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Abstract

In this paper, we consider 2-connected multigraphs in which every cycle has

length congruent to a modulo b (b ≥ 2). We prove that there exists such a graph

which is homeomorphic to a simple graph with minimum degree at least three

only if a = 0, and that there exists such a graph which is also a simple graph only

if a = 0 and b = 2. We also study the distribution of paths whose internal vertices
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have degree exactly two, and show a relation between these paths and edges in a

2-connected graph whose deletion results in a 2-connected graph.

Keywords: cycles, modularity, removable edges

1 Introduction

In this paper, the term “multigraph” is used for graphs which possibly have multiple

edges (but not loops), and the term “simple graphs” and “graphs” for graphs which

have neither multiple edges nor loops.

In almost every textbook of graph theory, we find a characterization of the bipartite

graphs in terms of cycle parity.

Theorem A A graph G is a bipartite graph if and only if every cycle in G has even

length.

On the other hand, the graphs in which every cycle has odd length form an uninteresting

class. It is not difficult to see that they are graphs in which every block is either K2 or

an odd cycle. This observation leads us to the following problem.

Problem 1 Determine a pair of integers (a, b) with b ≥ 2 and 0 ≤ a < b such that

graphs in which every cycle has length congruent to a modulo b form an “interesting”

class.

The solution of this problem depends on the interpretation of “interesting”, and

hence is ambiguous. Therefore, we first discuss it. First of all, when we consider Problem

1, we may restrict ourselves to 2-connected graphs. If a graph is not 2-connected, we

can consider the same problem in each block.

When we deal with this problem, we can ignore vertices of degree two by considering

a “weighted version” of the problem. Suppose P = x0x1 . . . xl is a path in a 2-connected

graph G with degG x0 ≥ 3, degG xl ≥ 3 and degG xi = 2 (1 ≤ i ≤ l − 1). If a cycle C

contains one edge in P , it must contain P as a subpath of C. Now replace each such path
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by an edge x0xl and assign l (the length of P ) to x0xl as its weight. The multigraph G′

obtained by this conversion is 2-connected and its minimum degree is at least three, and

each edge e has an integer weight. By this conversion, the problem becomes a weighted

version. Let G be a multigraph and let f : E(G) → N . For a subgraph H of G, we

define the weight of H by
∑

e∈E(H) f(e), and denote it by f(H). Now we consider the

multigraphs in which f(C) ≡ a (mod b) holds for each cycle C of G. Furthermore, since

we only consider modularity, we may assume that the weight f(e) has a value in Z/bZ.

Now we formulate Problem 1. For a multigraph G and a function f : E(G)→ Z/bZ,

the pair (G, f) is called a weighted multigraph. If G is a simple graph, we call it a

weighted simple graph. If f is a constant function which takes the value f(e) = c for

each e ∈ E(G), we write (G, c) instead of (G, f). For example, (G, 0) and (G, 1) are

weighted multigraphs in which each edge has weight zero and one, respectively.

For integers a and b with b ≥ 2 and 0 ≤ a < b, let C(a, b) denote the class

of 2-connected weighted multigraphs (G, f) with minimum degree at least three and

f : E(G)→ Z/bZ such that f(C) = a holds for every cycle C. The class C(a, b) can be

a large class or can be empty. For example, C(0, 2) contains every simple 2-connected

bipartite graph (G, 1) with minimum degree at least three and weight one. In the other

extreme, C(1, 2) is an empty class as mentioned before.

Observing the above, in this paper, we set three levels for the interpretation of

“interesting”, and consider the following problem.

Problem 2 Determine for what values of (a, b) C(a, b) becomes

(1) nonempty class,

(2) a class which contains a weighted simple graph, and

(3) a class which contains a weighted simple graph of the form (G, 1).

For graph-thoretic notation not defined in this paper, we refer the reader to [2].

Since we deal with multigraphs, we should give the definition of 2-connected graphs in

a precise manner. In this paper, a multigraph G is said to be 2-connected if |V (G)| ≥ 2
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and for every pair of distinct vertices, there exist two independent paths between them.

Note that, under this definition, a graph consisting of two vertices and two or more

edges joining them is 2-connected. For a multigraph G of order at least three, it is easy

to see that G is 2-connected if and only if G− v is connected for each v ∈ V (G).

When we consider a path or a cycle, we always assign a orientation. Let P =

a0a1 . . . al be a path. Then the subpath aiai+1 . . . aj−1aj (i ≤ j) is denoted by ai
−→
P aj .

The same subpath, traversed in the opposite direction, is denoted by aj
←−
P ai. The

vertices ai+1 and ai−1 are denoted by a+
i and a−i , respectively. For a multigraph G and

for e = xy ∈ E(G), let V (e) denote the set of its endvertices: V (e) = {x, y}. And for

A ⊂ V (G), let E(A) = {e ∈ E(G) : V (e) ⊂ A}.

2 Graphs whose cycles have the same modularity

In this section, we give answers to Problem 2. But before that, we give several lemmas.

Lemma 1 Let (G, f) be a weighted multigraph in C(a, b). Let x and y be distinct

vertices in G. If there exist three independent paths P1, P2, P3 from x to y, then

f(P1) = f(P2) = f(P3) and 2f(P1) = a.

Proof. Let C12 = x
−→
P1y
←−
P2x and C13 = x

−→
P1y
←−
P3x. Then both C12 and C13 are

cycles, and f(C12) = f(C13) = a. On the other hand, f(C12) = f(P1) + f(P2) and

f(C13) = f(P1)+ f(P3). Hence f(P2) = f(P3). Similarly, we have f(P1) = f(P2). Then

a = f(C12) = f(P1) + f(P2) = 2f(P1). �

We also use the following theorem due to Dirac [3].

Theorem B ([3]) Every simple 2-connected graph with minimum degree at least three

has a subdivision of K4.

Now we are ready to give an answer to each question in Problem 2.

Theorem 2 The class C(a, b) is nonempty if and only if a is even or b is odd.
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Proof. Suppose C(a, b) is nonempty, and let (G, f) be a weighted multigraph in

C(a, b). We claim that there exist three independent paths P1, P2 and P3 between some

pair of vertices x, y in G. Let C be a cycle of G, and let x ∈ V (C). Since degG x ≥ 3,

there exists an edge e = xy′ ∈ E(G)−E(C) which is incident with x. If y′ ∈ V (C), then

xy′, x
−→
C y′ and x

←−
C y′ are three independent paths between x and y′. If y′ /∈ V (C), then

since G is 2-connected, there exists a path P from y′ to some vertex y in V (C) − {x}
with V (P ) ∩ V (C) = {y} in G − x. Then xy′

−→
P y, x

−→
C y and x

←−
C y are required three

independent paths. Hence the claim follows.

For three indendent paths P1, P2 and P3 between some pair x, y of vertices, we have

2f(P1) = a by Lemma 1. However, the equation 2x = a has a solution in Z/bZ only if

a ≡ 0 or b ≡ 1 (mod 2).

Conversely, let a ≡ 0 (mod 2) or b ≡ 1 (mod 2). Let a′ be an element in Z/bZ with

2a′ = a. Let G be the graph of order two in which two vertices in G are joined by triple

edges. Then (G, a′) belongs to C(a, b). �

Theorem 3 The class C(a, b) contains a weighted simple graph if and only if a = 0.

Proof.

First we prove the “only if” part. Suppose (G, f) be a weighted simple graph in

C(a, b). By Theorem B, G has a subdivision of K4. Let H be a subgraph of G which is

isomorphic to a subdivision of K4, and let {x1, x2, x3, x4} be the set of the vertices of H
that have degree three in H . For distinct indices i, j, we denote by xiHxj the unique

path from xi to xj in H that does not contain any other xk (k ∈ {1, 2, 3, 4} − {i, j}).
Since x4Hx1, x4Hx2Hx1 and x4Hx3Hx1 are three independent paths in G, by Lemma

1, we have

f(x4Hx1) = f(x4Hx2) + f(x2Hx1) = f(x4Hx3) + f(x3Hx1)

and 2f(x4Hx1) = a. By a similar argument, we have 2f(x4Hx2) = 2f(x4Hx3) =

a. Since the equation 2x = a has at most two solutions in Z/bZ, we may assume

f(x4Hx1) = f(x4Hx2). Then we have f(x2Hx1) = 0. Now by considering three
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independent paths x1Hx2, x1Hx3Hx2 and x1Hx4Hx2, by Lemma 1, we have a =

2f(x1Hx2) = 2 · 0 = 0.

Since (G, 0) belongs to C(0, b) for a 2-connected simple graphG with minimum degree

at least three, the “if” part is obvious. �

Finally, we give an answer to the last question of Problem 2

Theorem 4 The class C(a, b) contains a weighted simple graph of the form (G, 1) if

and only if a = 0 and b = 2.

Because of the existence of a 2-connected simple bipartite graph with minimum

degree at least three, the “if” part of the theorem is obvious. We give two proofs to the

“only if” part. First one uses Theorem 3.

Proof of Theorem 4. Let (G, 1) be a weighted simple graph in C(a, b). By Theorem

3, a = 0. Let P be a longest path of G. Let x be the terminal vertex of P . Since

degG x ≥ 3 and P is a longest path, NG(x) ⊂ V (P ) and |NG(x)− {x−}| ≥ 2, and thus

we can take u, v ∈ NG(x) − {x−} such that v ∈ u+−→P x. Then since both u
−→
P xu and

v
−→
P xv are cycles and hence have length congruent to 0 (mod b), l(u

−→
P x) ≡ l(v

−→
P x) and

hence l(u
−→
P v) ≡ 0 (mod b). However, this implies that the cycle u

−→
P vxu has length

congruent to 2 modulo b, and hence 2 ≡ 0 (mod b). This is possible only if b = 2.

�

The second proof is deduced immediately from the result by Bondy and Vince [1].

They proved the following theorem.

Theorem C ([1]) Every 2-connected graph with minimum degree at least three has

two cycles C1 and C2 with l(C1)− l(C2) ≤ 2.

From this theorem, we immediately have 2 ≡ 0 (mod b) for b ≥ 2, and hence b = 2.
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3 Edges with weight zero and removable edges

In this section, we study the number of edges with weight zero. In the proof of the “if”

part of Theorem 3, we use a weighted graph (G, 0). Therefore, we may suspect that

every weighted simple graph (G, f) in C(0, b) has an edge e with f(e) = 0. However,

this is not true if b is even. Let c = 1
2
b, and let G be a 2-connected bipartite graph with

minimum degree at least three. Then (G, c) belongs to C(0, b).

On the other hand, if b is odd, there exists an edge with weight zero, and the number

of edges receiving non-zero weight is bounded from above.

Theorem 5 Let b be an odd integer with b ≥ 3, and let (G, f) be a weighted simple

graph of order p in C(0, b). Then the number of edges e with f(e) �= 0 is at most

max{0, p− 6}.

Hereafter, we only consider simple graphs.

The proof of this theorem uses removable edges in 2-connected graphs. Let e be an

edge in a 2-connected graph G. Then e is said to be removable if G− e is 2-connected.

An edge which is not removable is said to be nonremovable.

The next lemma gives a relation between edges with non-zero weight and removable

edges in 2-connected graphs.

Lemma 6 Let b be an odd integer with b ≥ 3, and let (G, f) be a weighted simple

graph in C(0, b). Then f(e) = 0 for each removable edge e in G.

Proof. Let e = xy be a removable edge of G. Then G− e is 2-connected, and hence

there exists two independent paths P1 and P2 from x to y in G − e. Then P1, P2 and

e form three independent paths in G, and by Lemma 1, we have 2f(e) = 0. Since b is

odd, we have f(e) = 0. �

By Lemma 6, the number of edges with non-zero weight is bounded from above by

the number of nonremovable edges.

For e ∈ E(G) and S ⊂ V (G), we say that (e, S) is a separating pair if (G− e)− S
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is disconnected. The folloing lemma is trivial but useful paraphrasing of the definition

of nonremovable edges.

Lemma 7 Let G be a 2-connected graph and let e ∈ E(G). Then e is nonremovable if

and only if (e, S) is a separating pair for some S with |S| = 1. Furthermore, if (e, S) is

a separating pair with |S| = 1, then (G− e)− S has exactly two components.

First, we prove a simple lemma. For a graph G and its edge e, let G/e denote the graph

obtained from G by the contraction of e. Note that since we now deal with only simple

graphs, if multiple edges arises from the contraction, we replace them with simple edges.

Lemma 8 Let G be a 2-connected graph of order at least four, and let e ∈ E(G). Then

either G− e is 2-connected or G/e is 2-connected.

Proof. Assume neither G − e nor G/e is 2-connected. Let e = xy. Since G/e is not

2-connected, G − {x, y} is disconnected. Let A be a component of G − {x, y}, and let

A = V (G)−({x, y}∪A). Furthermore, since e is not removable, there exists a separating

pair (e, {z}) for some z ∈ V (G), and (G−e)−z has exactly two components, say B and

B. We may assume x ∈ B and y ∈ B. We may also assume z ∈ A by symmetry. Since

A �= ∅, again by symmetry, we may assume A ∩ B �= ∅. However, this implies that {x}
separates A ∩B and A∪B, which contradicts the connectivity of G. Hence the lemma

follows. �

Now we investigate the number of removable edges in a cycle. For this purpose, we

first prove the following lemma.

Lemma 9 Let G be a 2-connected graph with minimum degree at least three. Let C

be a cycle in G and let F ⊂ E(C). If there exist a separating pair (e, S) with e ∈ E(C)

and |S| = 1 and a component A of (G− e)− S such that E(S ∪A)∩F = ∅, then there

exists a removable edge of G in E(C)− F .

Proof. Assume, to the contrary, that every edge in E(C) − F is nonremovable.

Choose a separating pair (e, S) with e ∈ E(C) and |S| = 1, and a component A of
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(G − e) − S with E(S ∪ A) ∩ F = ∅ so that |A| is as small as possible. Let e = x−x

and A = V (G) − (S ∪ A). We may assume x− ∈ A and x ∈ A. Let f = xx+. Then

f ∈ E(S ∪ A). Since E(S ∪ A) ∩ F = ∅, f ∈ E(C) − F . Thus, by the assumption, f

is nonremovable. Then there exists a separating pair (f, T ) for some T ⊂ V (G) with

|T | = 1. Let B and B be the components of (G− f)− T . We may assume x ∈ B and

x+ ∈ B. Let

U1 = (S ∩B) ∪ (S ∩ T ) ∪ (A ∩ T ),
U2 = (A ∩ T ) ∪ (S ∩ T ) ∪ (S ∩B),

U3 = (S ∩B) ∪ (S ∩ T ) ∪ (A ∩ T ), and

U4 = (A ∩ T ) ∪ (S ∩ T ) ∪ (S ∩B).

Since x ∈ A, x+ ∈ S∪A. First, assume x+ ∈ S. Then S = {x+} and S∩T = S∩B = ∅.
If A∩T = ∅, then U1 = ∅. Since δ(G) ≥ 3, |A∩B| ≥ 2. Then {x} separates A∩B−{x}
and A∪B in G, which contradicts the connectivity of G. Therefore, we have A∩T �= ∅,
which implies A ∩ T = ∅ and x− ∈ B. Then U4 = ∅ an hence G− x−x is disconnected.

This again contradicts the connectivity of G.

Next, assume x+ ∈ A. Then A ∩ B �= ∅ and A ∩ B �= ∅. Since U2 separates A ∩ B
and A∪B in G−xx+, |U2| ≥ 1. If |U2| = 1, then (f, U2) is a separating pair and A∩B
is a component of (G− f)−U2. Since U2 ∪ (A∩B) ⊂ S ∪A, E(U2 ∪ (A∩B))∩F = ∅.
Since A ∩ B � A, this contradicts the choice of (e, S, A). Therefore, we have |U2| ≥ 2.

Since |S| = |T | = 1, we have |A ∩ T | = |S ∩ B| = 1 and S ∩ T = A ∩ T = S ∩ B = ∅.
This implies x− ∈ A ∩ B and U4 = ∅. Then again G − x−x is disconnected. This is a

contradiction, and the lemma follows. �

Theorem 10 Let G be a 2-connected graph with minimum degree at least three. Then

for every cycle C in G, there exist at least two removable edges of G in C.

Proof. If all the edges of C are removable, the theorem obviously holds. Suppose C

has a nonremovable edge e. Then there exists a separating pair (e, S) for some S ⊂ V (G)

with |S| = 1. Let A and A be the components of (G − e) − S. Apply Lemma 9 with
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F = ∅. Then we have that there exists a removable edge e1 in E(C). We may assume

e1 ∈ E(A ∪ S). The we can apply Lemma 9 again with F = {e1}, we see that there

exists a removable edge e2 ∈ E(C)− {e1}. �

Theorem 5 is a consequence of Lemma 6 and the following theorem.

Theorem 11 Let G be a 2-connected graph of order p with minimum degree at least

three. Then G has at most max{0, p− 6} nonremovable edges.

Proof. We proceed by induction on p. Assume G has a nonremovable edge e = xy.

Then G − e is not 2-connected, and G − e has exactly two endblocks, say B1 and B2.

Let ci be the unique cutvertex of G − e contained in Bi (i = 1, 2). Note that possibly

c1 = c2. Since δ(G) ≥ 3, |Bi| ≥ 3 (i = 1, 2). Then Bi − ({ci} ∪ {x, y}) �= ∅, and let

bi ∈ Bi − ({ci} ∪ {x, y}). Since degG−e bi ≥ 3, we have |Bi| ≥ 4 (i = 1, 2). This implies

|G| ≥ |B1|+ |B2| − |B1 ∩B2| ≥ 4 + 4− 1 = 7.

Therefore, G has no nonremovable edges if p ≤ 6, and hence the theorem holds for

p ≤ 6. In particular, G has p− 6 nonremovable edges if p = 6.

Suppose p ≥ 7 and G has a nonremovable edge e = xy. By Lemma 8, G/e is 2-

connected. Let G′ = G/e. Assume δ(G′) = 2. This occurs only if degG z = 3 for some

z ∈ NG(x) ∩ NG(y). Then since G − e is not 2-connected, z is the only cutvertex of

G− e, and G− e has exactly two blocks, say B1 and B2. We may assume x ∈ B1 and

y ∈ B2. Since degG z = 3, we may assume NG(z) ∩ B1 = {x}. However, since x cannot

be a cutvertex of G− e, we have B1 = {x, z}. This implies degG x ≤ 2, a contradiction.

Therefore, δ(G′) ≥ 3.

Since G′ is 2-connected and δ(G′) ≥ 3, by the induction hypothesis, G′ has at most

p− 7 nonremovable edges.

Assume that a nonremovable edge f = uv of G which is different from e becomes

removable in G′. Since f is nonremovable in G, (G−f)−w has exactly two components,

say A and A, for some w ∈ V (G) by Lemma 7. Then f becomes removable in G′ only

if A ∪ {w} = {x, y} or A ∪ {w} = {x, y}. But in either case, we have degG x = 2 or
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degG y = 2, a contradiction. Therefore, every nonremovable edge in G except for e is

nonremovable in G′.

Assume two distinct nonremovable edges f1 and f2 coincide with the same edge in

G′. This occurs only if {f1, f2} = {xz, yz} for some z ∈ NG(x) ∩NG(y). However, this

implies that xyzx is a cycle in G and that all the edges in this cycle is nonremovable

in G. This contradicts Theorem 10. Therefore, every pair of distinct nonremovable

edges f1 and f2 with e /∈ {f1, f2} are still a pair of distinct nonremovable edges in G′.

Thus, considering e, we see that the number of nonremovable edge in G is at most

p− 7 + 1 = p− 6. �

Both Theorem 5 and Theorem 11 are sharp. Consider the graph Gn defined by

V (G) = {xi, yi : 0 ≤ i ≤ n− 1}
E(G) = {xi−1xi, yi−1yi : 1 ≤ i ≤ n} ∪ {xiyi : 0 ≤ i ≤ n− 1}

∪{x0y1, y0x1, xn−2yn−1, yn−2xn−1}.

Then |G| = 2n. We define a weight function f by

f(xixi+1) = 1 (1 ≤ i ≤ n− 3)

f(yiyi+1) = b− 1 (1 ≤ i ≤ n− 3)

f(e) = 0 (all the other edges e)

Then all the nonremovable edges have non-zero weight, and f(C) ≡ 0 (mod b) for every

cycle C in G. Furthermore, the number of nonremovable edges is 2(n− 3) = |G| − 6.
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