover, databases often
constitute highly volatile contexts due to frequent updates to data.

Actually, the one-increment, i.e., adding a single object at a time, is only a partial solution to the
problem of volatile data. As a matter of fact, in most databases and data warehouses the updates are
not object-wise but rather group-wise, meaning that a whole subset of objects 00 = {0;41, ..., 0i41} are
to be added at a time ®. Instead of inserting them one by one into £;, one may think of first extracting
the lattice £ corresponding to dO and then construct £;4; from £; and §£. The challenging problem is
then the merging or assembly of both lattices, a task which generalizes the conventional, single-object
incrementation.

The decomposition of complex problems into a set of smaller problems is a solving strategy used
in every area of computer science. In the FCA field, such a decomposition may be carried out in
various ways. A natural way of doing it consists of splitting a large context into a set of smaller
contexts that share objects and/or attributes. For example, splits of this kind might be used to
simulate batch-wise updates of a data warehouse (common attributes/different objects), integration of
several viewpoints on a set of individuals (common objects/different attributes) or a distribution of the
dataset over a network (different objects/different attributes). Once the sub-contexts are established
and the respective lattices constructed, these could be then merged into a unique global structure,
corresponding to the entire dataset.

The partition of a context over its object/attribute set has been formalized through the apposi-
tion/subposition operations which have been defined to support visualization (see the next Section).
However, to the best of our knowledge there have been no detailed studies of the relevant algorith-
mic problems. In particular, the potential utility of the underlying framework for lattice-constructing
purposes has not been explored.

In what follows we present a Galois (concept) lattice assembly procedure for contexts that share the
same set of objects and show a way to extend it into a full-scope lattice-constructing method. As our
approach is rooted in the FCA theory related to the apposition/subposition operators, we first recall
its basics.

3Similar problems arise when the dataset to process comes from a distributed database.



3 Apposition of contexts and partial lattices

Beside classical order product operators for lattices (e.g., direct, subdirect, tensorial products [7]),
FCA provides a set of context-oriented operators of specific impact on the corresponding lattices. Here
we focus on apposition/subposition operators which were initially intended to support visualization of
large lattices.

3.1 Apposition and subposition of contexts
Apposition is the horizontal concatenation of contexts sharing the same set of objects [7].

Definition 4. Let K1 = (0, A1, 1) and Ky = (O, Ag, 1) be two contexts with the same set of objects
O. Then the context K = (O, AjUAy, 1UI) is called the apposition of K1 and Ko: K = K1|K,.

Usually, the intent of K is set to the disjoint union (denoted by U) of the involved context intents,
but this constraint is not essential for our own study. For example, with a global context K = (0, A, I)
as given in Figure 1, where O = {1,2,3,4,5,6,7,8} and A = {a,b,c,d,e, f,g,h,i}, let Ay = {a,b,c,d}
and A, = {e, f,g,h,i}. The two lattices corresponding to Ky and Ky, which will further be referred to
as partial lattices?, say £, and L, are given in Figure 2. Some intriguing properties relating £; and
L5 to the lattice of the apposition context £ will be discussed in the following paragraphs.

#1 (12345678,a) #1 (12345678, )

(1234,9)

#2
#7 > # O
(7€) (568,f) (234,gh)

(36,abc) (56,abd) (678,acd)

(4,ghi)

O
(6,abcd)

#8

#7

(9D efghi)

Figure 2: Partial lattices £1 and L2 constructed from a vertical decomposition of the context in Figure 1.

Subposition, or vertical assembly of contexts upon a common attribute set, is dual to apposition.
Hence, the results found in this paper are dually valid for subposition.

3.2 Nested line diagrams

Nested line diagrams (NLD) [7] are visualization aids which allow a lattice £ to be drawn as a sub-
structure of the direct product of a pair® of partial lattices £ and £5. Recall that the direct product
of a pair of lattices £1 and Lo, L« = L1 X Lo, is itself a lattice L, = (Cx, <x) where:

o Cx = Cx, X Cg,,
o (c1,02) <x (€1,62) & 1 <g, €1, €2 <g, Ca.

The nodes of L4 are pairs of concepts (c1,c2) where ¢; appears in £; for i = 1,2. For convenience
reasons, the concrete concepts from the above example will be identified by their index in the respective

4As K1 and Ky are partial contexts for iC.
5The definition generalizes easily to an arbitrary number of lattices. However we only consider the two-level nesting.



partial lattice, a unique number denoted by #i, ranging between 1 and ||Ck,||. Within a pair (¢;, ¢;) in
L1 x L, the index of the partial lattice where the concept cx; is to be taken corresponds to its order.
Thus, the pair (cg7,cxs) denotes the product of the concept #7 of L4, i.e., the concept (678, acd),
with the concept #3 of L., (568, f).

A nested line diagram basically represents the product lattice L4 by combining the respective line
diagrams of the lattices £; into a unique complex structure. However, neither the nodes of £y nor
their precedence links are directly represented. Instead, the information about them is spread over the
various levels of nesting. Figure 3 presents the NLD of the product lattice L« = £1 X L. As it can
be seen, the line diagram of the lattice £, is used as an outer frame in which the diagram of £, is
embedded. Within the NLD, a node (¢;, ¢;) of the product is located by first finding the node for ¢; in

Figure 3: The nested line diagram of the lattice £1 x L.

the outer diagram and then finding the respective node ¢; within the local £, diagram. For example,
the node (cus3,cx1) (see the numbering in Figure 2) of the product lattice is located within the NLD
in Figure 3 at the top of the inner lattice within the outer node labeled by c.

The lattice £ is represented by an isomorphic sub-structure of £4. The nodes belonging to the
sub-structure are drawn in a distinguishable way on the diagram (here in black as opposed to the
remaining “void” nodes drawn in white). The reader may check the isomorphism between the partial
order induced by the black nodes (further referred to as full nodes) in Figure 3 and the lattice shown
in Figure 1.

3.3 Linking the apposition lattice to the partial lattices

Any concept of £ can be “projected” upon the concept lattice, £1 (L£2) by restricting its intent to the
set of “visible” attributes, e.g., those in A; (A3). Combining both functions mapping the global lattice
onto the partial ones results in an order homomorphism between £ and the direct product (see [7]).

Definition 5. The function ¢ : C — Cx, maps a concept from the global lattice into a pair of concepts
of the partial lattices by splitting its intent over the partial context attribute sets Ay and As:

(X, 7)) = (Y NnA), YN A, (VN A), Y NA)).



For example, the concept (568, adf) is mapped by ¢ into the concepts (5678, ad) and (568, f) from
L1 and L, respectively. The mapping ¢ is fundamental within the nesting framework, since the set of
nodes representing £ within £, x £y are exactly the images of the concepts from £ by ¢.

The inverse mapping between £ x Ly and L is also based on intersection, but of concept extents.
Actually, the homomorphism ) sends a pair of partial concepts from the product lattice into a global
concept whose extent is the intersection of their own extents.

Definition 6. The function ¢ : Cx — C maps a pair of concepts over partial contexts into a global
concept by the intersection over their respective extents:

P(((X1,77) , (X2, ¥3))) = (i NXy, (X5NXy)).

For example, the image of the pair (cx7,cus) (see Figure 2) by 1 is the concept (68, acdf). A set
of interesting properties of the mappings ¢ and ¢ have been listed in [12], mostly based on the basic
observation that any concept intent in £; is the intersection of a concept intent in £ with the attribute
set A; (see Definition 5).

First, ¢ maps distinctive concepts into distinctive product nodes.

Property 4. The mapping @ is injective.
Proof. (sketch) As partial concept intents are intersections of global intents with the sets A;, given
distinct concepts (X,Y) and (X,Y) in £, at least one of the following conditions holds:
e YNA Y NA,
e YNA, Y NA,.
Hence, the images of (X,Y) and (X,Y) under ¢ diverge on at least one of the product dimensions. [

Next, ¢ is compatible with the order within £.
Property 5. The mapping ¢ is an order embedding of L into Ly :
p: L= L.

Proof. (sketch) ¢ preserves the order between concepts since the intersection of intents with A; (or
with A,) is monotonic with respect to £. The mapping is also injective; so it is an order embedding of
L into L. 0

Moreover, ¢ permutes with the join operator V, thus the function also preserves lattice joins.
Property 6. The mapping ¢ is join-preserving:
Ver,ea € Cop(er Vea) = w(er) Vi p(er).

Proof. (sketch) Observe that joins in a concept lattice involve intersection of the intents of the argument
concepts, just as ¢ involves intersection of the partial attribute sets. Furthermore, a join over the
product is simply the product of the point-wise joins. Finally, the associative property of intersection
entails the above equality. O

All the above properties have practical implications that jointly enable an easy “recovery” of the
apposition lattice structure from the partial lattices. For example, the injection allows the concepts
of the apposition lattice to be identified with pairs of concepts from the partial lattices. Similarly, the
last two properties state that the global lattice £ is isomorphic to its image under ¢ on L, and that
this image is a proper sub-lattice of L.

Similar properties could be established about the ) mapping. A first result is that 1) preserves order
in the product lattice.
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Property 7. The mapping ¢ is order-preserving:
V(er,e2), (e3,¢a) € Cx, (c1,¢2) <x (c3,¢a) = P(cr,e2) < Ples,ca).

Proof. (sketch) Trivially follows from the definition of the lattice order based on the inclusion of extents
and the definition of the ¥ mapping based on extent intersection. O

Moreover, all sets ¢~ ' (c) of antecedents for a global concept ¢ are convex subsets of Cy.

Property 8. The classes of the kernel relation induced by ¢ are convex subsets of Cx :
Ve € C,V(er, e2), (e3,¢4) € Y1), V(es, c6) € Cx((c1,¢2) <x (c5,¢6) <x (c3,¢4) = Y(cs,c6) = c).

Proof. (sketch) It is based upon the fact that the extent intersection is monotonic with respect to the
order in £ (see the definition of the function R in the next section). O

3.4 Exploring the apposition for lattice computation

Apposition/subposition operations were intended to ease the visualization of concept lattices and
do not have straightforward computational interpretation. Thus, the only related algorithmic problem
is the detection of the full nodes of the NLD, i.e., the images of the global concepts by ¢. To our
knowledge, no efficient algorithm has been designed up until now to solve the problem.

Our claim is that, although apposition/subposition have been oriented towards visualization, they
may underlie the constructing of the global lattice from the partial ones. For this purpose, nodes
and links of the global lattice may be suitably “recovered” from the product lattice. Actually, an
appropriate procedure is necessary for each of the following three tasks:

e identification of global concepts through their respective images by ¢,
e computation of the intent and the extent of each global concept,
e computation of the cover relation of £, i.e., the set of lower covers for each concept.

In this new setting, ¢ and v cannot be directly applied because only the product lattice is supposed
known. Therefore, new structural results are required to enable the computation of £ by looking only
at L, i.e., without a global view of the data.

4 Characterizing the global lattice

In this section, we provide some theoretical results and useful structural properties that help obtain
efficient algorithmic solutions for the above listed problems.

4.1 Structural properties

The first group of problems to tackle concerns the constructing of the components of the global
lattice £ from the lattices £1 and Lo, or, equivalently, from the lattice L£«. For this purpose, we
should first identify a subset of the ground (concept) set in £, that reflects the structure in £. Recall
that the function ¢ maps the lattice £ into an isomorphic sub-structure of L. Hence, our first concern
will be to provide characteristic properties of the sub-structure. We shall then see how these elements
compare within £, in order to establish the order in L.
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4.1.1 Localizing ¢(c)

Our first aim is to find a necessary and sufficient condition for an element 1 = (¢1,¢2) in L4 to be
the image of a concept ¢ = (X,Y) in £ by ¢, i.e. ¢(c) = n. Suppose this is actually the case. Recall
that, by the definition of ¢, ¢ = (Y N4;), Y NA4y) and co = (Y N As)", Y N Ay). We claim that ¢ is,
in turn, the image of 7 by ¢. In fact, when applied to (¢1, c2) with the above structure, the function
gives (see Definition 6 in Section 3): (Y NA;)' N(Y NA), (Y NA)' N NA))).

For example, with ¢ = (5678, ad) the respective partial concepts are ¢; = (5678, ad) and ¢y =
(12345678, (), (i.e., node cx4 of £y and node cx1 of Lo in Figure 2, respectively). Hence, the product
node @(c) is 7 = (cg4, c1). Observe now that the extent of the above concept is made up of all the
objects which have simultaneously all the attributes in Y N A; and those in Y N A, (see the example in
Figure 4). This basically means, since A; U A, = A, that the extent is exactly the set of objects having
Y, i.e. Y'. Consequently, the concept may be simplified to Y',Y" which is exactly X,Y. Indeed, the
inverse mapping of (cga,cg1) retrieves 5678 as the extent of the image concept ¢(n) which identifies
the initial concept ¢. In summary, for any concept ¢, its image by ¢ is among the nodes mapped by
into c.

Property 9. ¢(c) € v 1(c).

The next step is to find a characterization of ¢y ~!(¢) within £ and a property of ¢(c) within that set.
Observe that the use of ¢y !(¢) as an intermediate structure will help limit the search of a particular
element to a small portion of the global lattice L.

4.1.2 Characterization of ¢ !(c)

The characterization of ¢~!(c) follows from the trivial observation that a node f = (¢1,¢3) in Ly
is mapped to a concept ¢ = (X,Y) in £ by ¢ if and only if the extent of ¢ is exactly the intersection
of the extents of ¢; and ¢y, say X; and Xa: X = X; N Xy. The concept pairs in 1 ~!(¢) are therefore
distinguished by the intersection of the respective extents which defines a set-valued function:

Definition 7. The function R : Cx — P(O) is such that R(((X1,Y1), (X2,Y2))) = X1 N X5.

3

The values of R for a subset of product elements are listed in Table 1.

Node n Value of R(n) Node 7 Value of R(n)
(cpo,cy1) | {5,6} (cpr,cp2) | {7}

(6#776#1) {677/8} (6#776#3) {6/8}
(cga,cy2) | {7} (cprcpa) | 0

(6#476#3) {576/8} (6#276#2) 0

(cparcpa) | 0 (cu2,cx3) | {5,6}

Table 1: The values of R for a selected subset of Cx (see Figures 2 and 3).

4.1.3 Characterization of ¢(c)

The elements of the lattice £« may be divided into classes sharing the same value of R, [n]x. These
classes correspond to the equivalence classes induced by ) on Cy, kery. Hence, R provides a (locally
computable) characterization for 9)~!(c). For example, the class [(cy7, cx2)]® including all the nodes
that share the value {7} is: [(cu7,cu2)lr = {(cg1, cp2), (g3, cpa), (Cpa, cx2), (cu7, c22)}. Actually,
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the investigated nodes of Cx are those that are minimal for their class. More formally, a given 7 is the
image of a concept ¢ by ¢ if and only if it is minimal in [n]r with respect to the product lattice order
<. This result is expressed by the following property.

Property 10. Vi€ Cx (dc€C : i = p(c) ) & min([n|r) = {n}.

Proof. Let n = (c1,¢2) and let ¢; = (X1,Y7) and ¢y = (X2, Y2). To prove this property, it is enough to
observe that the smallest concept in L; (i = 1,2) which incorporates X in its extent and the concept
(YNMA),YNA4;)=(X"Nn4;),X" "N A;) are the same concept. O

For example, the node (cgr,cy2) is minimal, with respect to the product order, in its class, and
(c#6,cx3) is minimal in the class of nodes evaluated to {5,6} by R.

4.1.4 Computing the concept intent and extent

The above property identifies the nodes in £ with the minimum of each class [A]g in L. The
extents of a concept ¢ = 1(c1, ¢2) can be computed as the intersection of the extents of ¢; and ¢o. Also
the intent of ¢ may be computed locally, i.e., without looking in the data table: it is the union of the
intents of ¢; and ¢y where (¢1,c2) = ¢(c).

Property 11. For a pair of partial concepts c1 = (X1,Y1) and co = (X2,Y2) and a global concept
c=(X,Y) such that ¢(c) = (1, ¢a),

X:XlﬂXQ andY:Y1UY2.

Proof. Observe that both ¢; and ¢y are minimal and therefore X; = X", i.e., the closure of X for K;
(1 = 1,2). Thus, each Y; equals X’ within K; whereas their union Y; UY5 is X' in K. O

4.1.5 Characterizations of the lower covers of a node

The next step of the lattice computation deals with the order between its nodes. This is usually
manipulated in terms of the cover relation <, whose pairs have to be computed. Observe that <,
does not strictly correspond to the cover relation in L, <« via ¢ but rather to the broader order <.
Thus, a straightforward computation of < could require the exploration of the entire <, , which is a
rather expensive task. In the following, a characterization of <. is given that uses only the information
about <. It detects the set of lower covers of a concept ¢ (denoted by Cov!(c)) by only looking at
the lower covers of its image ¢(c) in L.

First, recall the embedding property of ¢, ie., ¢ <g ¢ & ¢(¢) <x ¢(c). Next, consider a node
= (c1,c2) with ¢; = (X1,Y1) and ¢g = (X3,Y2) such that {#} = min([n]z) and let ¢ = (7). We are
looking for the nodes 72 with the following properties:

{7} = min([n]r) and ¢ <z ¢ where ¢ = (7).

Consider a fixed n. According to the previous remark, it is less than or equal to n. We shall now prove
that there is a node 7 which is a lower cover of n and has the same image by ¢ as n:

7 <x 1 and () = ¥(n).

In fact, among the lower covers of 7, Cov!(7), there is no element that has the same value of R as 7
(by definition). Furthermore, there is at least one n which is greater than or equal to our 7. According
to the embedding property, its ¢ image is greater than or equal to that of 71, (7)) <, ¢(n). Similarly,
the image is less than the image of n, ¥(n) < ¥(n). However, we already know that the latter is
preceded by ¥(n) in £. We conclude that ¢(n) and ¢ () are equal. In other words, for all pairs
¢ <r ¢in L, there is a pair n <« 7 such that ¢(n) = ¢ and p(¢) = n. For example, take the node
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(56, abdf). The latter is mapped into 7 = (cg6, c#3) by ¢. The node (cue, cx3) is a predecessor
of (cy2,cx1) in the product lattice but not a lower cover (for example, the node (cu2, cx3) is between
them). However, there is at least one lower cover of (cgs2,cx1) with the same value of R as (cus, c43).
For example, one such node is (cxg,c41). Unfortunately, the set of lower covers of a node 1 = ¢(c)
is not necessarily limited to nodes whose images under v are predecessors of ¢. There may be other
nodes in Cov' (i) whose images, although less than ¢ are not its lower covers. Actually, the nodes we
look for are those with values of R maximal within Cov!(n).

7 = (Cpa, cx1) whose value of R is 12356. 7 is the image of ¢ = (12356, ab) which is preceded in £ by
g =

Property 12. For each 7 such that 3c,n = ¢(c), and for each one of its lower covers n € Cov'(n),
we have:

Y(7) < ¢ if and only if R(7) € max({R(7)|7 € Cov'(R)}).

Instead of providing a general proof, we show a detailed example of the computation of the lower
covers of the concept ¢ = (5678,ad). The relevant parts of the lattices £y and £ are drawn in
Figure 4. The concepts of the global lattice are linked to their images by ¢. The concept’s image is

Ly #4x#1<———q;" -l
#EX#1  HIx#L  H#HAX#2 HAXHA HAXHZ =-" T 7°
56 (678 @ 0 (5,68}

v (568, adf)

Figure 4: Part of the product lattice L (left) representing the node (cga4, cx1) (product nodes (cg;, cxj) are
denoted by #i x #3) and its lower covers together with the corresponding part of the global lattice £ (right).
Nodes in £ are linked to their ¢-images by dashed lines. Both lower covers of (5678, ad) in £ correspond to
lower covers of (cg4,cy1) in L« whose R values are maximal: (cx7,cx1) and (cga, c#3).

the node (cu4, cx1) whose lower covers are (cue, c#1), (Cx7, Cp1), (Coa, Cx2), (C4a, cx3) and (cpa, Cpa).
The respective R values are listed in the left part of Table 1. The maximal values of R within the
set of lower covers of (cg4,cg1) are thus: max({R(7)|i € Covl(p(c))}) = {568,678}. These values
correspond to the extents of the concepts (568, adf) and (678, acd) which constitute exactly the set of
lower covers of the concept ¢, Cov!(c), in the global lattice.

Theorem 1. Given a pair of concept lattices L1 and Ly over contexts K1 and Ko, the lattice L of the
context K1 |ICo satisfies the following Ve = (X,Y) € L:

e min(¢"(c)) = {¢(c)},
e X =R(p(c)),
e Cov'(c) = max({y)(n)|n € Covl(p(c))})

5 Constructing the lattice
The results presented in the previous section are transformed into an algorithmic procedure that
physically constructs the global lattice £ from both partial lattices. This is in turn extended to a full-

scale lattice constructing algorithm by integrating it into a “divide-and-conquer” procedure. In what
follows, we present these procedures together with some results about their asymptotic complexity.
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5.1 Main algorithm

The main procedure CONSTRUCT-LATTICE (see Algorithm 1) constructs the Galois lattice starting
from the initial context. It is recursive, with a base case being a single-attribute context (see next
paragraph for a description of CONSTRUCT-LATTICE-T). Larger contexts are first split into two parts
by selecting a subset of attributes (function SELECT). Then, the main procedure is recursively called
on each subcontext, thus retrieving a pair of partial lattices. Finally, the global lattice is obtained by
an assembly of the partial ones (see Section 5.3 for the description of ASSEMBLY).

1. procedure CONSTRUCT-LATTICE(In: K = (0, A, I) a context; Out: £ = (C, <) the lattice of K)
2:

3. if ||A|| > 1 then

4. A} < SELECT(A); Ay + A - A4

5: /C1F(O,AhlﬂOxA]);IC2<—(O,A2,IOO><A2)

6: L1 + CONSTRUCT-LATTICE(K;) ; L2 + CONSTRUCT-LATTICE(K:)

7. L < ASSEMBLY(Lq, L3)

8. else

9: L « ConsTRUCT-LATTICE-T(K)

10: return £

Algorithm 1: Constructing a Galois lattice with a “divide-and-conquer”-like strategy.

It is important to note that the function SELECT may be implemented in various ways ranging
from straightforward equal-size splitting to an advanced calculation of balanced sub-contexts. Such a
function may have a strong impact on the practical performance of the algorithm as the sizes of the
partial lattices depend on it. We will not dwell on this point as it relates to complex combinatorial
problems and is subject to a separate on-going study.

5.2 One-attribute lattice computation

The base case of the lattice computation occurs when a single-column context is reached. With such
a small attribute set, say {a}, the lattice may have no more than two concepts. Indeed, all possible
intents are {a} and () corresponding respectively to the lattice infimum and supremum. In addition,
there is one case where the lattice is made up of a single concept: it occurs when a is shared by all the
objects in O, in which case the only concept that remains is (O,a).

1. procedure CONSTRUCT-LATTICE-T(In: K = (O, {a},I) a context; Out: £ = (C,<.) the lattice of
K)

L+ 0
O* « {o|(0,a) € I'}
¢ « NeEw-ConcepT(O", {a})
L+ LU{c}
if O+ # O then
¢ + NEw-CONCEPT(O, §)
NEw-LINK(c,¢é)
L+ L U{é¢}
: return L

© o N>R WD

—
- o

Algorithm 2: Constructing a Galois lattice over a single-attribute context.

In a first step, the procedure CONSTRUCT-LATTICE-T (see Algorithm 2) separates the extent of the
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lattice infimum, i.e., objects having a and constructs the concept. Then, it creates a distinct supremum
if needed (i.e., when a proper subset of O share the attribute a).

5.3 Assembly of partial lattices

The fundamental operation of our lattice constructing algorithm is the assembly of two partial
lattices drawn from the complementary fragments of the context.

5.3.1 Principles of the algorithm

The main step of the algorithm is a traversal of the product lattice. The traversal is made in a
bottom-up way, following a linear extension of the lattice order. The linear extension is the result of
a sorting task over each of the partial concept sets.

For each pair of concepts, the intersection of their extents is computed and checked for minimality.
Pairs with minimal R values generate a new concept in £ whose intent and extent are computed
according to the results of Section 4. The concept’s lower covers in £ are then detected among the
global concepts already generated by the bottom-up traversal.

5.3.2 Main data structures and auxiliary primitives

The concept lattices are stored as lists of concepts in which a concept is a record with fields like
intent, extent and list of lower covers (accessible by dedicated primitives FExtent, Intent, etc.). An
auxiliary field indicates the rank of a concept in the sorted list (primitive rank). The mapping 1 is
simulated by Embed, a two-dimensional array of concepts where indices are concept ranks in the partial
lattices. Embed simulates the function R through the extents of the stored concepts.

Except for the above abstract structure-related primitives, the algorithm uses PRODUCTLOWER-
COVERS to generate the lower covers in Ly of a product node. Another group of primitives carry out
maintenance tasks within the physical representation of the lattices (NEW-CONCEPT, NEW-LINK).

1: procedure ASSEMBLY(In: L1 = (C1,<g,), L2 = (Ca2, <r,) lattices; Out: £ = (C,<.) a lattice)
2:

3: Local : Embed : array [0..max,0..max] of concepts

4.

5 L« 0 {Init}

6: SORT(Cy); SORT(Cy) {Sort according to a linear extension of <}

7: for all ¢; in C; do

8: for all c; in Cy do

9: E < Extent(c;) N Extent(c;)

10: Psilmages < ()

11: for all (¢,¢) in PRODUCTLOWERCOVERS(¢;, ¢;) do
12: Psilmages < Psilmages U {Embed(rank(c), rank(c))}
13: ¢ «+ FIND-Psi(E, Psilmages)

14: if ¢ = NULL then

15: ¢ < NEw-CONCEPT(E, Intent(c;) U Intent(c;))
16: UPDATE-ORDER(c¢, Psilmages)

17: L+ LUA{c}

18: Embed[rank(c;), rank(c;)] < ¢

19: return £

Algorithm 3: Assembling the global Galois lattice from a pair of partial ones.
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5.3.3 The algorithm code

For convenience, the major tasks of the overall algorithm have been separated into distinct proce-
dures, each one provided with its own description.

A pre-processing step sorts both sets of concepts Cx, and Cx, according to a linear extension of
the respective lattice orders (see Section 5.5 for the code of SORT). In the main step, a nested for
loop simulates the traversal of the product lattice. At each product node, the extent intersection of
the compound concepts is stored in E for a further test of minimality. The test also requires the set
of R values over the lower covers of the current node (retrieved by PRODUCTLOWERCOVERS). These
are computed as the extents of the respective images under v, retrieved from Embed. The images are
first stored in Psilmages and then passed as a parameter to FIND-PsI, the function that finds the
image under ¢ of the current node if it already exists (non generator node). In this case, no further
processing is required. Otherwise, i.e., with a NULL result from FIND-PSI meaning that the R value
is yet unknown, a new concept is created, then its lower covers are singled out among the candidates
in Psilmages. In both cases, the array Embed is updated.

5.3.4 Example

Table 2 provides an illustration of the way in which the construction of the global lattice proceeds.
It contains the trace of the examination of the first ten nodes taken in the order of the nested loop in
Algorithm 3. For each node, its R value is given. For generator nodes (i.e., nodes (c;, ¢;) that generate
a concept in £), the generated concept is also indicated whereas for the remaining nodes, a lower cover
that shares the same R (and thus makes the minimality test fail) is indicated. For example, the node
(c#s,cx3) has R value of {6} which is minimal. It therefore generates the global concept (6, abcdf).
The node (cys, cx1) is also mapped to {6}, but as its lower cover, (cus, c43), also possesses that value,
it generates no global concept.

Node R Generated Lower cover

(ciyey) concept in [(ci,¢j)]r
(cus,cur) | O | (0,abedefghi) -
(cas,cps) | 0 (cas, car)
(cs,cus) | 0 (cas; cao)
(cas,cp2) | 0 - (cas, cr)
(cas;ca3) | {6} (6, abedf)
(cs,cpa) | 0 (cas; cas)
(css; 1) | {6} - (css; c#3)
(cgs,cpr) | 0 - (cas, cr)
(cas,cus) | 0 (css5, c1)
(css,cas) | {3} (3, abcgh) -

Table 2: The trace of Algorithm 3 for the first ten nodes of the product lattice in Figure 3.

The integration of a newly created concept, UPDATE-ORDER, as well as the function FIND-PsI are
described in Section 5.4.

5.4 Key operations

In the following, we provide a detailed description of the main operations on concepts, intents,
extents and links, used by Algorithm 3. These are essential for the effective implementation of our
strategy and for the assessment of its algorithmic complexity.
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5.4.1 Updating the order

The integration of a new concept ¢ into the partially constructed lattice structure (the £ list of con-
cepts) involves the computation of the lower covers of ¢ and the physical creation of the corresponding
links. It is a two-step process described in Algorithm 4. First, the candidate concepts are sorted
(recall those are the images under v of all nodes of the product lattice which immediately precede
the generator of ¢, i.e., (¢;,¢;)). The sort is done by increasing order of the intent sizes (the SORT

1. procedure UPDATE-ORDER(In: ¢ a concept, Candidates a set of concepts)
2:

3: Modifies : Cov'(c)

4. Local : Knownlintent : set of attributes

5:

6: SORT(Candidates) {Sort according to a linear extension of the inverse of <}
7. Knownlntent < Intent(c)

8: for all ¢ in Candidates do

9. if Intent(¢) N Knownlntent = Intent(c) then

10: NEW-LINK(¢,c)

11: Knownlntent < Knownlntent U Intent(¢)

Algorithm 4: Update the current part of the global lattice with a new concept.

primitive is described later on). Next, the concepts are examined one by one, each time testing whether
a maximality condition is met. The condition is inspired by the Bordat algorithm [3] and ensures a
minimal number of set-theoretic operations. As the cover relation of the lattice is updated with each
lower cover detection, at the end of the algorithm the concept ¢ is completely integrated in the lattice
structure.

Full nodes R potential covers R on Cover

with R values actual covers nodes

(css, cm) 0

(s, c3) {6} Rcys,cur) =0 0 (0, abede f ghi)

(cas,c5) {3} Rcys,cus) =0 0 (0, abede f ghi)
Rcys,cs) =0

(cs,cp1) | 13,6} | Rlcgs,cp2) =0
Rcys, cus) = {6} {6} (6, abedf)
Rcys, c4a) = {3} {3} (3,abcgh)
Rcys, cxs) = {6}

(cae,c3) | 15,6} | Rlcge,cpr) =0
Rcys, cxs) = {6} {6} (6, abedf)

(ca2, c2) {7} | Rlcgr,cpr) =0 0 (0, abede f ghi)
Rcys, c2) =0

(crrcps) | 16,8} | Rlcgr,cpr) =0
Rcys, cxs) = {6} {6} (6, abedf)

Table 3: A trace of Algorithm 4: generation of the first six global concepts for the example in Figure 3.

As an illustration of the way Algorithm 4 works, we provide the trace of its execution on the first
six product nodes that generate global concepts. The related values of the R function for each of the
nodes as well as for each of their lower covers in L4 are given in Table 3. The table also provides the
global concepts which are actual lower covers of the generated concept together with the respective
values of R which helped generate them.
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5.4.2 Test for new extents and the computation of

The detection of the minima in the classes induced by R is efficiently carried out by comparing
set cardinalities instead of comparing sets themselves. In fact, as we have shown in Section 4.1, the
mapping ¢ is monotonic and therefore the function R is monotonic too. This means, for a given
node 1 = (¢1,¢2), its value for R is a superset of the value on an arbitrary lower cover of 7, say f:
R(n) € R(n). For a node #n which satisfies the condition of Property 10, the superset condition is
strict, i.e., R(7) C R(n) for any lower cover 7. An equivalent condition holds on set cardinalities: the
size of R(n) is strictly greater than the size of R(n).

Consequently, the property of a node n being minimal in its class can be checked by only comparing
set cardinalities: 7 is minimal if and only if ||R(n)|| is different from any cardinality of R on a lower
cover.

function FIND-Psi(In: E a set of objects, Candidates a set of concepts ; Qut: ¢ a concept)
m  ||B|
for all ¢ in Candidates do
if ||Extent(c)|| = m then
return c
return NULL

O RN

Algorithm 5: Efficient lookup for newly met extents.

The test procedure is described by Algorithm 5. It is noteworthy that the second parameter is a set
of global concepts which represent the images of the lower covers of the current node under ). The
first parameter is thus to be compared to their extents.

5.5 Auxiliary primitives

In what follows, efficient algorithms for some of the auxiliary primitives used by the previous proce-
dures are suggested.

5.5.1 Concept sort

The traversal of a concept set C, not necessarily equal to the entire Cx, with respect to the lattice
order <y, is achieved through a preliminary sorting of C. The sorting procedure typically produces a
linear extension of <, on C. Such an extension could be easily, but somewhat inefficiently, computed
by checking inclusions between concept intents/extents. In its more efficient version, the sorting, just
as the minimality check for product nodes described above, compares intent cardinalities instead of
intents. This could be done in a linear time as Algorithm 6 shows. Actually, the required operations
are the split of C into slices of equal intent cardinalities and the subsequent enumeration of these
groups in descending order. The use of an array indexed by intent cardinality to store the slices makes
slice sorting unnecessary. Thus, the whole procedure takes only a time which is linear in the number
of concepts.

5.5.2 Lower covers of a node in the product lattice

The function PRODUCTLOWERCOVERS which computes the lower covers of a node 7 = (¢j, ¢;) is
not explicitly described here. In fact, it adds only a limited computational overhead since it relies
exclusively on information stored at the concepts ¢; and ¢; in the computation. In fact, the lower
covers of 7 in the product lattice are exactly the nodes of the form (c;, c}) or (¢}, ¢;) where ¢; is an
arbitrary lower cover of the concept ¢; in the lattice L; and cg- is an arbitrary lower cover of ¢; in L.
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procedure SORT(In/Out: C = {c1, ¢, ...,c1})

Local : Bunches : array [0..||A||] of sets
. Order : list of concepts

Order < ()
for i from 1 to [ do
Bunches(||Intent(c;)||]] < Bunches[||Intent(c;)||]] U {c;}
for i from 1 to ||A|| do
for all ¢ € Bunches]i] do
Order < (c) & Order {c becomes the head of Order}
: C « Order

© O N>R W

—= e
N = O

Algorithm 6: Linear-time sorting of the concept set

5.6 Complexity issues

Let the number of concepts in the partial lattices £1 and Ls be respectively I; and I, and the number
of concepts in £ be [. Let also m be the total number of attributes and &k the number of objects. In
our complexity assessment, we shall also use the parameter d(£) which is the branching factor, i.e.,
the maximal number of lower covers of a node in the lattice £. The above notations are summarized
in the following table.

Variable | Stands for

l; the number of concepts in £; (i =1,2)

l the number of concepts in £

m TA]

k o]

d(L) maximal number of lower covers of a node in £

At this step, we consider only the cost of the assembly operation ASSEMBLY. The cost of the recursive
calls of the global procedure will be provided in Section 6.

Consider the following basic facts. First, the number of lower covers in a concept lattice £, d(L),
is at most equal to the number of attributes, m. Moreover, the number of lower covers in Ly, d(Lx),
is bounded above by the sum d(£1) + d(£2). Finally, with a total order assumed both on O and A
object/attribute sets, these collections may be canonically represented as sorted lists of integers (ranks
in the respective order). This allows all set-theoretic operations (e.g., U, N, /) to be executed in time
linear in the size of the manipulated sets.

Among auxiliary primitives, the SORT procedure is linear in the number of its arguments, ||£[|,
whereas the minimality check for intent intersections (FIND-PsI) is linear in the number of lower
covers in the product, O(d(L,) + d(L2))®. The update of the precedence relation (UPDATE-ORDER),
has time complexity which is a product of the number of the potential lower covers to check and the
cost of the check (linear in m), O((d(£1) + d(L2))m). The complexity of the basic operations is given
in the following table.

| Primitive | Asymptotic complexity |
SORT O(ly + 1)
FiND-Psi O(d(Ly) + d(L2))
UPDATE-ORDER | O((d(L1) + d(L2))m)

61n fact, the comparisons are carried on cardinalities, i.e., integer numbers, and therefore take constant time. Further-
more, the cardinalities of a concept intent/extent need only to be computed once, upon the concept creation. Therefore,
at this point they are assumed given.
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The cost of the assembly algorithm heavily relies on the complexity of its dominant part, the nested
for loop. This is divided into two major parts: the first one is related to the fixed part of the loop
and the second one concerns the if statement. The first part is executed once for each node of the
product, i.e., l1ly times. Its dominant complexity comes either from extent intersection (linear in
k), or the computation of PRODUCTLOWERCOVER (linear in the candidate lower cover number, i.e.,
d(Ly) + d(L2)), or minimality test (FIND-PsI) for extent intersection (linear in the actual lower cover
number, i.e., d(£)). As both d(£) and d(L;) + d(L2) do not exceed m, the cost of the entire fixed part
is O((k + m)lllg.

The if part of the loop body executes only on product nodes generating global concepts, i.e., ||L]|
times. Its core complexity comes from the UPDATE-ORDER procedure, so the whole cost is O((d(L1) +
d(Ls))ml) which further simplifies to O(Im?).

In summary, the total complexity of the algorithm, beside partial lattice constructing, amounts to
O(l1ls(m + k) + lm?) which is bounded by:

O((k +m) (Il + Im)).

6 Discussion

It is generally admitted that the worst-case complexity of the main lattice constructing algorithms
is O((k + m)lmk), with the exception of the algorithm in [17] whose complexity is known to be
O((k + m)lm). However, comparing lattice constructing algorithms with respect to their asymptotic
complexity is a delicate task. On the one hand, there may be exponentially many concepts, a fact which
makes any algorithm inefficient. Fortunately, contexts contain, most of the time, only a polynomial
number of concepts. On the other hand, there is no way of correctly evaluating the complexity of
these algorithms with respect only to their input since the size of the lattice is hard to predict from
parameters of the binary table’. Indeed, all previous studies of the practical performance of known
algorithms have shown that there is no clear “best” algorithm. Instead, the relative performance of the
different methods vary according to the nature of the data®. A key factor is thus the density measuring

the relative number of X’s in a table: il
Wd = T
O[]l

For example, the incremental algorithm of Godin et al. is known to perform fast on sparse contexts,
wq < 0.10, but seems to lag behind competing methods with dense ones, wy > 0.5. As an apparent
explanation for this fact, the algorithm relies strongly on the number of concepts, which usually grows
fast with wy. An additional difficulty for practically comparing algorithms is the size of the output
(previous studies only considered small-size contexts, i.e., less than a thousand objects).

In summary, situating our own algorithm within the family of existing methods in an absolute way
is hard. It means, in particular, transforming the complexity formula into a canonic form, i.e., getting
rid of I1l5. The question of how I1.l; compares to Im amounts to estimating the size of the lattice”.
However, we claim that the only large contexts which are tractable at present, i.e., produce reasonable-
size lattices, show linear growth of the concept set with respect to object number. In such contexts,
ly.l is at most O(Ilm) regardless of the way the attribute set is split. Only for those contexts, the
global complexity of our divide-and-conquer strategy may be estimated by:

O((k + m)lmlogm).

"The problem of estimating the number of concepts from the context parameters was recently proved to be a hard
one [13].

8Here the nature of a dataset does not refer to a well defined notion, but rather to a set of data parameters, whose
influence is not well understood.

90f course, but there are obvious cases where [.l3 is orders of magnitude greater than Im.
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The logm factor reflects the depth of the binary tree that results from the recursive splitting of
contexts.

A deeper insight into the divide-and-conquer strategy is provided by a set of simulation runs. The
tests include two classes of contexts, both of them involving only a linear number of concepts. Both are
generated by a random procedure. The first generation uses a uniform probability distribution with
a low density factor and simulates contexts from software engineering applications. The second one
simulates the contexts derived from tables in relational databases which typically contain numerical
and categorical data. A table based on a set of properties P is translated into a binary relation by
scaling each property p into a set of Boolean attributes A,. The resulting context has a particular
form: given a row in the database table and a property p, the object o that models the row in the
context K can have at most one of the attributes in 4, Thus, for each initial p, the extents of the
scaled attributes in A, are pair-wise disjoint: N, ,,e4 {a1,a2} = (). The tests have been carried out
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Figure 5: Left: CPU-time diagrams for three algorithms: Bordat, Nourine and Raynaud (R&N), and
Divide-and-Conquer (D&C). Right: Evolution of l;.l5/l over object number.

on an IBM PC platform (Pentium III, 192MB RAM, Windows 98). Figure 5 on the left shows the
time used by three algorithms: Bordat’s, Nourine and Raynaud’s and our own algorithm over the same
dataset. The results have been obtained on database-like contexts, by varying the number of objects
between 1000 and 5000 with an increment of 500. Each point on a curve gives the average over 20
different runs.

As it may be seen on the left part of Figure 5, the divide and conquer algorithm outperforms the rest
with a time growth close to linear in the number of objects. However, jumping to the conclusion that it
is the perfect algorithm for contexts with small number of concepts would be an exaggeration since the
results over randomly generated contexts (not included here for the sake of conciseness) do not confirm
it. As a possible intuition as to why the divide-and-conquer approach works better on database-like
contexts, we include a second diagram showing the evolution of the ratio between [;.ls and [ over the
same datasets (see Figure 5 on the right). With random sparse data, the ratio grows slowly and tends
to stabilize, at relatively high level indeed, whereas database-like contexts show almost no growth.

To conclude, a plausible explanation of the above results seems to lie in the strong inner structure
of the database-like contexts. This structure is successfully unveiled by splitting which makes the
divide-and-conquer approach perform well whereas other algorithms simply fail to take advantage of
it.

10Tf the respective entry of the table is not NULL, then the object o has exactly one of those attributes.
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7 Conclusion and further research

We presented an approach for lattice assembly together with its theoretical foundations. It underlies
a divide-and-conquer approach for constructing Galois/concept lattices whose worst-case complexity
and practical performances have been reported.

An important result of our work is the complete characterization of the global Galois/concept lattice
as a substructure of the direct product of the lattices related to partial contexts. This helps to estab-
lish clear links between partial and global lattices and therefore enables an efficient lattice assembly.
Another contribution lies in a novel way of constructing lattices, i.e., from fragments, which may prove
useful when data comes from different sources (e.g., in the process of constructing a data warehouse
or mining for knowledge from a set of databases). Finally, the possibility of combining several partial
results into a single global one allows a set of new lattice constructing algorithms to be devised, in
particular algorithms implementing a hybrid batch-incremental strategies.

A large set of intriguing questions are yet to be answered as the work goes on. In the short term,
potential improvements of the practical performance of our algorithm are to be examined. Among
the set of open issues, we are currently focusing on the effects of “optimal” splits of the contexts, i.e.,
splits that keep the size of the partial lattices minimal. Another research avenue follows the removal
of objects/attributes from a lattice (inverse incrementality) and goes to the challenging issue of using
a (global) lattice to discover meaningful viewpoints, i.e., splits in the corresponding context together
with the respective (partial) lattices. In a more general way, progress with the split-based product
operations is expected to provide the basis for a better mastering of more complex constructs like
sub-direct and tensorial products of concept lattices.
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