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Abstract

A sensitivity bond graph, of the same structure as the system bond graph, is shown
to provide a simple and effective method of generating sensitivity functions of use in
optimisation. The approach is illustrated in the context of partially-known system
parameter and state estimation.
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1 Introduction

Optimisation [1] has always been a fundamental technique in control and
parameter estimation of dynamic systems. Such methods rely on a model of
the corresponding physical system. In some application areas (for example
process control) physical, or first principles, models are hard to come by and
so empirical models tend to be used. However in other application areas, in
particular mechatronics, physical models are more readily available. There
are a number of techniques for building control-relevant models but the bond
graph [2,3,4,5] approach is well established and has been suggested as a basis
for control design [6,7,8].

However, optimisation is eased by having a sensitivity model in addition to
the model itself [1]. This paper develops the idea of sensitivity bond graphs

[9,10] to provide a basis for model-based optimisation for the identification
of systems for which a bond graph model is available. Sensitivity theory of
dynamic systems and its application is well established and summarised in
the textbooks [11,12]. There are many applications of sensitivity methods to
systems and control problems including: system optimisation [9], controller
tuning [13,14,15] and parameter estimation [16]. The particular class of dy-
namic systems described by electrical networks has its own techniques [17]
based on the adjoint circuit approach.

A basic theoretical result of sensitivity theory [11,12] is that, given the time-
invariant ordinary differential equation with state X ∈ <n, initial state X0,
input u and constant parameter vector θ ∈ <nθ of the form:















ẋ = f(x, u, θ)

y = g(x, θ)

x(0) = x0

(1)

then the state sensitivity functions xj = ∂jx
∂θj

and the output sensitivity func-

tions y
j
i = ∂jy

∂θj
are the solutions of the nθ linear time-varying ordinary differ-

ential equations:














ẋj = A(x, u)xj + U(x, u)

yj = C(x, u)xj

xj(0) = x
j
0

(2)

Except in special cases [18], it is necessary to use nθ systems of the form of
Equation 2, together with original system of Equation 1, to compute the nθ

sensitivity functions.

In contrast to standard sensitivity theory [11,12], which operates at the system
ordinary differential equation level, this paper (in common with [9,10]) devel-
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ops a component-based approach which, given the sensitivity models of each
component, builds the system sensitivity ordinary differential equation from
that of the system components. Linearisation theory is a special case of sensi-
tivity theory. In the context of linearisation, Karnopp [19] has stated: “Rather
than treating linearized systems as abstract sets of equations, we here look
for structural analogies between non-linear components relating total system
variables and linearized models relating incremental system variables”; with
“linearized” replaced by “sensitivity” this statement summarises the aim of
this paper. In particular, we follow Karnopp [19] in using a bond graph [2,3,4,5]
approach to sensitivity theory.

Cabanellas, Felez and Vera [9] have established a bond graph interpretation
of sensitivity and applied it to system optimisation. This approach has the
advantage of having a clear physical interpretation and focuses on the class of
parameters associated with the constitutive relationships of bond graph com-
ponents. The same ideas have also been presented (apparently independently)
by Roe and Thoma [10].

Cabanellas, Felez and Vera [9] also demonstrate the advantages of algebraic
generation of sensitivity functions as opposed to numerical approximations.
Indeed, symbolic methods for nonlinear systems modelling, analysis and opti-
misation are currently strong research areas [20] driven by the ready availabil-
ity of symbolic computational tools. In particular, the bond graph approach
[2,5] has been used to generate models applicable to control design [8].

In this paper the work of Cabanellas, Felez and Vera [9] is extended. In par-
ticular, it is shown that by making use of vector bonds and vector junctions,
the sensitivity bond graph is structurally identical to the system bond graph.
This is useful because the bond graph of the sensitivity system can be derived
directly (and hence automatically) from the system bond graph. This sensitiv-
ity bond graph can be used not only as a way to derive the system sensitivity
equations, but also as a means of directly analysing the system sensitivity
properties on the bond graph itself.

To illustrate the application of the sensitivity bond graph theory of this pa-
per to a concrete optimisation example, the identification of partially-known
systems is considered. Many engineering systems of interest to the control
engineer are partially known in the sense that the system structure, together
with some system parameters are known, but some system parameters are
unknown. This gives rise to a problem of parameter estimation when values
for the unknown parameters are to be determined from experimental data
comprising measurements of system inputs and outputs. There is a consider-
able literature in the area including [21,22,23,24,25]. Although in special cases
such identification may be linear -in-the parameters [21] or polynomial -in-the
parameters [24,25] in general the problem is nonlinear -in-the parameters and
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gives rise to a nonlinear least-squares problem [1]. This means that, in general,
the resultant optimisation problem is not quadratic or polynomial, and may
even be non-convex; such nonlinear least-squares optimisation problems are
conveniently solved using Gauss-Newton or Levenberg-Marquardt algorithms
[1]. In such cases, the optimisation task is eased by knowing a symbolic ex-
pression for (rather than deducing numerically) the derivative of the error
function with respect to the unknown system parameters. It therefore follows
that partially known system identification is one application of optimisation
using sensitivity bond graphs. This is used as an example application in this
paper.

The outline of the paper follows. Section 2 discusses the sensitivity of systems
described by bond graphs and shows that a new type of bond graph, the
sensitivity bond graph, represents the system sensitivity whilst having the
same structure and causality as the system bond graph. Section 3 reviews the
Gauss-Newton optimisation technique [1] and shows how the sensitivity bond
graph can be used to generate the corresponding gradient information. Section
4 illustrates the approach via combined state and parameter estimation of a
nonlinear system. Section 5 makes some concluding remarks.

2 Sensitivity Bond Graphs

A bond graph component is associated with a constitutive relationship (or CR)
which relates the time-varying signals within the component and the time-
invariant parameters associated with the system within which the component
lies. Thus the CR for the ith component (associated with nvi

signals and nθ

parameters) of a system can be written as:

Φi(vi(t), θ) = 0 (3)

where vi ∈ <nvi contains the component signals and θ ∈ <nθ contains the
system parameters.

In the special case that the CR is linear; it can be written as:

Ai(θ)
T vi(t) = 0 (4)

where the time-invariant vector Ai(θ) ∈ <nvi .

In this paper, the sensitivity jvi ∈ <nvi of the signal vector vi with respect to
the jth component θj of the parameter vector θ is of interest. In particular,
jvi is defined as:

jvi =
∂vi

∂θj

(5)
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It follows from Equation 3 that dΦi(vi(t),θ)
dθ

= 0 and so the sensitivity CR
jφi(

jvi(t), vi(t), θ) becomes:

jφi(
jvi(t), vi(t), θ) =

∂Φi(vi(t), θ)

∂vi

T
jvi(t)

+
∂Φi(vi(t), θ)

∂θj

= 0

Equation 6 is the sensitivity CR with respect to the jth parameter. It has the
following important properties:

(1) The first term of the right-hand side of Equation 6 represents the lin-

earised (about vi(t)) CR relating the sensitivity functions jvi(t). In other
words, it is a linear CR modulated by the variables vi(t) associated with
the system itself. It can be written as the summation:

∂Φi(vi(t), θ)

∂vi

T
jvi(t) =

nvi
∑

k=1

∂Φi(vi(t), θ)

∂vik

T
jvik(t) (6)

where k indexes the nvi
elements of vi and jvi.

(2) The second term of the right-hand side of Equation 6 represents an ad-
ditional input to the sensitivity CR dependent on the variables vi(t) as-
sociated with the system itself.

(3) The sensitivity CR of Equation 6 is local to the the component in the
sense that the only variables appearing in Equation 6 are vi(t) and jvi(t).

(4) The jth sensitivity CR of Equation 6 does not depend on lv(t) for l 6= j.
(5) If the ith CR Φi(vi(t), θ) does not depend on θj then the second term of

Equation 6 is zero and there is no explicit coupling between the actual
and sensitivity systems (though there will be implicitly if Φi(vi(t), θ) is
nonlinear.

(6) If Φi(vi(t), θ) is linear in vi (Equation 4, then Equation 6 becomes:

AT
i (θ) jvi(t) +

∂AT
i (θ)

∂θj

vi(t) = 0 (7)

(7) If the conditions of both items 5 and 6 hold; then the CRs of the actual
and sensitivity components are identical and uncoupled.

For these reasons, it is possible to encapsulate two CRs: the system CR of
Equation 3 and the jth sensitivity CR of Equation 6 within in a single com-
ponent containing 2nvi

variables: those contained in vi and jvi. If the original
component had N ports, the new sensitivity component (s-component) there-
fore has 2N ports. More conveniently, each port on the original component is
replaced by a sensitivity port (or s-port) which carries not only the effort/flow
pair e and f but also the corresponding sensitivity pair je and jf . Such ports
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may be considered to be connected by a sensitivity bond (s-bond) which en-
capsulates the energy bond carrying e and f with the pseudo-bond carrying
je and jf .

The encapsulated CR (Equations 3 and 6) refer to only the jth of nθ param-
eters. To obtain the bond graph for all nθ parameters there are two possible
approaches:

(1) Derive the nθ CRs of Equation 6 and encapsulate nθ CRs together with
the component CR in each component and extend each port and s-bond
to correspond to nθ + 1 bonds.

(2) Define the scalar pseudo effort and flow variables λe and λf as

λe =
nθ
∑

j=1

Λj
je

λf =
nθ
∑

j=1

Λj
jf

(8)

where Λ ∈ <nvi is a vector of weighting coefficients. In this case, define:

φi(
λvi(t), vi(t), θ) =

nθ
∑

j=1

λ
j
jφi(

jvi(t), vi(t), θ) (9)

where λj is the jth component of Λ.

The latter approach has the advantage of giving a simpler bond graph where
all s-bonds encapsulate two bonds: the energy bond carrying e and f with the
pseudo-bond carrying λe and λf . It is parameterised by Λ and any particular
sensitivity function can be extracted by setting Λ = Λj, the unit vector with
the jth element unity and the rest zero. This is the approach used in the
remainder of this paper.

Having created the sensitivity bond graph using this approach, the resultant
dynamic system will ny outputs corresponding to the underlying bond graph
together with a further ny outputs corresponding to the sensitivity outputs
denoted by λy ∈ <ny .

The output sensitivity function yθ can be constructed by solving the ordinary
differential equation corresponding to the sensitivity system nθ times with
Λ = Λj for 0 ≤ j ≤ nθ.
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2.1 Some sensitivity components

It follows from the discussion of Section 2 that any Bond Graph component has
an s-component equivalent. This section provides some examples, including
those which will be used in the sequel.

2.1.1 A linear one-port R component

The standard linear bond graph R component has a single port with effort ei

and flow fi covariables related by the CR

Φi(vi(t), θ) = Ai(θ)
T vi(t) = e − rf = 0 (10)

That is, in the notation of Equation 4

Ai(θ) =







1

−r





 ; vi =







ei

fi





 (11)

∂AT
i

(θ)

∂r
=

(

0 −1

)T

and so the sensitivity CR of Equation 7 can be written as:







∂ei

∂r
− r ∂fi

∂r
− fi = 0 if θj ≡ r

∂ei

∂r
− r ∂fi

∂r
= 0 if θj 6≡ r

(12)

or alternatively:
λei − r λf i − λjfi = 0 (13)

The corresponding sensitivity component is a linear two port R with CR given
by Equations 10 and 13. The upper part of Figure 1 shows this two port R;
the lower part of Figure 1 shows the encapsulated version.

2.1.2 A nonlinear one-port R component

Consider a nonlinear R component with a single port with effort e and flow
f covariables related by the CR

Φi(vi(t), θ) = ei − βfα
i = 0 (14)

This corresponds to a typical hydraulic resistance with unidirectional flow
(fi > 0).
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Using vi as defined in 11, it follows that

∂Φi(vi(t), θ)

∂vi

=







1

−βαfα−1
i





 (15)

Defining

θ =







α

β





 (16)

It follows that

∂Φi(vi(t), θ)

∂θ
=







−β ln f

−1





 fα
i (17)

Hence

φi(
λvi(t), vi(t), θ) = λei − αfα−1

i
λf i − λ1βfα

i ln fi − λ2f
α
i = 0 (18)

The CR represented by Equations 14 and 18 is convenient for computing ei

and λei in terms of fi and λf i, but only has an implicit solution for fi and
λf i in terms of ei and λei. However an explicit expression for fi and λf i may
be obtained by rewriting Equation 14 to give the alternative CR (Φa

i (vi(t), θ))

Φa
i (vi(t), θ) =

(

ei

β

) 1

α

− fi = 0 (19)

Equation 18 may then be replaced by the alternative sensitivity CR (φa
i (

λvi(t), vi(t), θ))

φa
i (

λvi(t), vi(t), θ) = λf i

−

(

ei

β

) 1

α
[

+
1

αei

λei − λ1
1

α2
ln

(

ei

β

)

− λ2
1

αβ

]

= 0

The corresponding sensitivity component is a nonlinear two port R with CR
given by Equations 14 and 18 or by Equations 19 and 20. The upper part
of Figure 1 shows this two port R; the lower part of Figure 1 shows the
encapsulated version.

2.1.3 A linear one-port C component

The standard linear bond graph R component has a single port with effort ei

and integrated flow qi covariables related by the CR

Φi(vi(t), θ) = Ai(θ)
T vi(t) = ei − a(qi + qi0) = 0 (20)
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where a is a constant parameter and qi0 is the initial state.

If the parameter vector θ is taken as

θ =







a

qi0





 (21)

then the sensitivity CR of Equation 7 can be written as:

φi(
λvi(t), vi(t), θ) = λei − a λqi − λ1(qi + qi0) − λ2a (22)

The corresponding sensitivity component is a linear two port C with CR given
by Equations 20 and 22.

2.1.4 A nonlinear one-port C component

An open right-conical tank containing of incompressible liquid can be regarded
as a nonlinear C component with CR:

Φi(vi(t), θ) = ei − ρg

(

12

π
(qi + qi0)

)

1

3

= 0 (23)

where q is the integrated flow variable, ρ is the fluid density, g the gravitational
constant and qi0 the initial volume of liquid. If the parameter vector θ is taken
as

θ =







ρ

qi0





 (24)

then the sensitivity CR of Equation 7 can be written as:

φi(
λvi(t), vi(t), θ) = λei

−

(

12

π
(qi + qi0)

)

1

3

[

( λqi + λ2)ρg
1

3(qi + qi0)
+ λ1g

]

The corresponding sensitivity component is a nonlinear two port C with CR
given by Equations 23 and 25. The upper part of Figure 1 (with R replaced
by C) shows this two port C; the lower part of Figure 1 (with R replaced by
C) shows the encapsulated version.

9



3 Optimisation

As discussed by Cabanellas, Felez and Vera [9], one application of sensitivity
methods is optimisation. This paper considers optimisation problems of the
form:

min
θ

J(θ) (25)

where θ ∈ <nθ is the parameter vector and the cost function J(θ) is

J(θ) =
1

2

∫ T

0
eT (t)Q(t)e(t)dt (26)

where Q(t) ∈ <ny×ny is a positive semi-definite weighting function and the
error e(t) ∈ <ny is

e(t) = [y(t, θ) − z(t)] (27)

y(t) ∈ <ny the system output and z(t) ∈ <ny a function of time. In general,
y(t) is not linear in θ and so J(θ) is not in general quadratic in θ.

In the context of real-time control and estimation and so optimisation speed
is of the essence. Therefore, rapid convergence combined with simplicity is de-
sirable. As, using the sensitivity bond graph approach, gradient information is
cheaply available, this suggests the use of methods which make use of gradient
information. For these reasons, out of the plethora of methods available (see
for example [1,26]), we choose the Gauss-Newton method. Further research
may yield alternative choices, but our experience so far has been good.

Differentiation of Equations 25 and 27 with respect to θ relate the gradient
Jθ of J (with respect to θ) to the corresponding gradient yθ(t) and the output
y(t) as:

Jθ =
∫ T

0
[y(t, θ) − z(t)]T Q(t)yθ(t)dt (28)

The Gauss-Newton approach approximates the second derivative Jθθ of the
cost function by:

Jθθ ≈ Ĵθθ =
∫ T

0
yθ(t)Q(t)yT

θ (t)dt (29)

Thus both Jθ and Ĵθθ can be derived from the outputs y(t) and yθ(t) of the
sensitivity bond graph system described in Section 2.

The optimisation algorithm is then to repeatedly compute:

θ := θ − ∆θ (30)

until some convergence criterion is satisfied where ∆θ is the solution of the
set of linear equations:

Ĵθθ∆θ = Jθ (31)
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Two simple modifications of this method give additional robustness in the face
of difficult optimisation problems [1,26]:

(1) Equation 31 is solved via a singular value decomposition based pseudo
inverse and

(2) A check is made that the cost function decreases at each step; if it doesn’t,
the step length is halved (whilst retaining the step direction) until it does.

This approach has proved effective for this example. However related non-
linear least-squares algorithms (such as the Levenberg-Martquardt algorithm
[1]) may be equally or more effective.

4 Example

This example has appeared previously [27] but is extended here to include
state estimation and is solved using the novel methods of this paper rather
than the preliminary approach given in reference [27].

Figure 2 shows two identical right-conical tanks of liquid and two identical
pipes; Figure 3 gives the corresponding bond graph. It is assumed that the
pipes can be modelled using the CRs of Section 2.1.2 (Equations 19 and 20)
(and therefore that the flow is unidirectional) and the tanks by the CRs of
Section 2.1.4 (Equations 23 and 25). The system input u(t) is the inflow, and
the system output y(t) the pressure at the base of the right-hand tank.

Figure 3 gives the sensitivity bond graph of the system. The sR and sC

components are as discussed in Section 2.1.2 and 2.1.4 respectively. The Sf

component imposes a flow u(t) on the flow component of the vector bond and
zero (corresponding to the fact that u(t) is independent of θ) on the sensitivity
flow variable. The sDe component measures the output effort y(t) together
with the corresponding sensitivity signal.

As discussed in Section 2, the bonds (indicated by the bold lines) are vector
bonds carrying sensitivity efforts λe and flows λf in addition to efforts e and
flows f .

For the purposes of this example, it was assumed that ρg = 1 but that the
initial volumes of liquid in each tank q10 = V1 and q20 = V2 are unknown. It
is further assumed that the pipe parameters r and α are unknown. Thus the
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parameter vector θ is chosen as:

θ =





















V1

V2

α

β





















(32)

The system equations were deduced from the bond graph of Figure 3 using
the MTT software [28] using symbolic algebra methods [29] to deduce the
sensitivity CRs of Equations 20 and 25. These equations, together with Euler
integration code were automatically translated into C and compiled.

The system was simulated using Euler integration with a step size of 0.01 up
to time T = 10 and using parameters:

θ =





















V1

V2

α

β





















=





















0.5

0.25

1.5

1.0





















(33)

The tank inflow was u = 1.0.

Figure 5 shows the system output as a function of time. This data was used
as the actual system output corresponding to z(t) in Equation 27.

The shape of the graph is explained as follows. The initial output (the pressure
at the base of the second tank) is given by Equation 23 as:

y(0) = ρg

(

12

π
V2

)

1

3

≈ 0.98 (34)

The final output is governed by the pressure drop across the second pipe at
the steady-state flow rate f∞ = 1 corresponding to the unit input flow. Using
Equation 14

y(∞) = βfα
∞

= 1 (35)

y(t) in Figure 5 is asymptotic to this value.

Figure 6 shows the corresponding four sensitivity functions plotted against
time. Of the four parameters, the initial output y(0) is dependent only on V2,
thus the sensitivity with respect to V1, α and β is initially zero. From Equation
25

yV1
(0) =

(

12

π
V1

)

1

3
[

ρg
1

3V1

]

≈ 1.3 (36)
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Thus three of the sensitivity function start at zero, whilst that with respect
to V2 starts at about 1.3. In the steady-state, y(t) only depends on the flow
f∞ = 1 though the second pipe, thus the sensitivity with respect to V1 and V2

is zero. From Equation 18, the sensitivity of the steady-state output y(t) with
respect to α is

yα(∞) = βfα
∞

ln f∞ = 0 (37)

and the sensitivity of the steady-state output y(t) with respect to β is

yβ(∞) = fα
∞

= 1 (38)

Thus three of the sensitivity functions are asymptotic to zero, and that with
respect to β is asymptotic to unity.

Using different parameters θ̂, the same code was used to generate the model
output y(t, θ̂) together with the four sensitivity functions contained in the
vector yθ(t, θ̂) The optimisation method of Section 3 was used to determine
the parameter estimate θ̂. The starting value of θ̂ was

θ̂ =





















V1

V2

α

β





















=





















2.0

1.0

1.0

2.0





















(39)

Figure 7 shows the parameter estimates θ̂ plotted against iteration number.
The initial estimates correspond to Equation 39, and the estimates converge
to those given in Equation 33.

Figure 8 shows the estimated system output plotted against time correspond-
ing to the initial value of θ̂ and the estimates at iterations 1, 5 and 10 together
with the system response. That corresponding to iteration 10 is almost iden-
tical to the system response.

Figures 7 and 8 demonstrate that the method is effective in this case.

5 Conclusion

A sensitivity bond graph, of the same structure as the system bond graph,
is shown to provide a simple and effective method of generating sensitivity
functions of use in optimisation.

One application of such optimisation in the context of partially-known system
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parameter and state estimation is given and illustrated using a highly non-
linear system. This sensitivity-based optimisation approach is also relevant to
model-based predictive control; this aspect has also been investigated [30].

6 Acknowledgements

This work was accomplished whilst the author was a visitor at the Centre for
Integrated Dynamics and Control, University of Newcastle, New South Wales.
He would like to thank Prof. Graham Goodwin for providing an excellent work
environment and Dr. Will Heath for useful insights into optimisation methods.

I would also like to thank Prof. David Murray-Smith of Glasgow University
for introducing me to sensitivity methods and Prof. Job Van Amerongen of
the University of Twente, Dr Tomas McKelvey of the University of Linköping
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