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Abstract

In this paper, we show that the tensor product of complete graphs
is hamilton cycle decomposable.

1 Introduction

Let G and H be two simple graphs. The tensor product (also called di-
rect product ) of the graphs G and H, G ® H, is the graph with the ver-
tex set V(G ® H) = V(G) x V(H) and with the edge set F(G ® H) =
{(u,z)(v,y),uv € E(G) and zy € E(H)}. A k-regular multigraph G has
a hamilton cycle decomposition if its edge set can be partitioned into k/2
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hamilton cycles when k is even, or into (k — 1)/2 hamilton cycles plus a one
factor (or perfect matching), when & is odd. In this paper, we study the
hamilton cycle decomposition of K, ® K.

The problem of finding hamilton cycle decompositions of product graphs
is not new. Hamilton cycle decompositions of various product graphs have
been studied by many people (see the survey papers [1] and [5] or the book
[6]). One interesting problem is to investigate whether the product graph of
two hamilton cycle decomposable graphs is also hamilton cycle decompos-
able. Many results for various products have been obtained in the last few
years [2,4,7,9,10,11]. Like other products, the tensor product graph has some
interesting properties. For example, the tensor product of two hamilton cy-
cle decomposable graphs may not be connected: consider the product of two
even cycles. Jha [8] conjectured that if both G and H are hamilton cycle
decomposable and G ® H is connected, then the tensor product graph is also
hamilton cycle decomposable. But this conjecture was disproved in [3]. Tt
would be interesting to know what extra condition(s) should be added to G
and H to ensure a hamilton cycle decomposition of G & H.

The following result concerning the tensor product has been known for a
long time.

Theorem 1.1. Let G and H be two even regular simple graphs. If both GG
and H are hamilton cycle decomposable and at least one of them has odd
order, then G ® H is hamilton cycle decomposable.

The above result can be obtained from the fact that C.®C, has a hamilton
cycle decomposition if at least one of r and s is odd and that the tensor
product is distributive over edge disjoint union of graphs. The next result
follows immediately from Theorem 1.1.

Corollary 1.2. K, ® K, has a hamilton cycle decomposition if both r and
s are odd and r,s > 3.

The main result in this paper is Theorem 1.3.
Theorem 1.3. If r, s > 3, then K, ® K, has a hamilton cycle decomposition.

Note that the case when at least one of r and s is less than three is trivial.



2 Proof of the main result

The proof of Theorem 1.3 depends on several relatively simple lemmas.

We will use AG (resp. AD) to denote the graph (digraph) obtained by
replacing each edge (resp. arc) of G (resp. D) with A edges (resp. arcs).
Let ab denote the edge between the vertices a and b, and (a,b) denote the
arc from a to b. A k-cycle is denoted by either (vy, vy, ..., vk, v1) Or e1€...¢;
where ¢; = v;v;41,7 = 1,2,....k — 1, and e;, = vv; and a k-path is denoted
by [v1,vq, ..., vk].

Let V(Ky,) = {00,1,2,....,2¢ — 1}, and
H' = (00, 144,2+40,2¢—1+i,3+0,2¢ —2+1,4+1,....,q+ 1 +1,00),
where 0 < i < 2¢ — 2. (The arithmetic calculations are modulo 2¢g — 1 on the
residues 1,2, ...,2¢ — 1.) Clearly, the H"’s are hamilton cycles of Kj,.

We will also denote by e, 1 < j < 2q, the jth edge of H’. We have

oo(1 +1), if j=1
i) 2+i—7/2)(1+i+5/2), if j is even and j # 2¢
TTY G+ G+1)/2)2+i— (j+1)/2), ifjisodd and j £ 1
(¢4 1+ i)oo, if j = 2¢

Example: ¢ =4 and 5

H’:001273645 00 H’:00129384756 00
H':002314756 00 H':00231495867
H?:003425167 00 H?:00342516978 0
H?:0c4536271 00 H?:00453627189 00
H*: 0564731200 H*: 056473829100
H’:0c 675142300 H’>:00c67584931200
HS:007162534 00 HS:0078695142300

H :0c897162534 00
H®:00918273645 00

The following results are some simple observations and they will be used
extensively.



Lemma 2.1. (a) U2, 2{6 }=U, 2{€2q+1 it
(b) The graphs 1nduced by the edge sets U’ Uj—{e}} and U2,? L q+1{e }
are Koy,.
(¢) The H", 0 < i < 2¢—2, form a hamilton cycle decomposition of 2Ky,.

(d) The H*, 0 < i < q — 2, form a hamilton cycle decomposition of
Ky, \F. where F is the one factor U {(q — 7)(¢ + j)} U{cc.q}. m

We remark that K, ® K, can be obtained from K, by replacing each
vertex x of K, by a set of r vertices V,, and each edge zy by a set of r — 1 one
factors between V,, and V. More precisely, we let V,, = {zo, z1,...,2,_1} and
denote the one factor of distance k (k= 1,2,...,r — 1) from V, to V,,, the set
of edges Ff’y = {ziYitr,i = 0,1,...,7 — 1} (the addition on the subscripts is
modulo 7). Note that the order between x and y is important as a one factor
of distance k from V, to V, is a one factor of distance r — k (= —k(mod 1))
from V, to V,. If we fix an orientation for the edges of K, and denote the
resulting tournament by 7, then we have

V(K, ® K) = Uzevr,) Ve and
E(K, ® K,) = U(m’y)eA( 7.y Uizy F¥ . where A(T}) is the arc set of T.

T,y

Assume that in (r — 1)7§, the r — 1 arcs between any pair of vertices
are labelled 1,2,...,7 — 1. Then the arc (z,y) of (r — 1)T, with label k&
can be associated to the set of edges ka,y in K, ® K, and in fact this is a
one to one correspondance relationship. We will construct a hamilton cycle
decomposition of K, ® K, from an oriented hamilton cycle decomposition
of the labelled (r — 1)T, by associating a suitable oriented (not directed)
hamilton cycle of (r — 1)7, with a hamilton cycle of K, ® K, (see Lemma
2.3). For that we need the following definition.

Definition 2.2. Let H = (v, vs,...,0s,v1) be an oriented (not necessary
directed) hamilton cycle of (r — 1)7,. We can also write H = ajas...as,
where a; is the arc of (r — 1)7T, between v; and v; ;. We define the label of
H, ((H) = >;_,e/l(a;), where {(a;) is the label of the arc a; and ¢; = 1 if
a; = (v;,vi11), &, = —1 otherwise.

Lemma 2.3. Let H = (vq, v, ..., U, ¥1) = a10a3...a5 be an oriented hamilton
cycle of (r — 1)T,. If ¢(H) and r are relatively prime, then the edge set in
K, ® K, corresponding to H forms a hamilton cycle of K, ® K.
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Proof. The edge set UJ; F{") forms a 2-factor of K, @ K,. Consider the
subgraph of K, ® K, 1nduced by the edge set U4 F’ i(ai) it is a union of

Vi, Ui41"

r paths of length s — 1. When the edge set Eflfg’l is added, the condition

that ¢(H) and r are relatively prime guarantees that the resulting 2-factor is
a hamilton cycle of K, ® K. m

Corollary 2.4. If there exists a decomposition of (r — 1)7 into oriented
hamilton cycles, such that the label of each hamilton cycle is relatively prime
to r, then there exists a hamilton cycle decomposition of K, ® K.

Proof of Theorem 1.3:

The case where both r and s are odd was already covered by Corollary
1.2. So we can assume that at least one of r and s is even. As the tensor
product is commutative, we will assume that s is even. Let s = 2q.

In what follows, we give a precise description of Ty, (or Ts) by giving a
special orientation to Ky,. First we take the hamilton cycle decomposition of
2Ky, H' i=0,1,...,2¢g — 2 as described in the beginning of this section. For
0<i<2¢—2, we orlent the hamilton path H'\e}, = [co, 1+4,2+1,2¢—1+
i,3+1,29—24+1,....,q+1+1] into a directed path from oo to ¢+ 1+i. Now
we justify that this orientation is well defined. By Lemma 2.1 (c), each edge
except those in the form of oo? has been oriented twice. From the definition
of H', each of these edges appears in two different hamilton paths and the
end vertices are in the same order. Let T3, be the resulting tournament; then
we have A(Ty,) = U, {(00,4), (i,i + a) for a odd, a < ¢ — 1, (i,i — a) for
aeven, a < g — 1}.

In the remainder of the paper, we will attach the above orientation to H'
defined in the beginning of the section, and use H* to denote the resulting
oriented hamilton cycles. Hence H"s form an oriented hamilton cycle de-
composition of 2Ty,. (Notice that H"’s are not directed hamilton cycles.) H*
can also be expressed in terms of the arcs in the form afaj...ab,, where aj is
e]- with the above orientation. We have the following lemma.



Lemma 2.5. ((H') = 22q 16( ) — E(aéq).

Proof. Notice that in H’, a}’s, 1 <75 <2g—1, are in the same direction, but
(],éq = (00, q+ 1 +1) is not. Therefore ¢, = 1,1 <i<2¢—1 and gy, = —1.

We now divide the proof of Theorem 1.3 into two cases.

Case 1. r is odd.

Let r = 2p+ 1. To exhibit a decomposition of Ky, ® K,, into p(2g — 1)
hamilton cycles, we will decompose the labelled 2pT, into p(2g — 1) oriented
hamilton cycles, so that the label of each cycle is relatively prime to 2p + 1.

Case 1.1. p is even. We decompose 2pTh, into the p(2g — 1) oriented
hamilton cycles, H. and H.,, for 0 < i < 2¢—2and z = 0,2,4,....,p — 2.
(here H! and H!, are the same as H' defined before). We arrange the labels
on the arcs as follows:

in H', let f(a}) =p— =
la)=p+2+z,2<j<g;
laf)=p—1—xz,q+1<j <2 and
in H$+1,let€( ay)) =p+2+u;
lay)=p—2,2<j<g
llay) =p+1+mz,qg+1<j<2.

Notice that {p — 1 —z,p —z,p+1+z,p+2+2x}, 2 =0,2,...,p— 2,
form a partition of {1,2,...,2p}. By Lemma 2.1(c), U7%,” H. U HZH is the
union of four copies of T2q By Lemma 2.1(b) the subgraphs induced by
qu62 _1{a’} and hie L q+1{a } are Ty,. For example, the label p — x
is a%mgned to a} in H! and to a; for2<j<gqin H!.,. So we can conclude
that one copy of Ty, is labeled p — x. Similarly, one copy of each is labelled
p—1—z,p+14+xandp+2+ux.

Finally it remains to prove that the label of each oriented hamilton cycle
is relatively prime to 2p + 1. By Lemma 2.5,
(H)=(p-2)+@@-Dp+2+2)+(@-)p-1-2)—-(p—1-21)
=q(2p+1) —2p = 1(mod 2p + 1), and
(Hy) =+2+2)+ (- Dp—2)+(@-p+1+z)—(p+1+2)
=q(2p+1) - 2p=1(mod 2p + 1).



In all the cases the labels of the hamilton cycles are relatively prime to
2p +1. By Corollary 2.4, the above decomposition of 2pT5, will produce a
hamilton cycle decomposition of Ky,11 @ Ko.

Case 1.2. p is odd. As in Case 1.1 we use the (2g — 1)(p — 1) hamilton
cycles H. and H,, for 0 < i < 2¢—2and z = 0,2,...,p — 3. Now the
4-subsets {p—1—z,p—x,p+1+z,p+2+z}, 2 =0,2,...,p— 3, form a
partition of {2,3,....2p — 1}. Hence we decompose the arcs with labels in
{2,3,...,2p—1} into (2¢—1)(p—1) hamilton cycles whose labels are relatively
prime to 2p + 1.

It remains to decompose the arcs of 275, with labels 1 and 2p into the
2q — 1 hamilton cycles, H;Ll for 0 <i<2q—2:
in H ,, /((1’7) =1for1<j<gq, and
l(a}) =2p for g +1 < j <2q.

U(Hy ) =q+(g—1)2p—2p = (2p+1)(g — 2) — 2 = —2(mod 2p +1).
((H, ;) and 2p+ 1 are relatively prime as 2p + 1 is odd.

So far we have shown that K, ® K, has a hamilton cycle decomposition
if one of r and s is odd.

Case 2. r is even.

Let r = 2p. We will show that K,, ® K, can be decomposed into (p —
1)(2¢ — 1) + ¢ — 1 hamilton cycles and a one factor. Again we will exhibit
a decomposition of (2p — 1)T5, into oriented hamilton cycles with labels
relatively prime to r = 2p.

Case 2.1. p is even. Note that the set of labels {1,2,...,2p — 1} can be
partitioned into (p — 2)/2 4-subsets,

{p-2-—z,p—1—z,p+1l4+z,p+2+z}, =123, ... p—3and a 3-subset

{p—1Lpp+1}.

We first assign the labels to the arcs of the following (p — 2)(2¢ — 1)
hamilton cycles:

for0<i<2¢—2andz=1,3,....,p— 3,

in H, let £(a}) =p —1— x;

lal) =p+2+2,2<j<g;

f(a;) =p—2—2x,q+1<7<2q and
in H,,,, let {(a}) =p+2+;



la}) =p—1-2,2<j<g;

1

la)=p+1+z qg+1<j<2.
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U(H)=p—1—z+(@@-Dp+2+2)+(¢—1)p—-2-2)—(p—2—1)

=2p(q — 1)+ 1= 1(mod 2p)

((Hpy) =p+2+a+(g—1)(p—1-2)+(@-Dp+1+z)— (p+1+2)

=2p(q— 1) + 1 = 1(mod 2p).

Hence the labels of the above hamilton cycles are relatively prime to
2p — 1. So far we have decomposed all the arcs of (2p — 1)T5, with labels
in {1,2,...,2p — 1}\{p — 1,p,p+ 1}. Tt remains to partition the arcs of the
three copies of T, with labels p — 1, p,p+ 1 into (2g — 1) + (¢ — 1) hamilton
cycles and a one factor. We first assign the labels to the arcs of the 2g — 1
hamilton cycles, H;fl,() <1< 29— 2:

in Hi_,, for 1 <j<gand j# jo,

((a’}) =p+1, and
for j = jo,
((a%) = p, where
jo=1,for 0 <i<g— 2 and
1=q,q+2,....,2q — 2 if ¢ is even, and
1=q,q+2,....,2q — 3 if ¢ is odd;
jo=2,fori=q—1,g+1,...,2¢q — 3 if ¢ is even and
1=q—1,q+1,...,2q — 2 if ¢ is odd;
for g +1 < j < 2g,
(la’) =p—1.

Note that the label of each of these hamilton cycles is
((H, )=p+(g—Dp+1)+(@-1p-1) = (p—1) = 1mod 2p).

Example: From the decompositions exhibited in the beginning of the sec-
tion, it is easy to check that the arcs with label p are the following;
when 2¢ = 8, a) = (00, 1),a] = (00,2),a? = (
a$ = (00,7),a3 = (4,5),a5 = (6,7)
when 2¢q = 10, a} = (oc, 1), a1 = (00,2),a] = (
al = (00,6),al = (00,8),a5 = (5,
(]’g = (9v 1)

Note that the arcs not used by the hamilton cycles above form a copy
of T5, and these arcs have the label p except for the arcs (Jéo which have
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the label p + 1. Therefore, the last step is to obtain ¢ — 1 hamilton cycles
by decomposing the arcs of this Ty,. Using Lemma 2.1 (d) we take the
decomposition of T, into the ¢ — 1 hamilton cycles H;;, for 0 <1 <gq— 2.
The labels of each hamilton cycle are fixed and can be described precisely:
forOSiSq—?,inH;,
when 17 is even,
é(a;) =pif1 <j<2¢andj+#1,2¢—1and 2q,
Uah) = fab,y) = Uady) = p+ 1
(U(H)=p+1+(2¢-3)p+p+1-—(p+1)=1(mod 2p))
when 7 is odd,
((a}) =p+1and l(a}) =p, 2 < j < 2.
(E(H}) = p+1+ (29— 2)p —p = 1(mod 2p))

Hence the decomposition satisfies the conditions.

Example:

For 2q = 8, the arcs with labels p + 1 are

a? = (00,1),ad = (4,5), a3 = (00, 5) in HY,

a} = (00,3),a2 = (6,7), a3 = (00, 7) in H2, and a} = (00,2) in H}.
For 2¢g = 10, the arcs with labels p + 1 are

ad = (00,1),a) = (5,6), aly = (c0,6) in HY,

a} = (00,3),a2 = (7,8), aly = (c0,8) in H?,

a; = (00,2) in H), and af = (c0,4) in H;.

Notice that when ¢ is odd, the last arc labelled p + 1, namely (9,1) (in
general (2¢ — 1, 1)), appears in the remaining one factor.

The remaining edges form a one factor of T5,. It is clear that this one
factor can be used to construct a one factor in Ky, ® Ky,.

Case 2.2. p is odd. We can assume that ¢ is odd (¢ > 3) (the case
when ¢ is even has been dealt with as in Case 2.1).

We partition the set of labels {1,2,...2p — 1} into (p — 3)/2 4-subsets
{p-2—z,p—1—z,p+1+x,p+2+z} forz=2,4, .. p— 3 and a 5-subset
{p—2,p—1,p,p+1,p+2}. We deal with the arcs of (2p — 1)T5, with labels
other than {p — 2,p — 1,p,p+ 1,p + 2} in the same way as in Case 2.1.



The remaining edges are five copies of Ty, whose arcs are labelled {p —
2,p— 1,p,p+ 1,p + 2} and they are partitioned into 2(2¢ — 1) + (¢ — 1)
oriented hamilton cycles as follows:

For 0 <i:<2g—2,in H;,q,

Z((zé):p—Q, for 1 <j<gqandj+#3;
lay) =p+1;
(lal) =p+2 forg+1<j <2
So l(H, ) =p+1+(¢—1)(p—2)+(¢—1)(p+2)—(p+2) = —1(mod 2p).

For the other 2¢ — 1 hamilton cycles, we do the following.
For 0 <i:<2¢g—2,in H;,
for 1 <j <qand j+# 3, jo,
(a}) = p +1,
{(ay) = p— 2, and
(a) = p, where
jo=1,for0<i<g—2andi=gq,q+2,...,2¢ — 3, and
jo=2,fori=q—1,g+1,...,2q — 2;
forg+1<j<2qandj#2q—2,
((a’) =p—1, and
lay,_5) = p.

((H)) = p+p—2+(q=2)(p+1)+(¢=2)(p—1)+p—(p—1) = —1(mod 2p).

Example: When 2¢g = 10, from the listed decomposition we can check that
the arcs with label p are the following;

(],?Z(OO,I),(L%:(OO,Q), (OO 3) ( ’ )
al = (00,6),al = (0, 8), /2—(5,6), (7 8), a5 = (9,1)

The arcs not used by the hamllton cycles form a copy of Ty, and they
have label p except the arcs a), (€(a}) =p+1) and aj, , (L(ay, ,) =p—1).
Like in the Case 2.1, using Lemma 21 (d), we partition these arcs into ¢ — 1
hamilton cycles Hp+1, 0 <i<gq—2and a one factor. The labels on the arcs
are fixed as follows:

For0<i:<qg—2,in HpM,

when 17 is even,
{{a}) = t(aj,) = Uah, ) =p+ 1,
l(a3) = (ay, ) = p— 1, and otherwise
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((a’) = p,
when 7 is odd,

fbd—pr
l(a3) = L(ay, ,) =p — 1, and otherwise
((a}) = p.

Example: For 2q = 10, the arcs with labels p+ 1 are
a(l’ = (o0, 1), = (5,6), am (00, 6) in Hp+17
a1 (00,3),a5 = (7,8), am (00, 8) in H§+1,

a; = (00,2) in Hp+1, and a} = (00, 4) in Hp3+1

As in the previous case, the last arc labelled p + 1, namely, (9,1) (in
general (2¢ — 1,1)) appears in the remaining one factor.

When 17 is even,
U(Hy) =@+ +p+p-1D)+2¢—6)p+(p-1)+{+1)—(p+1)

= —1(mod 2p).
When ¢ is odd,

((H} ) = (p+1)+p+ (- 1)+(2¢ 6)p+(p—1)+p—p= —1(mod 2p).

So in all cases /(HPH) and 2p are relatively prime and we have the re-
quired hamilton cycle decomposition of (r —1)T5,. m
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