A Note on G-intersecting Families

Tom Bohman* Ryan R. Martin ${ }^{\dagger}$
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Consider a graph G and a k-uniform hypergraph \mathcal{H} on common vertex set $[n]$. We say that \mathcal{H} is G-intersecting if for every pair of edges in $X, Y \in \mathcal{H}$ there are vertices $x \in X$ and $y \in Y$ such that $x=y$ or x and y are joined by an edge in G. This notion was introduced by Bohman, Frieze, Ruszinkó and Thoma who proved a natural generalization of the Erdős-Ko-Rado Theorem for G-intersecting k-uniform hypergraphs for G sparse and $k=O\left(n^{1 / 4}\right)$. In this note, we extend this result to $k=O(\sqrt{n})$.

1 Introduction

A hypergraph is said to be intersecting if every pair of edges has a nonempty intersection. The well-known theorem of Erdős, Ko and Rado [2, 3] details the extremal k-uniform intersecting hypergraph on n vertices.

Theorem 1 (Erdős-Ko-Rado). Let $k \leq n / 2$ and \mathcal{H} be a k-uniform, intersecting hypergraph on vertex set $[n]$. We have $|\mathcal{H}| \leq\binom{ n-1}{k-1}$. Furthermore, $|\mathcal{H}|=\binom{n-1}{k-1}$ if and only if there exists $v \in[n]$ such that $\mathcal{H}=\left\{e \in\binom{n}{k}: v \in e\right\}$.

Of course, for $k>n / 2$ the hypergraph consisting of all k-sets is intersecting. So, extremal k-intersecting hypergraphs come in one of two forms, depending on the value of k.

Bohman, Frieze, Ruszinkó and Thoma [1] introduced a generalization of the notion of an intersecting hypergraph. Let G be a graph on a vertex set $[n]$ and \mathcal{H} be a hypergraph, also on vertex set $[n]$. We say \mathcal{H} is G-intersecting if for any $e, f \in \mathcal{H}$, we have $e \cap f \neq \emptyset$ or there are vertices v, w with $v \in e, w \in f$ and $v \sim_{G} w$. We are intersected in the size and structure of maximum G-intersecting hypergraphs; in particular, we investigate

$$
N(G, k)=\max \left\{|\mathcal{H}|: \mathcal{H} \subseteq\binom{[n]}{k} \text { and } \mathcal{H} \text { is } G \text {-intersecting }\right\}
$$

[^0]Clearly, Erdős-Ko-Rado gives the value of $N\left(E_{n}, k\right)$ where E_{n} is the empty graph on vertex set [n]. For a discusssion of $N(G, k)$ for some other specific graphs see [1].

In this note we restrict our attention to sparse graphs: those graphs for which n is large and the maximum degree of $G, \Delta(G)$, is a constant in n. What form can a maximum G intersecting family take? If K is a maximum clique in G then a candidate for a maximum G-intersecting family is

$$
\mathcal{H}_{K}:=\left\{X \in\binom{[n]}{k}: X \cap K \neq \emptyset\right\} .
$$

Note that such a hypergraph can be viewed as a natural generalization of the maximum intersecting hypergraphs given by Erdős-Ko-Rado. However, for many graphs and maximum cliques K one can add hyperedges to \mathcal{H}_{K} to obtain a larger G-intersecting hypergraph.

Consider, for example, C_{n}, the cycle on vertex set $[n]$ (i.e. the graph on $[n]$ in which u and v are adjacent iff $u-v \in\{1, n-1\} \bmod n)$. The set $\{2,3\}$ is a maximum clique in C_{n} and the set

$$
\begin{equation*}
\mathcal{H}_{\{2,3\}} \cup\left\{X \in\binom{[n]}{k}:\{1,4\} \subseteq X\right\} \tag{1}
\end{equation*}
$$

is G intersecting. Bohman, Frieze, Ruszinkó and Thoma showed that

$$
\begin{equation*}
N\left(C_{n}, k\right)=\binom{n}{k}-\binom{n-2}{k}+\binom{n-4}{k-2} \tag{2}
\end{equation*}
$$

(i.e. the hypergraph given in (11) is maximum) for k less than a certain constant times $n^{1 / 4}$. In fact, they showed that for arbitrary sparse graphs and k small, $N(G, k)$ is given by a hypergraph that consists of \mathcal{H}_{K} for some clique K together with a number of 'extra' hyperedges that cover the clique K in G (see Theorem 1 of [1). In this note we extend this result to larger values of k.

Theorem 2. Let G be a graph on n vertices with maximum degree Δ and clique number ω. There exists a constant C (depending only on Δ and ω) such that if \mathcal{H} is a G-intersecting k-uniform hypergraph and $k<C n^{1 / 2}$ then

$$
|\mathcal{H}| \leq\binom{ n}{k}-\binom{n-\omega}{k}+\binom{\omega(\Delta-\omega+1)}{2}\binom{n-\omega-2}{k-2} .
$$

Furthermore, if \mathcal{H} is a G-intersecting family of maximum cardinality then there exists a maximum clique K in G such that \mathcal{H} contains all k-sets that intersect K.

An immediate corollary of this Theorem is that (2) holds for $k<C \sqrt{n}$.
Of course, a maximum G-intersecting hypergraph will not be of the form ' \mathcal{H}_{K} together with some extra hyperedges' if k is too large. Even for sparse graphs, when k is large enough, there are hypergraphs that consist of nearly all of $\binom{[n]}{k}$ that are G-intersecting. In particular, Bohman, Frieze, Ruszinkó and Thoma showed that if G is a sparse graph with
minimum degree δ, c is a constant such that $c-(1-c)^{\delta+1}>0$ and $k>c n$, then the size of the largest G-intersecting, k-uniform hypergraph is at least $\left(1-e^{-\Omega(n)}\right)\binom{n}{k}$ (see Theorem 7 of [1]). In some sense, this generalizes the trivial observation that $\binom{[n]}{k}$ is intersecting for $k>n / 2$.

There is a considerable gap between the values of k for which we have established these two types of behavior for maximum G-intersecting families. For example, for C_{n} we have (21) for $k<C \sqrt{n}$ while we have $N\left(C_{n}, k\right)>(1-o(1))\binom{n}{k}$ for k greater than roughly $.32 n$. What happens for other values of k ? Are there other forms that a maximum G-intersecting family can take? Bohman, Frieze, Ruszinkó and Thoma conjecture that this is not the case, at least for the cycle.
Conjecture 1. There exists a constant c such that for any fixed $\epsilon>0$

$$
\begin{aligned}
& k \leq(c-\epsilon) n \quad \Rightarrow \quad N\left(C_{n}, k\right)=\binom{n}{k}-\binom{n-2}{k}+\binom{n-4}{k-2} \\
& k \geq(c+\epsilon) n \Rightarrow N\left(C_{n}, k\right)=(1-o(1))\binom{n}{k}
\end{aligned}
$$

The remainder of this note consists of the proof of Theorem 2.

2 Utilizing τ

Let \mathcal{H} be a hypergraph and G be a graph on vertex set $[n]$. For $X \subseteq[n]$, we define

$$
N(X):=\left\{v \in V(G): v \sim_{G} w \text { for some } w \in X\right\} \cup X
$$

For $x \in[n]$ we write $N(x)$ for $N(\{x\})$. We will define the hypergraph \mathcal{F} by setting $f \in \mathcal{F}$ if and only if $f=N(h)$ for some $h \in \mathcal{H}$. Note that if \mathcal{H} is G-intersecting, then

$$
\begin{equation*}
h \in \mathcal{H}, f \in \mathcal{F} \Rightarrow h \cap f \neq \emptyset . \tag{3}
\end{equation*}
$$

The quantity $\tau(\mathcal{F})$ is the cover number of \mathcal{F}.
The proof of Theorem 2 follows immediately from Lemma 1 , which deals with the case where $\tau(\mathcal{F}) \geq 2$ and Lemma 2, which deals with the case where $\tau(\mathcal{F})=1$.

Lemma 1. Let G be a graph on n vertices with maximum degree Δ and clique number ω, both constants. If $k<\sqrt{\frac{\omega n}{2(\Delta+1)^{2}}}$, \mathcal{H} is a k-uniform, G-intersecting hypergraph on n vertices and n is sufficiently large, then $\tau(\mathcal{F})=1$ or

$$
\begin{equation*}
|\mathcal{H}|<\binom{n}{k}-\binom{n-\omega}{k} . \tag{4}
\end{equation*}
$$

Proof.

Suppose, by way of contradiction, that $\tau=\tau(\mathcal{F}) \geq 2$ and (4) does not hold. For $v \in[n]$ set $\mathcal{H}_{v}=\{f \in \mathcal{F}: u \in f\}$, and for $Y \subseteq[n]$ set $\mathcal{H}_{Y}=\{f \in \mathcal{F}: Y \subseteq f\}$. Let \mathcal{F}_{u} and \mathcal{F}_{Y} be defined analogously

We first use $\tau>1$ to get an upper bound $\left|\mathcal{H}_{u}\right|$ for an arbitrary $u \in[n]$. First note that, since $\tau>1$, there exists $X_{1} \in \mathcal{F}$ such that $u \notin X_{1}$. It follows from (3) that each $f \in \mathcal{F}_{u}$ must intersect X_{1}. In other words, we have

$$
\mathcal{F}_{u}=\bigcup_{u_{1} \in X_{1}} \mathcal{F}_{\left\{u, u_{1}\right\}} .
$$

This observation can be iterated: if $i<\tau$ and $Y=\left\{u=u_{0}, u_{1}, \ldots, u_{i-1}\right\}$ then there exists $X_{i} \in \mathcal{F}$ such that $X_{i} \cap Y=\emptyset$, and we have

$$
\mathcal{F}_{Y}=\bigcup_{u_{i} \in X_{i}} \mathcal{F}_{Y \cup\left\{u_{i}\right\}}
$$

Since $|f| \leq(\Delta+1) k$ for all $f \in \mathcal{F}$, it follows that we have

$$
\begin{equation*}
\left|\mathcal{H}_{u}\right| \leq((\Delta+1) k)^{\tau-1}\binom{n-\tau}{k-\tau} . \tag{5}
\end{equation*}
$$

On the other hand, by the definition of τ, there exists $v \in[n]$ for which

$$
\frac{1}{\tau}\left[\binom{n}{k}-\binom{n-\omega(G)}{k}\right] \leq\left|\mathcal{F}_{v}\right| .
$$

It follows that there exists $u \in[n]$ such that

$$
\frac{1}{\tau(\Delta+1)}\left[\binom{n}{k}-\binom{n-\omega(G)}{k}\right] \leq\left|\mathcal{H}_{u}\right| .
$$

Applying (5) to this vertex we have

$$
\binom{n}{k}-\binom{n-\omega(G)}{k} \leq \tau(\Delta+1)^{\tau} k^{\tau-1}\binom{n-\tau}{k-\tau} .
$$

In order to show that this is a contradiction, we first note that $\tau(\Delta+1)^{\tau} k^{\tau-1}\binom{n-\tau}{k-\tau}$ is a function that is decreasing in τ. Indeed, for $\tau \geq 2$ we have

$$
\frac{n-\tau}{k-\tau} \geq \frac{n-2}{k-2} \geq \frac{3}{2}(\Delta+1) k \geq \frac{\tau+1}{\tau}(\Delta+1) k
$$

(note that the condition $k<\sqrt{\frac{\omega n}{2(\Delta+1)^{2}}}$ is used in the second inequality). It follows that we have

$$
\binom{n}{k}-\binom{n-\omega(G)}{k} \leq 2(\Delta+1)^{2} k\binom{n-2}{k-2},
$$

which is not true if $k<\sqrt{\frac{n \omega(G)}{2(\Delta+1)^{2}}}$ and n is large enough.

Lemma 2. Let G be a graph on $[n]$ with maximum degree Δ, a constant. If \mathcal{H} is a k uniform, G-intersecting hypergraph on $[n], k \leq \sqrt{\frac{n}{\Delta(\Delta+1)}}, \tau(\mathcal{F})=1$, n is sufficiently large and \mathcal{H} is of maximum size, then there exists a maximum-sized clique K in G such that \mathcal{H} contains every k-set that intersects K.

Proof. Let us suppose \mathcal{H} is of maximum size and let u be a cover for \mathcal{F}, the hypergraph defined above.

For $v \in[n]$, let \mathcal{H}_{v} denote the members of \mathcal{H} that contain v. Since \mathcal{H} is assumed to be extremal, we may assume that $\left|\mathcal{H}_{u}\right|=\binom{n-1}{k-1}$. Let K be the set of $v \in[n]$ such that $\left|\mathcal{H}_{v}\right|=\binom{n-1}{k-1}$. If $n>(\Delta+2) k$ then K must be a clique in G; otherwise, we could find two sets that are not G-intersecting in \mathcal{H}.

We now show that the clique K is maximal. Assume for the sake of contradiction that v is adjacent to every element of K but $v \notin K$ (i.e. $\left|\mathcal{H}_{v}\right|<\binom{n-1}{k-1}$). There exists $h \in \mathcal{H}$ that h contains no member of $N(v)$. It follows from (3) that we have

$$
\left|\mathcal{H}_{v}\right|<(\Delta+1) k\binom{n-2}{k-2} .
$$

Since this bounds holds for all vertices in $N(u) \backslash K$, if we have

$$
\begin{equation*}
\Delta(\Delta+1) k\binom{n-2}{k-2}<\binom{n-|K|-1}{k-1} \tag{6}
\end{equation*}
$$

then the number of k-sets that contain v but do not intersect K outnumber those edges in \mathcal{H} that contain no member of K. In other words, if (6) holds then we get a contradiction to the maximality of \mathcal{H}. However, (6) holds for n sufficiently large (here we use $k<\sqrt{\frac{n}{\Delta(\Delta+1)}}$).

It remains to show that K is a maximum clique. Since K is maximal, it must be that any member of \mathcal{H} that does not contain a member of K must contain at least 2 members of $N(K) \backslash K$. If

$$
\begin{equation*}
\binom{n}{k}-\binom{n-|K|}{k}+\binom{|K|(\Delta-|K|+1)}{2}\binom{n-|K|-2}{k-2}<\binom{n}{k}-\binom{n-|K|-1}{k} \tag{7}
\end{equation*}
$$

and there is some clique of size $|K|+1$, then \mathcal{H} cannot be maximum-sized. But (77) holds for $k=o(n)$. So the maximum-sized G intersecting family must contain all members of $\bigcup_{v \in K} \mathcal{F}_{v}$ for some K with $|K|=\omega(G)$.

References

[1] T. Bohman, A. Frieze, M. Ruszinkó, L. Thoma, G-intersecting Families, Combinatorics, Probability and Computing 10, 376-384.
[2] M. Deza, P. Frankl, Erdős-Ko-Rado theorem - 22 years later, SIAM J. Alg. Disc. Meth. 4 (1983) 419-431.
[3] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 212 (1961), 313-320.

[^0]: *Supported in part by NSF grant DMS-0100400.
 ${ }^{\dagger}$ Supported in part by NSF VIGRE Grant DMS-9819950

