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Abstract

In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski devel-
oped a graph transformation that transforms a graph G into a new graph �(G), we now call the
Mycielskian of G, which has the same clique number as G and whose chromatic number equals
�(G)+1. Let �n(G)=�(�n−1(G)) for n¿2. This paper investigates the circular chromatic num-
bers of Mycielski’s graphs. In particular, the following results are proved in this paper: (1) for
any graph G of chromatic number n; �c(�n−1(G))6�(�n−1(G))− 1

2 ; (2) if a graph G satis�es
�c(G)6�(G) − 1

d with d = 2 or 3, then �c(�
2(G))6�(�2(G)) − 1

d ; (3) for any graph G of
chromatic number 3, �c(�(G)) = �(�(G)) = 4; (4) �c(�(Kn)) = �(�(Kn)) = n + 1 for n¿3 and
�c(�2(Kn)) = �(�2(Kn)) = n + 2 for n¿4. c© 1999 Elsevier Science B.V. All rights reserved.

Keywords: Circular chromatic number; Mycielski’s graphs; Girth; Homomorphism; Connectivity;
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1. Introduction

All graphs in this paper are simple, i.e., �nite, undirected, loopless, and without
multiple edges.
In a search for triangle-free graphs with arbitrarily large chromatic numbers,

Mycielski [15] developed an interesting graph transformation as follows. For a graph
G with vertex set V (G) = V and edge set E(G) = E, the Mycielskian of G is the
graph �(G) with vertex set V ∪V ′ ∪{u}, where V ′ = {x′: x∈V}, and edge set E ∪
{xy′: xy∈E}∪ {y′u: y′ ∈V ′}. The vertex x′ is called the twin of the vertex x (and x is
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also called the twin of x′); and the vertex u is called the root of �(G). If there is no
ambiguity we shall always use u as the root of �(G). For n¿2, let �n(G)=�(�n−1(G)).
Mycielski [15] showed that �(�(G))=�(G)+1 for any graph G and !(�(G))=!(G)

for any graph G with at least one edge. Hence �n(K2) is a triangle-free graph of
chromatic number n + 2. Besides such interesting properties involving clique num-
bers and chromatic numbers, Mycielski’s graphs also have some other parameters that
behave in a predictable way. For example, it was shown by Larsen et al. [14] that
�f (�(G)) = �f (G) + 1

�f (G)
for any graph G, where �f (G) is the fractional chromatic

number of G. Mycielski’s graphs were also used by Fisher [6] as examples of optimal
fractional colorings that have large denominators.
The purpose of this paper is to investigate the circular chromatic numbers of

Mycielski’s graphs. The circular chromatic number �c(G) of a graph G is a variation
of the chromatic number of G, introduced by Vince [17] in 1988, as the ‘star chromatic
number’ of a graph. Let k and d be integers such that 0¡d6k. A (k; d)-coloring of
G is a coloring c of vertices of G with k colors {0; 1; : : : ; k − 1} such that for any
edge xy, d6|c(x)− c(y)|6k − d. The circular chromatic number �c(G) of G is the
minimum ratio k

d for which there exists a (k; d)-coloring of G. (To be precise, the
minimum in the de�nition should be in�mum. However, it was shown in [17] that the
in�mum is attained.) Observe that a (k; 1)-coloring of a graph G is just an ordinary
k-coloring of G. It follows that �c(G)6�(G). On the other hand, it is also not di�cult
to see [3,17,18] that �(G)− 1¡�c(G). Therefore, �(G) = d�c(G)e. In some sense the
circular chromatic number is a re�nement of the chromatic number of a graph, and it
contains more information about the graph. Readers are referred to [1–5,7–13,16–23]
for more information on circular chromatic numbers of graphs.
In this paper, we show that circular chromatic numbers of Mycielski’s graphs ex-

hibit interesting patterns. The problem of determining if �c(G) = �(G) or �c(G) is
‘close to’ �(G)− 1 is hard and has been extensively studied for general graphs. This
paper reports some progress for Mycielski’s graphs in this direction. In Section 3,
we prove that �c(�n−1(G))6�(�n−1(G)) − 1

2 for any graph G of chromatic number
n, and �c(�2(G))6�(�2(G)) − 1

d for any graph G with �c(G)6�(G) − 1
d ; d = 2 or

3. Section 4 establishes that �c(�(G)) = �(�(G)) = 4 for any graph G of chromatic
number 3, �c(�(Kn))= �(�(Kn))= n+1 for n¿3, and �c(�2(Kn))= �(�2(Kn))= n+2
for n¿4.
These results yield many graphs with special properties having particular circular

chromatic numbers. For example, it follows that there are triangle-free 4-critical graphs
whose circular chromatic numbers are 4. This disproves a conjecture in [16]. It also
follows from these results that there are triangle-free and color-critical graphs G of
high connectivity for which �c(G)6�(G)− 1

2 .
Along the way to proving these results, we also re�ne some tools used by others

in the study of the relationship between the circular chromatic number and the chro-
matic number of a graph. We believe that the results obtained here are just a fraction
of a family of interesting properties concerning the circular chromatic numbers of
Mycielski’s graphs. In Section 5, a few questions are raised.
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2. Preliminary results

The connectivity �(G) of a graph G is the minimum non-negative integer k such
that G\S is disconnected or trivial for some vertex set S of size k. A graph G is
k-critical if �(H)¡�(G) = k for any proper subgraph H of G; or equivalently, G is
connected and �(G\e)¡�(G)=k for any edge e in G. The following lemma is surely
folkloric:

Lemma 1. If G has no isolated vertices; then �(�(G))¿�(G) + 1. If G is k-critical;
then �(G) is (k + 1)-critical.

Proof. Suppose V (G)=V and V (�(G))=V ∪V ′ ∪{u}. Let S be a subset of V (�(G))
of size �(G). If |S ∩ V |¡�(G), then G\(S ∩ V ) is connected. Also, for any vertex
x∈V; x′ is adjacent to at least �(G) vertices of V in �(G). So, any such vertex x′

of �(G)\S is adjacent to at least one vertex in G\(S ∩ V ). And u is adjacent to all
such vertices x′ of �(G)\S. Thus, �(G)\S is connected. If |S ∩V |=�(G), then S ⊆V .
Since G has no isolated vertices, any vertex x∈V\S is adjacent to some vertex y′
in V ′, which is in turn adjacent to u. Thus, �(G)\S is also connected. Therefore,
�(�(G))¿�(G) + 1.
For the proof of the second half of this lemma, assume that G is k-critical. Since G

is connected, so is �(G). Let e be any edge of �(G). We consider the following three
cases.
Suppose e = ab for some a∈V and b∈V . Let c be a proper (k − 1)-coloring of

G\e. Then the following c′ is a proper k-coloring of �(G)\e: c′(x) = c(x) for all
x∈V; c′(x′) = k − 1 for all x′ ∈V ′, and c′(u) = 0.
Suppose e = ab′ for some a∈V and b′ ∈V ′. Let c be a proper (k − 1)-coloring of

G\ab. Then the following c′ is a proper k-coloring of �(G)\e: c′(b)=k−1; c′(x)=c(x)
for all x∈V\{b}; c′(x′) = c(x) for all x′ ∈V ′, and c′(u) = k − 1.
Suppose e = a′u for some a′ ∈V ′. Suppose c is a proper (k − 1)-coloring of G\a.

Then the following c′ is a proper k-coloring of �(G)\e: c′(x) = c′(x′) = c(x) for all
x∈V\{a} and c′(a) = c′(a′) = c′(u) = k − 1.

For an n-coloring c : V (G) 7→ {0; 1; : : : ; n − 1} of G, we denote by Dc(G) the
directed graph with vertex set V (G) in which there is an arc from x to y if and only
if xy∈E(G) and c(x) + 1 ≡ c(y) (mod n). It was shown in [10], in the corollary of
Theorem 1, that an n-chromatic graph G satis�es �c(G)¡n if and only if G has an
n-coloring c for which Dc(G) is acyclic. For our purposes in this paper, we re�ne this
result in two respects.

Lemma 2. If x0 is a vertex of an n-chromatic graph G for which �c(G)¡n; then
there is an n-coloring c of G such that Dc(G) is acyclic; c(x0) = 1; and c(x) 6∈ {0; 1}
for all vertices x adjacent to x0.
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Proof. Suppose �c(G)= k
d ¡n and d¿ 1. Then G has a (k; d)-coloring h with h(x0)=

d − 1. De�ne c: V (G) 7→ {0; 1; : : : ; n − 1} by c(v) = b h(v)+1d c for each v∈V (G). It is
straightforward to check that c is a proper coloring, Dc(G) is acyclic, c(x0) = 1, and
c(x) 6∈ {0; 1} for all vertices x adjacent to x0.

Corollary 3. If �(G) with root u satis�es �c(�(G))¡�(�(G)) = n; then there is an
n-coloring c of �(G) such that Dc(�(G)) is acyclic; c(u) = 1; and c(x′) 6∈ {0; 1} for
all x′ ∈V ′. Moreover; for any such coloring c; there is an edge ab∈E(G) such that
c(a) = 0; c(b) = 1; and c(a′) = c(b′).

Proof. Applying Lemma 2 to �(G) with x0 = u, we obtain an n-coloring c such that
Dc(�(G)) is acyclic, c(u)=1, and c(x′) 6∈ {0; 1} for all x′ ∈V ′. To prove the ‘moreover’
part, we assume to the contrary that c(a′) 6= c(b′) for all edges ab∈E(G) with c(a)=0
and c(b)=1. Let c′ be the coloring de�ned by c′(x)= c(x) if c(x) 6∈ {0; 1} and c′(x)=
c(x′) if c(x)∈{0; 1}. It is straightforward to verify that c′ is an (n− 2)-coloring of G,
contrary to the assumption that �(�(G)) = n.

Lemma 4. Suppose G is an n-chromatic graph and that there is an n-coloring c: V (G)
7→ {0; 1; : : : ; n− 1} of G such that Dc(G) is acyclic. Let P be the set of all directed
paths of Dc(G). For any P ∈P; let z(P) be the number of vertices of P which are
colored 0 and let d=max{z(P) + 1: P ∈P}. If n¿3; then �c(G)6n− 1

d .

Proof. For each vertex x of G, let Px be the set of all directed paths of Dc(G) that
end at x and let ‘(x) = max {z(P):P ∈Px}. De�ne an (nd − 1; d)-coloring h of G
by h(x) = (c(x)d + ‘(x)) mod (nd − 1). Since 06c(x)6n − 1 and ‘(x)6d − 1, it
follows that 06c(x)d + ‘(x)6nd − 1 and then h(x) = c(x)d + ‘(x), except h(x) = 0
for c(x) = n − 1 and ‘(x) = d − 1. We show that h is indeed an (nd − 1; d)-coloring
of G.
Suppose xy is an edge of G. Assume that c(x)¡c(y). First consider the case

that 26c(y) − c(x)6n − 2. If c(y)6n − 2 or c(y) = n − 1 but ‘(y)¡d − 1, then
c(y)d6h(y)6c(y)d+ d− 1 and c(x)d6h(x)6c(x)d+ d− 1. Hence,

d6c(y)d−(c(x)d+d−1)6h(y)−h(x)6c(y)d+d−1−c(x)d6nd−1−d:
If c(y) = n− 1 and ‘(y) = d− 1, then h(y) = 0. Since 16c(x)6n− 3, it follows that
d6h(x)6(n− 2)d− 1. Hence, d6h(x)− h(y)6nd− 1− d.
Next, we assume that c(y)−c(x)=1. In this case, xy is an arc of Dc(G). Therefore,

‘(y)¿‘(x). If c(y)6n−2 or c(y)=n−1 but ‘(y)¡d−1, then h(y)= c(y)d+‘(y)
and h(x) = c(x)d+ ‘(x). Hence, d6h(y)− h(x)62d− 16nd− 1− d. If c(y) = n− 1
and ‘(y) = d− 1, then h(y) = 0. Since c(x) = n− 2, it follows that (n− 2)d6h(x)6
(n− 2)d+ d− 1. Hence, d6h(x)− h(y)6nd− 1− d.
Finally, we assume that c(y)=n−1 and c(x)=0. In this case, yx is an arc of Dc(G)

and ‘(x)¿‘(y) + 1. Therefore, ‘(y)¡‘(x)6d− 1. Hence, h(y) = c(y)d+ ‘(y) and



G.J. Chang et al. / Discrete Mathematics 205 (1999) 23–37 27

h(x)= ‘(x)¿‘(y)+1. It follows that d6h(y)− h(x)6nd− 1−d. This completes the
proof of the lemma.

Corollary 5. Suppose n¿3 and that G is an n-chromatic graph having an n-coloring
c such that Dc(G) is acyclic. Let P be the set of all directed paths of Dc(G). For
each P ∈P; let s(P) be the number of arcs in P and let s = max {s(P): P ∈P}. If
d= b snc+ 2; then �c(G)6n− 1

d .

Proof. Since each directed path of Dc(G) has at most s arcs, it follows that the
path contains at most b snc + 1 vertices with color 0. The result then follows from
Lemma 4.

3. Graphs G with �c(�(G ))¡ �(�(G ))

Note that �(K2) is a pentagon that has circular chromatic number 52 . Indeed, it is not
di�cult to see that for any bipartite graph G; �(G) has circular chromatic number 5

2 .
The purpose of this section is to study G and m for which �c(�m(G))6�(�m(G))− 1

d
for some d.
To work with such graphs, we need to take special care with the names of the

vertices. We now introduce a system for naming the vertices of �m(G). It turns out
that using this naming system provides an easy method for determining the adjacency
of vertices and for telling which vertex is the twin of another vertex at a certain level.
For any two non-negative integers i and j, let i&j denote the integer whose binary

representation is the logical ‘and ’ of the binary representations of i and j. For instance,
14&25 = 011102&110012 = 010002 = 8 and 10&17 = 010102&100012 = 000002 = 0.
If i¿ 0, let f(i) denote the maximum factor of i that is a power of 2. For instance,
f(1)=f(3)=1; f(6)=f(18)=2 and f(12)=4. For any graph G and any non-negative
integer m, let Gm be the graph whose

vertex set V (Gm) = {xi: x∈V (G) and 06i¡ 2m}∪ {ui: 16i¡ 2m};

edge set E(Gm) = {xiy j: xy∈E(G) and i&j = 0}∪ {xiuj: i&j = f(j)}
∪ {uiuj: i&j =max {f(i); f(j)}andf(i) 6= f(j)}:

Note that G∼=G0.
Lemma 6. For any graph G and any non-negative integer m; Gm+1 is isomorphic to
�(Gm). Consequently; �m(G)∼=Gm for any m¿0.
Proof. Consider the function h: V (Gm+1) 7→ V (�(Gm)) de�ned by

h(xi) = xi and h(xi+2
m
) = (xi)′ for x∈V (G) and 06i¡ 2m;

h(ui) = ui and h(ui+2
m
) = (ui)′ for 16i¡ 2m;

h(u2
m
) = u:
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Fig. 1. �2(G).

It is straightforward to check that h is an isomorphism between Gm+1 and �(Gm) by
using the following facts:
(i) If 06i; j ¡ 2m, then (i + 2m)&j = i&(j + 2m) = i&j and (i + 2m)& (j + 2m) =

(i&j) + 2m.
(ii) If 16i¡ 2m, then f(2m) = 2m¿f(i) = f(i + 2m).
An induction with the basis G∼=G0 proves that �m(G)∼=Gm for any m¿0.

It follows from Lemma 6 that for any graph G, we may simply take the de�nition
of Gm as a naming system for the vertices of �m(G). For the remainder of this paper,
we use V (Gm) and E(Gm) to denote the vertex set and the edge set of �m(G), respec-
tively. Fig. 1 shows �2(G). Note that a link between the two sets {xi: x∈V (G)} and
{y j: y∈V (G)} means that i&j = 0, i.e., xiy j ∈E(�2(G)) if and only if xy∈E(G);
and a link between {xi: x∈V (G)} and uj means i&j=f(j), i.e., xiuj ∈E(�2(G)) for
all x∈V (G).

Theorem 7. If G is a graph for which �c(G)6�(G)− 1
d with d=2 or 3; then �c(�

2(G))
6�(�2(G))− 1

d .

Proof. Suppose �(G)= k and that �c(G)6k − 1
d . Let c :V (G) 7→ {0; 1; : : : ; dk − 2} be

a (dk − 1; d)-coloring of G. De�ne c′ :V (�2(G)) 7→ {0; 1; : : : ; dk + 2d− 2} as

c′(xi) =




dk + d if i = 0 and c(x) = dk − d;
c(x) + dk − 1 if i = 2 and c(x)6d− 2;
dk − 1 if i = 3 and c(x)6d− 2;
c(x) otherwise;

c′(ui) =



dk + d− 1 if i = 1;

dk + 2d− 2 if i = 2;

dk + d− 2 if i = 3:

It is straightforward to verify that d6|c′(a) − c′(b)|6(dk + 2d − 1) − d for each
ab∈E(�2(G)) (see Fig. 1). Hence c′ is a (dk + 2d− 1; d)-coloring of �2(G).
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Corollary 8. If G is a graph for which �c(G)6�(G) − 1
d ; d = 2 or 3; and k is a

non-negative integer; then �c(�2k(G))6�(�2k(G))− 1
d .

For any integer n¿4, in order to �nd an n-chromatic graph G for which �c(�(G))6
�(�(G))− 1

2 , we may take any graph H such that �(H)=n−1 and �c(H)6n− 3
2 (see

[17] for a proof of the existence of such graphs) and let G = �(H). It follows from
Theorem 7 that �c(�(G)) = �c(�2(H))6�(�2(H))− 1

2 = �(�(G))− 1
2 . Therefore there

are many graphs G whose Mycielskians have circular chromatic numbers strictly less
than their chromatic numbers. Our next result concerns graphs obtained by repeatedly
taking Mycielski transformations of a graph.

Theorem 9. If G is a graph of chromatic number n; then �c(�n−1(G))6
�(�n−1(G))− 1

2 .

Proof. First of all, we construct a (2n − 1)-coloring c of �n−1(Kn) such that
Dc(�n−1(Kn)) is acyclic. For the sake of clarity, we �rst color the vertices of �n−2(Kn).
Let the vertices of Kn be x1; x2; : : : ; xn. Then by our naming system, the vertex

set of �n−2(Kn) is {xij: 16j6n and 06i¡ 2n−2} ∪ {ui: 16i¡ 2n−2}. Let I={i: 06
i¡ 2n−2}. We partition I into subsets It for 16t6n−1, where It={i∈ I : 2n−2−2t−16
i¡ 2n−2 − 2t−2}. Let c be the (2n− 1)-coloring of �n−2(Kn) de�ned as follows:

c(xij) =




2j − 1 if 26j6n− 1;
0 if j = n and i∈ I1 = {2n−2 − 1};
2 if j = 1 and i∈ I1 ∪ In−1;
2t if j∈{1; n} and i∈ It for 26t6n− 2;
2n− 2 if j = n and i∈ In−1;

c(ui) =

{
17 if i = 2n−3;

2t + 4 otherwise; where f(i) = 2t :

We �rst verify that c is a proper coloring of �n−2(Kn). The graph �n−2(Kn) has three
types of edges: xijx

i′
j′ ; u

iu j, and xiju
k . If xijx

i′
j′ ∈E(�n−2(Kn)), then j 6= j′ and i&i′ = 0.

It follows that c(xij) 6= c(xi
′
j′), since i&i

′ 6= 0 when i and i′ are both in It for some
26t6n−2. If uiuj ∈E(�n−2(Kn)), then f(i) 6= f(j), which implies that c(ui) 6= c(uj).
Suppose xiju

k ∈E(�n−2(Kn)). Note that u2n−3
is the only vertex of color 1. Thus, we

may assume that k 6= 2n−3. Then c(uk) is an even integer and 46c(uk)62n − 4.
Suppose to the contrary that both end vertices of the edge xiju

k are colored with color
c(xij) = c(u

k) = 2s + 4, where 26s + 26n − 2. It then follows from the de�nition
that f(k) = 2s, j∈{1; n}, and i∈ Is+2 = {2n−2 − 2s+1; : : : ; 2n−2 − 2s − 1}. However
this implies that i&k 6= f(k) and hence, xijuk 6∈E(�n−2(Kn)). Therefore, c is indeed a
proper coloring of �n−2(Kn).
Next we color the remaining vertices of �n−1(Kn) = �(�n−2(Kn)). All these vertices

will be colored the same color as their twins in �n−2(Kn), except that c(x2
n−1−1
n ) =

c(u2
n−2+2n−3

) = 2n− 2 and c(u2n−2
) = 1.
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To verify that c is a proper coloring of �n−1(Kn), it su�ces to consider the three
exceptionally colored vertices x 2

n−1−1
n ; u2

n−2+2n−3
, and u2

n−2
. The only other vertex with

color 1 is u2
n−3
, which is not adjacent to u2

n−2
. The only other vertices of color

2n−2 are those xin with 06i¡ 2n−3, which are not adjacent to x2
n−1−1
n and u2

n−2+2n−3
.

Therefore, c is indeed a proper coloring of �n−1(Kn).
Next we show that Dc(�n−1(Kn)) is acyclic. Assume to the contrary that Dc(�n−1(Kn))

contains a directed cycle. Note that x2
n−2−1
n is the only vertex of color 0. We conclude

that this cycle has a length of 2n− 1. It starts with x2n−2−1
n ; and then u2

n−3
, which is

the unique vertex of color 1 adjacent to x2
n−2−1
n ; and ends with u2

n−2+2n−3
, which is

the unique vertex of color 2n− 2 adjacent to x2n−2−1
n .

Let us call the vertices of this cycle Y=(y0; y1; : : : ; y2n−2), where c(yi)=i. Therefore,
y0 = x2

n−2−1
n ; y1 = u2

n−3
, and y2n−2 = u2

n−2+2n−3
.

De�ne J ∗t = {xij: 06i¡ 2t−1 or 06i − 2n−2¡ 2t−1} and I∗t = {xij : i∈ It or i −
2n−2 ∈ It} for 16t6n − 2. It is easy to verify that for any 16t6n − 2 and xijxi

′
j′ ∈

E(�n−1(Kn)), if xij ∈ I∗t , then i&i′ = 0 and so xi
′
j′ ∈ J ∗t . Moreover, any vertex xij ∈ J ∗t

is not adjacent to any vertex uk colored by 2t + 2, since 06i (or i − 2n−2) ¡ 2t−1

and f(k) = 2t−1. Since y1 = u2
n−3
, we may conclude that y2 ∈ I∗1 . It then follows

that y3 ∈ J ∗1 ; y4 ∈ I∗2 ; y5 ∈ J ∗2 ; : : : ; y2n−4 ∈ I∗n−2, and y2n−3 ∈ J ∗n−2. Thus, y2n−3 is not ad-
jacent to y2n−2 = u2

n−2+2n−3
, contrary to the assumption that Y is a cycle. Therefore,

Dc(�n−1(Kn)) is indeed acyclic. Since there is only one vertex colored with color 0, it
follows from Lemma 4 that �c(�n−1(Kn))62n− 1− 1

2 = �(�
n−1(Kn))− 1

2 .
If G is an arbitrary n-chromatic graph, then there is a homomorphism from G to

Kn. It follows that there is a homomorphism from �n−1(G) to �n−1(Kn). Therefore,
�c(�n−1(G))6�(�n−1(Kn))− 1

2 = �(�
n−1(G))− 1

2 .

The following corollary follows easily from Theorems 7 and 9:

Corollary 10. If G is an n-chromatic graph and t is a non-negative integer; then
�c(�n−1+2t(G))6�(�n−1+2t(G))− 1

2 .

By Lemma 1, if G is color-critical, then so is �m(G). It also follows from Lemma 1
that �m(G) has high connectivity. If G is triangle-free, then so is �m(G). Thus, it
follows from Corollary 10 that there are triangle-free and color-critical graphs G of
high connectivity for which �c(G)6�(G)− 1

2 (for example, �
k−3(C5) is such a k-critical

graph). This gives another proof of Theorem 4 in [2], which asserts that there exist
k-critical (k − 1)-connected triangle-free graphs G for which �c(G)6k − 1

2 .

4. Graphs G with �c(�(G )) = �(�(G ))

This section investigates graphs G for which �c(�(G)) = �(�(G)). We �rst prove
that the Mycielskian of any 3-chromatic graph has circular chromatic number 4.



G.J. Chang et al. / Discrete Mathematics 205 (1999) 23–37 31

Theorem 11. If �(G) = 3; then �c(�(G)) = �(�(G)) = 4.

Proof. Suppose that, to the contrary, there is a 3-chromatic graph G for which
�c(�(G))¡ 4. By Corollary 3, there is a 4-coloring c of �(G) such that Dc(�(G))
is acyclic, c(u) = 1, c(x′) 6∈ {0; 1} for all x′ ∈V ′; and there is an edge xy∈E(G) such
that c(x)=0; c(y)=1, and c(x′)= c(y′). Assume that c is such a coloring with a least
number of 0–1 edges (i.e., edges with two end vertices colored 0 and 1, respectively).
Assume c(x′) = c(y′) = 2 (the case in which c(x′) = c(y′) = 3 is symmetric). Then
c(z) = 1 for each z ∈NG(x), otherwise xyx′z is a directed 4-cycle in Dc(�(G)). For
each z ∈NG(x), if c(z′)= 3, then c(w)= 0 for each w∈NG(z)\{x}, otherwise xzwz′ is
a directed 4-cycle in Dc(�(G)). We re-color z′ with color 2 for each z ∈NG(x), and
re-color x and x′ with color 3. It is straightforward to verify that this new coloring c′

is still a proper 4-coloring of �(G) and that Dc′(G) is acyclic. However c′ has fewer
0–1 edges than c, contrary to the choice of c.

It was conjectured in [16] that triangle-free n-critical graphs have circular chromatic
numbers strictly less than n. However, it follows from Lemma 1 and Theorem 11 that
for k¿2, �(C2k+1) is a triangle-free 4-critical graph that has the circular chromatic
number 4. Therefore the conjecture fails for n = 4. We do not know whether the
conjecture fails for any other integer n.
It was shown in [16] that n-critical graphs of ‘large girth’ have circular chromatic

numbers ‘close to’ n− 1. However, it is unknown how large the girth of an n-critical
graph G must be to guarantee that �c(G)¡n. For each integer n, let g(n) be the
minimum integer such that any n-critical graph of girth greater than g(n) has �c(G)¡n.
It follows from the corollary of Theorem 1 in [10] that g(n)6n. The above argument
shows that g(4)¿4 and hence g(4)= 4. It is easy to show that g(3)= 3. The value of
g(n) is unknown for n¿5.
The next four results concern the Mycielskian of the complete graphs Kn. When n=2,

�(K2) is the pentagon, and hence has circular chromatic number 5
2 . It follows from

Theorem 11 that �c(�2(K2))=4, and follows from Corollary 8 that �c(�2k+1(K2))62k+
2 + 1

2 . In the following we consider the case of n¿3.

Theorem 12. If n¿3; then �c(�(Kn)) = �(�(Kn)) = n+ 1.

Theorem 13. If n¿4; then �c(�2(Kn)) = �(�2(Kn)) = n+ 2.

To prove Theorems 12 and 13, it su�ces to show that for any (n + 1)-coloring c
of �(Kn) and any (n + 2)-coloring c′ of �2(Kn), the directed graphs Dc(�(Kn)) and
Dc′(�2(Kn)) contain directed cycles (see Lemma 2). However, we prove two stronger
results that seem to be potentially useful for more general graphs.
First, we introduce notation. Suppose G is a graph and that c : V (G) 7→ {0; 1; : : : ; k−

1} is a proper coloring of G. Let C=(x1; x2; : : : ; xm) be a cycle of G. We say that C is
consistently colored if there is an index i such that c(xi)¡c(xi+1)¡ · · · ¡c(xm)¡
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c(x1)¡ · · · ¡c(xi−1). We may view the colors as cyclically ordered, such that i pre-
cedes i + 1 and k − 1 precedes 0. Then a cycle C is consistently colored only if the
colors of the vertices of C are in the same cyclic order as C. To be precise, for two
colors i and j we let [i; j]k denote the set {i; i+1; i+2; : : : ; j}, where addition is carried
out modulo k. For example, [2; 5]8 = {2; 3; 4; 5} and [5; 2]8 = {5; 6; 7; 0; 1; 2}. We let
(i; j)k = [i; j]k − {i; j} and [i; j)k = [i; j]k − {j}. Then a cycle C = (x1; x2; : : : ; xm) is
consistently colored if for any index q 6∈ {p;p+ 1}, c(xq) 6∈ [c(xp); c(xp+1)]k .
It is trivial that for any proper coloring of Kn there is a consistently colored n-cycle.

In the next two theorems, we show that for n¿3, every proper coloring of �(Kn) has
a consistently colored (n+1)-cycle; and for n¿4, every proper coloring of �2(Kn) has
a consistently colored (n+ 2)-cycle.

Theorem 14. If n¿3 and c : V (�(Kn)) 7→ {0; 1; : : : ; k − 1} is a proper coloring of
�(Kn); then there is a consistently colored (n+ 1)-cycle.

Proof. The restriction of c to V = V (Kn) has a consistently colored n-cycle which
we assume is C=(x01 ; x

0
2 ; : : : ; x

0
n). The colors (c(x

0
1); c(x

0
2); : : : ; c(x

0
n)) form a cycle with

respect to the cyclic order of the colors. For each j, we consider the color c(x1j ) (recall
that x1j is the twin of x

0
j ). If c(x

1
j )∈ [c(x0i ); c(x0i+1)]k for some i 6∈ {j − 1; j}, then we

obtain an (n+1)-cycle (x01 ; x
0
2 ; : : : ; x

0
i ; x

1
j ; x

0
i+1; : : : ; x

0
n) which is consistently colored (note

that x1j is adjacent to both x
0
i+1 and x

0
i , hence c(x

1
j )∈ (c(x0i ); c(x0i+1))).

Assume now that for each j, we have c(x1j )∈ (c(x0j−1); c(x0j+1))k . Let i be the
index such that c(u1)∈ [c(x0i ); c(x0i+1))k . We now consider the relative positions of
the colors c(x1i ), c(x

1
i+1), and c(u

1). If c(u1)∈ (c(x1i ); c(x1i+1))k ⊆(c(x0i−1); c(x0i+2))k ,
then (x01 ; x

0
2 ; : : : ; x

0
i−1; x

1
i ; u

1; x1i+1; x
0
i+2; : : : ; x

0
n) is a consistently colored (n + 1)-cycle. If

c(u1)∈ (c(x1i+1); c(x0i+1))k ⊆(c(x1i+1); c(x1i+2))k , then (x01 ; x02 ; : : : ; x0i ; x1i+1; u1; x1i+2; x0i+3; : : : ;
x0n) is a consistently colored (n+1)-cycle. Otherwise c(u

1)∈ [c(x0i ); c(x1i ))k ⊆(c(x1i−1);
c(x1i ))k , and in this case (x

0
1 ; x

0
2 ; : : : ; x

0
i−2; x

1
i−1; u

1; x1i ; x
0
i+1; x

0
i+2; : : : ; x

0
n) is a consistently

colored (n+ 1)-cycle.

We note from the proof of Theorem 14 that there are two types of consistently
colored (n + 1)-cycles in �(Kn) (see Fig. 2). Type I is an (n + 1)-cycle CI(i; j)=
(x01 ; : : : ; x

0
i ; x

1
j ; x

0
i+1; : : : ; x

0
n) obtained from the n-cycle C=(x

0
1 ; x

0
2 ; : : : ; x

0
n) in Kn by adding

Fig. 2. Two types of (n + 1)-cycles.
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a vertex x1j between x
0
i and x

0
i+1. Type II is an (n+1)-cycle CII(i)=(x

0
1 ; : : : ; x

0
i ; x

1
i+1; u

1;
x1i+2; x

0
i+3; : : : ; x

0
n) obtained from the n-cycle in Kn by replacing x0i+1; x

0
i+2 with

x1i+1; u
1; x1i+2.

We call {x0i ; x0i+1} the base of a Type I cycle CI(i; j) and {x0i ; x0i+1; x0i+2; x0i+3} the
base of a Type II cycle CII(i).

Theorem 15. If n¿4 and c : V (�2(Kn)) 7→ {0; 1; : : : ; k − 1} is a proper coloring of
�2(Kn); then there is a consistently colored (n+ 2)-cycle.

Proof. Recall that the vertex set of �2(Kn) is (
⋃3
i=0 Vi)∪{u1; u2; u3}, where Vi =

{xi: x∈V (Kn)} for 06i63 (see the naming system introduced in the previous section
and Fig. 1). Then we have �ve copies of �(Kn) in �2(Kn) that are induced by the
following vertex sets: V0 ∪V1 ∪{u1}, V0 ∪V1 ∪{u3}, V0 ∪V2 ∪{u2}, V0 ∪V3 ∪{u1},
V0 ∪V3 ∪{u2}. By Theorem 14, the copy of �(Kn) with vertex set V0 ∪Vr ∪{us} has
a consistently colored (n+ 1)-cycle Cr;s, which is either of Type I or of Type II.
Assume to the contrary that �2(Kn) has no consistently colored (n+ 2)-cycles. We

consider the relative positions of the above �ve (n+1)-cycles Cr;s. First of all, the bases
of any two (n + 1)-cycles have at least two common vertices, otherwise their union
would induce a consistently colored (n+ 2)-cycle. Therefore, for any two consistently
colored (n+ 1)-cycles Cr;s and Cr′ ; s′ , one of the following relative positions holds.

(i) Cr;s = CI(i; j) and Cr′ ; s′ = CI(i; j′) (see Fig. 3).
(ii) Cr;s = CII(i) and Cr′ ; s′ = CI(i; j) or CII(i) or CI(i + 2; j) or CII(i + 2) (see

Fig. 4), or vice versa.
(iii) Cr;s = CII(i) and Cr′ ; s′ = CI(i + 1; j) or CII(i + 1) (see Fig. 5), or vice versa.

Claim. If us is adjacent to all vertices of Vr′ and us
′
is adjacent to all vertices of Vr;

then (i) or (ii) holds.

Proof. Suppose to the contrary that (iii) holds. For the case in which Cr;s=CII(i) and
Cr′ ; s′ =CI(i+1; j), since xr

′
j is adjacent to u

s (i.e., the dashed line in Fig. 5 is an edge
in �2(Kn)), we have

(x01 ; : : : ; x
0
i+1; x

r′
j ; u

s; xri+2; x
0
i+3; : : : ; x

0
n) or (x01 ; : : : ; x

0
i ; x

r
i+1; u

s; xr
′
j ; x

0
i+2; : : : ; x

0
n)

Fig. 3. Relative position (i).
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Fig. 4. Relative position (ii).

Fig. 5. Relative position (iii).

is a consistently colored (n + 2)-cycle. Similarly, for the case in which Cr;s = CII(i)
and Cr′ ; s′ = CII(i + 1), xr

′
i+2 is adjacent to u

s and so,

(x01 ; : : : ; x
0
i+1; x

r′
i+2; u

s; xri+2; x
0
i+3; : : : ; x

0
n)

or (x01 ; : : : ; x
0
i ; xi + 1

r ; us; xr
′
i+2; u

s′ ; xr
′
i+3; x

0
i+4; : : : ; x

0
n)

is a consistently ordered (n+ 2)-cycle.

Note that if Cr;s and Cr′ ; s′ have relative position (i) or (ii), and that Cr′ ; s′ and Cr′′ ; s′′
have relative position (i) or (ii), then Cr;s and Cr′′ ; s′′ also have relative position (i) or
(ii). In other words, two (n + 1)-cycles having relative positions (i) or (ii) form an
equivalence relation among the �ve (n+ 1)-cycles.
This fact along with an application of the above claim to the (n + 1)-cycle pairs

(C2;2; C3;2), (C3;2; C3;1), (C3;1; C1;1), (C1;1; C1;3) leads to the conclusion that C2;2 and
C1;3 have relative positions (i) or (ii).
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Suppose C2;2 and C1;3 have relative position (ii), say C2;2 =CII(i) and C1;3 =CI(i; j)
or CII(i) or CI(i + 2; j) or CII(i + 2). If C2;2 = CII(i) and C1;3 = CI(i; j), then x1j is
adjacent to x2i+1 and so

(x01 ; : : : ; x
0
i ; x

1
j ; x

2
i+1; u

2; x2i+2; x
0
i+3; : : : ; x

0
n) or (x01 ; : : : ; x

0
i ; x

2
i+1; x

1
j ; x

0
i+1; : : : ; x

0
n)

is a consistently colored (n + 2)-cycle. If C2;2 = CII(i) and C1;3 = CII(i), then u3 is
adjacent to u2 and so

(x01 ; : : : ; x
0
i ; x

1
i+1; u

3; u2; x2i+2; x
0
i+3; : : : ; x

0
n)

or (x01 ; : : : ; x
0
i ; x

2
i+1; u

2; u3; x1i+2; x
0
i+3; : : : ; x

0
n)

is a consistently colored (n+ 2)-cycle. If C2;2 = CII(i) and C1;3 = CI(i + 2; j), then x1j
is adjacent to x2i+2 and so

(x01 ; : : : ; x
0
i+2; x

1
j ; x

2
i+2; x

0
i+3; : : : ; x

0
n) or (x01 ; : : : ; x

0
i ; x

2
i+1; u

2; x2i+2; x
1
j ; x

0
i+3; : : : ; x

0
n)

is a consistently colored (n+ 2)-cycle. If C2;2 = CII(i) and C1;3 = CII(i + 2), then x1i+3
is adjacent to x2i+2 and so

(x01 ; : : : ; x
0
i+2; x

1
i+3; x

2
i+2; x

0
i+3; : : : ; x

0
n)

or (x01 ; : : : ; x
0
i ; x

2
i+1; u

2; x2i+2; x
1
i+3; u

3; x1i+4; x
0
i+5; : : : ; x

0
n)

is a consistently colored (n+ 2)-cycle.
Suppose C2;2 and C1;3 have relative position (i), say C2;2=CI(i; j) and C1;3=CI(i; j′).

Then j = j′, otherwise, x2j is adjacent to x
1
j′ and so

(x01 ; : : : ; x
0
i ; x

2
j ; x

1
j′ ; x

0
i+1; : : : ; x

0
n) or (x01 ; : : : ; x

0
i ; x

1
j′ ; x

2
j ; x

0
i+1; : : : ; x

0
n)

is a consistently colored (n + 2)-cycle. We may assume that both V0 ∪V2 ∪{u2} and
V0 ∪V1 ∪{u3} have only one Type I (n+1)-cycle, for otherwise the union of two cycles
with di�erent bases is a consistently colored (n+2)-cycle, or we may choose j; j′ so that
j 6= j′, contrary to the conclusion above. Therefore c(x1p), c(x

2
p)∈ (c(x0p−1); c(x0p+1))k

for each p 6= j. We may assume that none of V0 ∪V2 ∪{u2} and V0 ∪V1 ∪{u3}
has Type II cycles, for otherwise we may choose C2;2 and C1;3 so that they have
relative position (ii), which has been discussed in the previous paragraph. It follows
that c(u2)∈ (c(x2j−1); c(x2j+1))k and c(u3)∈ (c(x1j−1); c(x1j+1))k , (cf. the proof of Theorem
14). Note that i 6= j − 1; j, without loss of generality, we may assume that 16i6j −
2¡n and c(u2)∈ (c(u3); c(x0j+2))k . If i¡ j − 2, then since u3 is adjacent to u2,

(x01 ; : : : ; x
0
i ; x

1
j ; x

0
i+1; : : : ; x

0
j−2; x

1
j−1; u

3; u2; x2j+1; x
0
j+2; : : : ; x

0
n)

is a consistently colored (n+ 2)-cycle. If i = j − 2, then either
(x01 ; : : : ; x

0
j−2; x

1
j−1; x

2
j ; x

0
j−1; : : : ; x

0
j+2; : : : ; x

0
n)

or (x01 ; : : : ; x
0
j−2; x

2
j ; x

1
j−1; u

3; u2; x2j+1; x
0
j+2; : : : ; x

0
n)

is a consistently colored (n+ 2)-cycle.
We have omitted some details of the proof, which can be added easily. For example,

we did not explicitly use the condition n¿4, which is a necessary condition. Indeed,
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when n = 4, the fourth picture in Fig. 4 looks di�erent. The vertices x0i+4; x
0
i+5 are

equal to x0i ; x
0
i+1, respectively. A dashed line should be added between xri+1 and x

r
i+4.

However, a consistently colored (n+ 2)-cycle can still be found in the corresponding
cases.

It follows from Theorems 14 and 15 that for any (n+1)-coloring c of �(Kn) and any
(n+ 2)-coloring c′ of �2(Kn), the directed graphs Dc(�(Kn)) and Dc′(�2(Kn)) contain
directed cycles. Therefore, Theorems 12 and 13 have been proven.
We close this section with the following conjecture:

Conjecture 1. If n¿m+ 2, then �c(�m(Kn)) = �(�m(Kn)) = n+ m.

5. Further research

We have established some results for circular chromatic numbers on Mycielski’s
graphs. However, many questions remain open. We list below some related questions.

Question 1. Given a graph G, what can we say about the sequence (�(�m(G)) −
�c(�m(G)): m=1; 2; : : :)? Does it approach a limit? What are the possible accumulating
points of such a sequence?

It follows from Corollary 10 that there are in�nitely many integers m for which
�(�m(G))−�c(�m(G))¿ 1

2 . We do not know whether there are in�nitely many integers
m for which �(�m(G))− �c(�m(G))¡ 1

2 .

Question 2. What is �c(�n(Kn))?

We know that �c(�2(K2))=�(�2(K2))=4, but we do not know the value �c(�n(Kn))
for any other n.

Question 3. What determines whether �c(�(G)) = �(�(G))?

We have many examples G for which �c(�(G))=�(�(G)), and also many examples
G for which �c(�(G))¡�(�(G)). However, it seems di�cult to characterize those
graphs G for which �c(�(G)) = �(�(G)). For two integers k and d such that k ¿ 2d,
Gdk is the graph with vertex set {0; 1; : : : ; k − 1} in which ij is an edge if and only if
d6|i − j|6k − d. Vince [17] showed that �c(Gd

k ) =
k
d . It is easy to prove (see [3])

that a graph G is (k; d)-colorable if and only if there exists a homomorphism from G
to Gd

k . Therefore, in the study of circular chromatic numbers, graphs G
d
k play the role

of complete graphs in the study of chromatic numbers. Theorem 12 says that for n¿3,
�c(�(Kn)) = �(�(Kn)). An interesting question is:

Question 4. Does �c(�(Gdk )) = �(�(G
d
k ))?
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Remark. Question 4 has now been answered in the a�rmative in [13].
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