
ar
X

iv
:m

at
h/

00
10

22
1v

1 
 [

m
at

h.
C

O
] 

 2
4 

O
ct

 2
00

0

Fast Evaluation, Weights and Nonlinearity of

Rotation-Symmetric Functions

Thomas W. Cusick∗, Pantelimon Stănică†‡
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Abstract

We study the nonlinearity and the weight of the rotation-symmetric (RotS)
functions defined by Pieprzyk and Qu [6]. We give exact results for the nonlinearity

and weight of 2-degree RotS functions with the help of the semi-bent functions [2]

and we give the generating function for the weight of the 3-degree RotS function.

Based on the numerical examples and our observations we state a conjecture on the

nonlinearity and weight of the 3-degree RotS function.
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1 Motivation

Hash functions are used to map a large collection of messages into a small set

of message digests and can be used to generate efficiently both signatures

and message authentication codes, and they can be also used as one-way
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functions in key agreement and key establishment protocols. There are two

approaches to the study of hash functions: Information Theory and Com-

plexity Theory. The first method provides unconditional security – an enemy

cannot attack such systems even if he/she has unlimited computing power.

Unfortunately, this is still a theoretical approach and is generally impracti-

cal [1]. In the second method based on complexity theory, some assumptions

are made on the computing power of the enemy or the weaknesses of the

existing systems and algorithms. The best we can hope for is to estimate the

computing power necessary for the attacker to break the algorithm. Recent

progress in interpolation cryptanalysis [4] and high order differential crypt-

analysis [5] has shown that the algebraic degree is an important factor in

the design of cryptographic primitives. In fact, in [5] the algebraic degree is

the crucial parameter in determining how secure certain cryptosystems are

against higher order differential attacks. Together with propagation, dif-

ferential and nonlinearity profile, resiliency, correlation-immunity, local and

global avalanche characteristics they form a class of design criteria which we

have to consider in the design of such primitives.

In [6], Pieprzyk and Qu studied some functions, which they called rota-

tion-symmetric (RotS) as components in the rounds of a hashing algorithm.

It turns out that the degree-two RotS function takes 3n−1
2 +6(m− 1) opera-
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tions (additions and multiplications) to evaluate in m consecutive rounds of

a hashing algorithm. In [5] the authors showed how to break in less than 20

milli-seconds a block cipher that employs low algebraic degree (quadratic)

Boolean functions as its S-boxes and is provably secure against linear and

differential attacks. Therefore, it is necessary to employ high degree RotS

functions in our algorithms. To protect from differential attack, we need

RotS functions with high nonlinearity. In this paper we aim to complete

the study begun by Pieprzyk and Qu [6] on the two-degree RotS functions

and we construct the three-degree RotS functions and we prove some results

about their weights and nonlinearity.

2 Preliminaries

Let n ≥ 6 be a positive integer and Wn = {0, 1}n be the space of binary vec-

tors. Denote α0 = (0, . . . , 0, 0), α1 = (0, . . . , 0, 1), . . . , α2n−1 = (1, . . . , 1).

We use the lexicographical order on the sequence α, that is α0 < α1 < · · · <

α2n−1. The Boolean functions will be written in their algebraic normal form

(when α = (a1, . . . , an)) as

f(x) = ⊕α∈Wncαx
a1
1 · · · x

an
n ,

where cα ∈W1. The truth table of f is the binary sequence

f = (v1, v2, . . . , v2n), (1)
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where the bits v1 = f
(

(0, . . . , 0)
)

, v2 = f
(

(0, . . . , 0, 1)
)

, . . . . We shall iden-

tify the function f with its vector representation in (1). We call a function

balanced if the number of ones is equal to the number of zeroes in its truth

table. The Hamming weight of a binary vector v, denoted by wt(v) is de-

fined as the number of ones it contains. The Hamming distance between

two functions f, g : Wn → W1, denoted by d(f, g) is defined as wt(f ⊕ g).

The nonlinearity of a function f , denoted by Nf is defined as

min
φ∈An

d(f, φ),

where An is the class of all affine function on Wn. We say that f satisfies

the propagation criterion (PC) with respect to c if

∑

x∈Zn
2

f(x)⊕ f(x⊕ c) = 2n−1. (2)

If f satisfies the PC with respect to all vectors of weight 1, f is called an

SAC (Strict Avalanche Criterion) function. If the above relation happens

for any c with wt(c) ≤ s, we say that f satisfies PC(s), and if s = n,

then we say that f is a bent function. If two functions g, h, on Wn, satisfy

g(x) = h(Ax ⊕ a) ⊕ (b · x) ⊕ c with a, b ∈ Wn, c ∈ W1, and A a 2k × 2k

nonsingular matrix, we say that g is affinely equivalent to h.

Definition 1. The class of rotation-symmetric (RotS) functions includes

all Boolean functions f : Wn →W1 such that f(x1, . . . , xn) = f(ρ(x1), . . . ,
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ρ(xn)), where ρ(xi) = xi+1, and xn+1 := x1.

As in [6], we denote by ρ the permutation ρ(i) = i + 1, ρ(n) = 1. By

abuse of notation we use the same letter for the transformation which acts on

each variable by ρ(xi) = xi+1, ρ(xn) = x1. By ĝ we mean (−1)g. We define

the Walsh-Hadamard transform of a g ∈Wn to be the map F̂ĝ : Wn → R,

F̂ĝ(w) =
∑

x∈Wn

ĝ(x)(−1)w·x.

The correlation value between g and h it is defined by

c(g, h) = 1−
d(g, h)

2n−1
.

If U is a string of bits, then Ū denotes the complemented string with 0

and 1 interchanged. If X is a 4-bit block or a string of blocks, by (X)u or

Xu we shall mean the string obtained by concatenation of u copies of X.

The concatenation of two strings u, v will be denoted by uv or u||v. Now we

define two sets of 4-bit strings

T1 = {A = 0, 0, 1, 1; Ā = 1, 1, 0, 0; B = 0, 1, 0, 1; B̄ = 1, 0, 1, 0;

C = 0, 1, 1, 0; C̄ = 1, 0, 0, 1; D = 0, 0, 0, 0; D̄ = 1, 1, 1, 1}

and

T2 = {U = 1, 0, 0, 0; Ū = 0, 1, 1, 1; V = 0, 0, 0, 1; V̄ = 1, 1, 1, 0;

X = 0, 1, 0, 0; X̄ = 1, 0, 1, 1; Y = 0, 0, 1, 0; Ȳ = 1, 1, 0, 1}.
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3 The second degree rotation-symmetric function

In [6] the authors proved that the homogeneous rotation symmetric function

of degree 2, f2 = x1xl + x2xl+1 + · · · xnxn+l−1, (the subscript w is taken as

((w − 1) mod n) + 1) has good nonlinearity and good avalanche properties.

Precisely, they proved

Theorem 2. The function f2 has the following properties:

(i) the Hamming weight satisfies 2n−2 ≤ wt(f) ≤ 2n − 2n−2,

(ii) the nonlinearity satisfies Nf2 ≥ 2n−2,

(iii) if n is odd, then Nf2 = 2n−1 − 2
n−1

2 and f2 is balanced,

(iv) the function satisfies the PC with respect to all vectors α of weight

0 < wt(α) < n. In particular f is an SAC function.

In the same paper it is proved that

Theorem 3. If fk is an RotS function of degree k, then the nonlinearity

satisfies Nfk ≥ 2n−k.

Now, we evaluate the nonlinearity of f2 for n even.

Lemma 4. For n ≥ 3, let tn = x1x2 + x2x3 + · · · + xn−2xn−1 + xn−1xn.

Then t2k is a bent function.



7

Proof. We have

t2k =x2(x1 + x3) + x4(x3 + x5) + · · ·+

x2k−2(x2k−3 + x2k−1) + x2kx2k−1.

By taking the transformation

X2i = x2i and X2i−1 = x2i−1 + x2i+1,X2k−1 = x2k−1, i = 1, 2, . . . , k − 1,

we see that t2k is affinely equivalent to a bent function in the Maiorana-

McFarland class (see [3]), therefore it is also bent.

We say (see [2]) that g ∈ W2k+1 is semi-bent, if there is a bent function

g0 ∈W2k with

g = g0||g1,

where g1(x) = g0(Ax⊕ a)⊕ 1, A is a nonsingular 2k by 2k matrix and a is

any vector in W2k.

In [2], the authors prove the following results (see Theorem 18, Corollary

21 and Theorem 16), which will be used in this paper.

Lemma 5. Any semi-bent function g ∈ W2k+1 is balanced, Ng = 22k − 2k,

for any w∗ ∈W2k+1, the correlation value between g and the linear function

lw∗(x) = w∗ · x is 0 or ±2−k, and

#{w∗ ∈W2k+1| c(g, lw∗) = 0} = 22k = #{w∗ ∈W2k+1| c(g, lw∗ = ±2−k}.
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Lemma 6. Let g ∈ W2k+1 be a semi-bent function with A = I and a =

(1, 1, · · · , 1). Then g satisfies PC(2k).

Lemma 7. If g is the concatenation g0||g1, w
∗ = (w,w2n+1) ∈Wn+1, then

F̂ĝ(w
∗) = F̂ĝ0(w) + (−1)wn+1F̂ĝ1(w).

The following result belongs to Preneel [7]. We define lb(x) = b · x.

Lemma 8. For h on Wn, a, b ∈ Wn, c ∈ W1 and a 2k × 2k nonsingular

matrix A, define g by g(x) = h(Ax⊕ a)⊕ lb(x)⊕ c. Then,

F̂ĝ(w) = (−1)c(−1)(A
−1a,w⊕b)F̂

ĥ
((A−1)t(w ⊕ b)).

It is not very difficult to observe (see also [6]) that any 2-degree rotation-

symmetric function in n variables is affinely equivalent to fn
2 = f2 = x1x2⊕

x2x3⊕· · ·⊕xn−1xn⊕xnx1. We show below that f2k
2 is not bent. To do that

we display an algorithm to evaluate f2k
2 fast. For that we need the following

lemma, which can be proved by considering the truth table.
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Lemma 9. Each monomial of degree 2 can be written in the form (1) as

xixj =
(

D2n−i−2

(

D2n−j−2D̄2n−j−2

)

2j−i−1

)

2i−1
,

if 1 ≤ i < j ≤ n− 2,

xixn−1 = (D2n−i−2A2n−i−2)2i−1 , (3)

xixn = (D2n−i−2B2n−i−2)2i−1 ,

xn−1xn = V2n−2 .

Using (3) we see that

f2 = x1x2 ⊕ x2x3 ⊕ · · · xn−1xn ⊕ xnx1 =

D2n−3

(

D2n−4D̄2n−4

)

⊕
(

D2n−4

(

D2n−5D̄2n−5

))

2
⊕ (4)

(

D2

(

DD̄
))

2n−4 ⊕ (DA)2n−3 ⊕ (DB)2n−3 ⊕ V2n−2 =

g ⊕ (DC)2n−3 ⊕ V2n−2 = g ⊕ (V Ū)2n−3 ⊕D2n−3B2n−3 ,

where g is the sum of the first n− 3 strings of length 2n.

For a string u of length 2s, s ≥ 4, we denote by ũ, the string obtained

by complementing the second half, that is the last 2s−1 bits of u. It is not

difficult to observe that the following algorithm will output f2 = G1||G2||G3.

Algorithm f2.

step 3: g31 ← V Y, g32 ← XŪ

step s: gsi ← gs−1
i ||g̃s−1

i , i = 1, 2
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output: G1 ← gn−4
1 , G2 ← gn−5

2 , G3 = Ḡ4, where G4 = G̃2, and write

f2 = G1||G2||G3

For instance, the first three steps of the algorithm will produce

G1 ← ((V Y )(V Ȳ ))((V Y )(V̄ Y ))

G2||G3 ← (XŪXU)(X̄UXU).

Theorem 10. If f2 is defined on Wn, with n = 2k, then it is not bent.

Moreover, the nonlinearity is

Nf2 = 22k−1 − 2k,

and the truth table of f2 can be displayed using only 2n−3 − 2 operations

(additions and multiplications).

Proof. Using the above algorithm, we deduce that the RotS function on

Wn of degree 2 can be be evaluated in n− 2 steps, which requires

(1 + 21 + · · ·+ 2n−5) + (1 + 21 + · · ·+ 2n−6) + 2n−5 = 2n−3 − 2

operations, since at each step s we complement 2s−2 bits.

First, we take an example, say f5
2 = V Y V Ȳ XŪX̄Ū = t5 + x1x5 on W5.

We see that f5
2 = t4(x)||t4(x⊕ 1)⊕ 1, therefore it is semi-bent.

It is very easy to see that

f2k+1
2 = t2k(x2k)||(t2k(x2k) + x1 + x2k).
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But

t2k(x2k) + x1 + x2k =

2k−1
∑

i=1

xixi+1 + x1 + x2k + 1 =

=
2k−1
∑

i=1

(xi + 1)(xi+1 + 1) = t2k(x2k ⊕ 1),

therefore f2k+1
2 = t2k(x2k)||(t2k(x2k ⊕ 1) ⊕ 1) is semi-bent. By Lemma 6,

f2k+1
2 satisfies the propagation criterion for all weights 1 ≤ w ≤ 2k.

Similarly,

f2k
2 = t2k−1(x2k−1)||(t2k−1(x2k−1) + x1 + x2k−1).

Now, we shall use Lemma 7 to compute the nonlinearity of f2k
2 . First,

we observe that

t2k+1 = t2k(x2k)||(t2k(x2k) + x2k).

Take A = I and a = (1, 0, 1, 0, . . . , 1, 0). We see that

t2k(x2k) + x2k = t2k(x1 + 1, x2, x3 + 1, . . . , x2k−1, x2k)

= (x1 + 1)x2 + x2(x3 + 1) + · · ·+ (x2k−1 + 1)x2k.

We denote the last expression by r(x). Using Lemma 7 we compute the

Walsh-Hadamard transform

F̂r̂(w2k) = (−1)(w,a)F̂t̂2k
(w) = ±2k,

since by Lemma 4, t2k is bent.



12

For simplicity we set t(x) = t2k+1(x2k+1) and w∗ = (w,w2k+1). Thus,

F̂t̂(w
∗) = F̂t̂2n

(w) + (−1)w2k+1F̂r̂(w) = 0 or ± 2k+1, (5)

since r and t2k are bent. Therefore,

Nt2k+1
= 22k −

1

2
|F̂t̂2k+1

(w∗)| = 22k − 2k.

By Lemma 5, F̂t̂2k−1
(x2k−1) = 0 or ±2k. Let v(x) = t2k−1(x) + x1 + x2k−1.

By Lemma 7,

F̂v̂(x) = (−1)(x⊕(1,0,... ,0,1),0)F̂t̂2k−1
(x⊕ (1, 0, . . . , 0, 1)) = 0 or ± 2k.

Thus, by the same Lemma 7,

F̂
f̂2k
2

(x2k) = F̂t̂2k−1
(x2k−1) + (−1)x2k F̂v̂(x) = 0 or ± 2k+1,

which implies Nf2k
2

= 22k−1−2k. Therefore f2 is not bent (any bent function

in 2k variables has nonlinearity 22k−1 − 2k−1 [2, Th. 13, p. 111]) and the

theorem is proved.

Remark 11. We remark that, using the normal form of the function, the

truth table of f is found using 3n−1
2 2n operations (see [6] for a detailed

discussion). Using the previous theorem we can display the truth table using

only 2n−3 − 2 operations, which is a significant improvement.

Now, we will evaluate the weights of f2 for any dimension n. We prove
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Theorem 12. The weights of f2 are given by

wt(fn
2 ) = 2n−1 − 2

n
2
−1 (1 + (−1)n) . (6)

Proof. We recall that f2 = gn−1
1 gn−2

2 gn−2
3 . We show that for any s,

wt(gsi ) = 2wt(gs−2
i ) + 2s−2, i = 1, 2, 3. (7)

Since gsi = gs−1
i g̃s−1

i = gs−1
i gs−2

i
¯̃g
s−2
i ,

wt(gsi ) = wt(gs−1
i ) + wt(gs−2

i ) + wt(g̃s−2
i )

= wt(gs−2
i ) + wt(g̃s−2

i ) + wt(gs−1
i ) + 2s−2 − wt(g̃s−2

i ) (8)

= 2wt(gs−2
i ) + 2s−2, i = 1, 2.

Now, from gs3 = ḡs−1
2 g̃s−1

2 , we get

wt(gs3) = 2s−1 − wt(gs−1
2 ) + wt(g̃s−1

2 )

= 2s−1 − wt(gs−1
2 ) + 2wt(gs−2

2 )−wt(gs−1
2 ) + 2s−2 (9)

= 2wt(gs−2
2 )− 2wt(gs−1

2 ) + 2s−1 + 2s−2

= wt(gs2)− 2wt(gs−1
2 ) + 2s−1.

The above equation, for s− 1, produces

wt(gs−1
3 ) = wt(gs−1

2 )− 2wt(gs−2
2 ) + 2s−2. (10)

Now, we add (9) plus twice (10), and we get

wt(gs3) + 2wt(gs−1
3 ) = wt(gs2)− 4wt(gs−2

2 ) + 2s.
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But wt(gs2) = 2wt(gs−2
2 ) + 2s−2. By adding the two previous equations we

get

wt(gs−2
2 ) = 2s−1 + 2s−3 − wt(gs−1

3 )−
wt(gs3)

2
(11)

Replacing (11) into (10) we obtain

wt(gs+2
3 ) = 2wt(gs3) + 2s.

This together with (8) will give the following recurrence for the weights of

f2.

wt(fn
2 ) = 2wt(fn−2

2 ) + 2n−2. (12)

A generating function for the above recurrence is

−
32

z7

1− 2 z
+ 16 z5 + 24 z6

−1 + 2 z2
. (13)

We can linearize the recurrence by using the transformation

yn = wt(fn
2 )− 2n−1,

thus obtaining the recurrence

yn = 2yn−2.

Using the above simple recurrence with wt(f5
2 ) = 16 and wt(f6

2 ) = 24 we

get a closed formula for the weights of f2 in dimension n, namely

2n−1 − 2
n
2
−1 (1 + (−1)n) ,
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and the theorem is proved.

4 The third degree rotation-symmetric function

As in the case of second degree RotS functions, it is easy to observe that

any RotS function of degree 3 in n variables, fn
3 = f3 is affinely equivalent

to

f3 = x1x2x3 + x2x3x4 + · · ·+ xnx1x2. (14)

Now, using a computer program we have determined the nonlinearity of f3

on Wn, n ≥ 9 which turns out to be the same as its weight. Thus,

n 3 4 5 6 7 8 9

Nfn
3

1 4 6 18 36 80 172

We shall assume that n ≥ 10. The following lemma will be used.

Lemma 13. The truth table of any monomial xi1 · · · xis of degree s is

(

D2n−i1−2 · · ·
(

D2n−is−2D̄2n−is−2

)

2is−is−1−1

)

2i1−1 ,

if 1 ≤ i1 < · · · < is ≤ n− 2,

(

D2n−i1−2 · · ·
(

D2n−is−1−2M2n−is−1−2

)

2is−1−is−2−1

)

2i1−1 , (15)

where M = A or B if is = n− 1, respectively is = n,

(

D2n−i1−2 · · ·
(

D2n−is−2−2V2n−is−2−2

)

2is−2−is−3−1

)

2i1−1 ,

if is−1 = n− 1 and is = n.
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Proof. Straightforward using the truth table.

Using the above lemma we write

xixi+1xi+2 =
(

D2n−i−2

(

D2n−i−3

(

D2n−i−4D̄2n−i−3

)))

2i−1 , (16)

if i ≤ n− 4, and

xn−3xn−2xn−1 = (D3A)2n−4

xn−2xn−1xn = (DV )2n−3 (17)

xn−1xnx1 = D2n−3V2n−3

xnx2x1 = D2n−3+2n−4B2n−4

Therefore,

f3 =

n−4
∑

i=1

(

D2n−i−2+2n−i−3+2n−i−4D̄2n−i−4

)

2i−1 ⊕ (D3A)2n−4 ⊕

(DV )2n−3 ⊕D2n−3+2n−4B2n−4 ⊕D2n−3V2n−3 =

=

n−4
∑

i=1

(

D2n−i−2+2n−i−3+2n−i−4D̄2n−i−4

)

2i−1 ⊕

(DV DY )2n−4 ⊕D2n−3V2n−4X2n−4 =

=

n−4
∑

i=1

(

D2n−i−2+2n−i−3+2n−i−4D̄2n−i−4

)

2i−1 ⊕

(D3C)2n−5

(

V3Ū
)

2n−6 (X3Y )2n−6 = H1||H2||H3||H4,

where H1 (on Wn−1), H2 (on Wn−2), H3,H4 (on Wn−3) are defined by the

following algorithm (û, on Wj, is the string obtained from u by complement-

ing its last 2j−2 bits):
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Algorithm f3.

step 4: h41 ← DVDY h42 ← V DV A, h43 ← XBXC

step s: hsi ← hs−1
i ||ĥs−1

i

output: H1 ← hn−1
1 ,H2 ← hn−2

2 ,H3 ← hn−3
3 , H4 is the string obtained

from Ĥ3 by complementing its first half, that is H4 = H̄5, where H5 =

H̃6,H6 = Ĥ3. Write f3 = H1||H2||H3||H4.

As in the case of the 2-degree RotS function we see that we need

22(1 + 2 + · · · 2n−5) + 22(1 + 2 + · · · 2n−6) +

22(1 + 2 + · · · 2n−7) + 2n−4 + 2n−5 = 3 · 22(2n−6 − 1) +

2n−3 + 2n−4 = 2n−2 + 2n−4 + 2n−5 − 3 · 22

operations to display the truth table of fn
3 .

We shall evaluate the weight of f s
3 for any s. To do this we will compute

the weights of each component of f s
3 . We observe that

hsi = hs−1
i hs−2

i hs−3
i h̄s−4

i
ˆ̄h
s−4

i and

ĥsi = hs−1
i hs−2

i h̄s−3
i hs−4

i ĥs−4
i , i = 1, 2, 3.

Therefore, denoting by ws
i the weight of hsi , and by ŵs

i the weight of ĥsi , i =

1, 2, 3, we arrive at the following identities:

ŵs
i = 2ws−1

i + 2ws−2
i − ws + 2s−2, (18)

ws
i = ws−1

i + ŵs−1
i . (19)
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Using Mathematica1 we obtained the following results on the weights of

fn
3 and of each of the four components on dimensions less than 12.

n wt(fn
3 ) wt(hn−1

1 ) wt(hn−2
2 ) wt(hn−3

3 ) wt(hn−3
4 )

3 1

4 4

5 6 2

6 18 6 4

7 36 14 8 6 8

8 80 32 18 12 18

9 172 72 40 26 34

10 360 156 84 52 68

11 760 336 180 108 136

12 1576 712 376 220 268

(20)

We have

wt(fn
3 ) = wt(hn−1

1 ) + wt(hn−2
2 ) +wt(hn−3

3 ) + wt(hn−3
4 ).

We show by induction that

wt(hsi ) = 2
(

wt(hs−2
i ) + wt(hs−3

i )
)

+ 2s−4, i = 1, 2, 3, 4. (21)

From the table (20) we have the truth of the claim for the first few cases.

Assume (21) true for s − 1 and we prove it for s. From (18) and (19) and

by using the induction step we get

wt(hsi ) = wt(hs−1
i ) + wt(ĥs−1

i ) = 2
(

wt(hs−2
i ) +wt(hs−3

i )
)

+ 2s−3.

Similarly for hs4. Adding these relations we get

wt(f s
3 ) = 2

(

wt(f s−2
3 ) + wt(f s−3

3 )
)

+ 2s−3. (22)

1A trademark of Wolfram Research
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Remark that this equation is true for any s ≥ 6.

Using the table (20), the recurrence (22) and Maple2, we get

Theorem 14. The generating function for the weight of f3, is

−
8

z6

1− 2 z
+ z3 + 4 z4 + 4 z5

−1 + 2 z2 + 2 z3
. (23)

The series expansion of the above generating function is

z3 + 4 z4 + 6 z5 + 18 z6 + 36 z7 + 80 z8 +

+ 172 z9 + 360 z10 + 760 z11 + 1576 z12 +O(z13),

obtaining once again the weights of fn
3 , for any dimension.

Based on our numerical examples, we give the following conjecture.

Conjecture 15. The nonlinearity of fn
3 is the same as its weight.
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