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In radio, radar, sonar, and seismic signal detection there is often
the problem of processing received signals which have been dis-
torted by a linear operation in the process of being transmitted.
Examples are scattering and multiple-path propagation of radio
waves. Usually the nature of this linear operation cannot be known
very precisely in advance, and it often is changing in time, so that in
order to carry out effective processing of the received signals it is
necessary repeatedly to test and measure the mode of transmission,
or channel as it will be called.

In this paper the beginnings of a theory are established concerning
time-varying and random linear channels with the intent of char-
acterizing classes of channels which can be determined exactly or
approximately by measurement, showing how the measurements
can be made, analyzing the errors, and applying the results to the
theory of signal detection.

The notion of a determinable class of channels is defined and
general examples are given. These include classes of channels that
are time-invariant, periodic, and which vary with a known trend.
The measurement of slowly-varying channels by approximation by
time-invariant ones belonging to a known determinable class is dis-
cussed. Relation between almost-time-invariance of a channel and
the correlation properties of a kind of stationary random channel
are developed and tied-in with the channe! measurement theory. An
application is made to the problem of detecting sure signals in noise
when the channel is slowly-varying.

* This paper was originally prepared at the Mathematics Research Center,
United States Army, the University of Wisconsin under Contract No. DA-11-022-
ORI-2059 and revised at The University of Michigan under National Aeronautics
and Space Administration grant Ns G-2-59.
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I. INTRODUCTION

A considerable amount of work in recent years has gone into the study
of how to process received radio, radar, sonar or seismic signals so as
effectively to recover certain intelligence from these signals when they
have been disfigured in transmission. Multiple ray paths, as occur
in radio wave reflection from the ionosphere, or sound wave transmis-
sion in relatively shallow water, scattering from an irregular surface,
such as the moon, or from randomly occurring inhomogeneities in the
transmission medium, are typical phenomena which can result in time-
varying, frequency-shifted and sometimes apparently random super-
positions of the emitted waveform at the receiver. Usually, in addition,
there is noise at the receiver of a highly random character of essentially
thermal origin. A great many problems of signal processing in situations
of the kind indicated can be based on a mathematical model in which
the total received waveform is represented as the sum of two waveforms,
one the result of a linear operation on the emitted signal, and the other
a completely independent random noise. The linear operation may or
may not be time-varying and may or may not be random. There may
be unknown parameters determining the linear operation, the emitted
signal, and the noise,

In this paper an attempt is made to begin a systematic study of
certain aspects of the measurement and data processing problems
arising when the linear operation on the signal (henceforth called the
channel operation) ig initially unknown. The primary concern is with
measuring channel characteristics so that these characteristics may be
available for ecommunication signal processing. The special case of
slowly-varying channels is considered in most detail.

We suppose that the total received signal w(¢) for both measurement
and communieation situations is of the form

w(t) =yl a) +nlt), n=tZmn (1)

where n (¢) is noise and y (I; @) is the response of the linear channel to an
input signal. In particular, we write

A

y(t;a)=];(t)h(t,s)x(s;o¢)ds, nEtE ™ (2)

where 2(¢; «) is for each o a known function of s representing the
emitted signal, h(Z; s) is a kernel characterizing the channel and y (¢; o)
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is, as in Eq. (1), the intelligence-bearing signal at the receiver. We are
modeling the channel as a linear integral operator, or more properly
as a collection of linear integral operators, depending upon 7y, 7, and
the sets A(t), each with kernel A (¢, s) where h(t, s) is presumed to
be defined for —« < ¢, s < . Thus, the channel is identified by the
kernel 1 (t, s). We shall sometimes take h to be an ordinary real-valued
function, and sometimes take it to. be a sample function from a sto-

chastic process, i.e., h(-, ) = h(-, -, ) where » is an element of
a probability space. In the latter case we talk about stochastic channel
operators.

In Section II, the basic definitions and notations are introduced. In
Section ITI, the question is studied of how much prior information is
needed about a channel in order that it ecan be precisely determined
from measurement. This question is stated in the form: how can classes
of possible channels be characterized so that a channel belonging to such
a known class is identifiable from certain kinds of measurements?
The formal definition of a determinable class is introduced as an answer
to this question and examples are given. These examples include classes
of time invariant channels, classes of periodic channels, and channels
with known trend.

In Section IV, the measurement of slowly-varying channels is con-
sidered; the idea used is to approximate a slowly-varying channel by
a time-invariant one belonging to a known determinable class. Error
bounds are established. In Section V, the results of Section IV are
applied to a study of the errors resulting in a classical sure-signal-in-
noise detection problem when the channel is slowly varying.

The previous work which seems closest in spirit to most of this is
that of Kailath (1959) on channel measurement. Superficially the
approach here is different, more abstract and more general but with
results less applicable from an engineering point of view. Not only the
definition of a determinable class, but the idea of making such a defini-
tion and using it as a starting point is apparently new. It is hoped
eventually to obtain information-theory-like results about channel
measurement and use centered around the notion of determinable
classes, but very little has been accomplished. In this connection it may
be noted that bounded eclosed determinable classes are compact (this
and other mathematical properties of determinable classes are shown
in a forthcoming report by R. Prosser and the author) and therefore
the notions of e-entropy and e-capacity (see Kolmogorov and Tiho-
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morov (1959)) are applicable. For general background on time-varying
channels see Price and Green (1960) and the survey paper by Kailath
(1963) with its accompanying bibliography.

II. DEFINITIONS AND CONDITIONS

If z(t) is the signal emitted during a time interval of interest,
¢ £t = b, and y(@) is the channel output during a time inter-
valc £ t £ d, resulting from z (1), we write, as in Eq. (2)

y(1) = fabh(t, s)x(s)ds, c¢=1t=d. (3)

Usually, but not always, @ = ¢, b = d (we shall from this point on con-
sistently neglect a fixed minimum time of transmission). We shall al-
ways require z({) to be a real-valued measurable function, square-
integrable on [a, b].

The channel is characterized by the kernel £ (f, s) which usually
is to be defined for —« < {, s < «, although occasionally it will be
defined only for s, ¢ in some guitable interval 7. The channel is deter-
ministic if b (¢, s) is a real-valued function; in this case it is required that
h satisfy

f[ (1t s) [P di ds < oo (4)
A
for any bounded measurable set A in the plane. The channel is stochastic
if

hit,s) = h(t, s; w)

is a real-valued stochastic process, with o an element of a probability
space Q (the probability variable » will be suppressed). If the channel
is stochastic it is required that 4 satisfy

ff E|h(t,s) Fdtds < (5)
A
for any bounded measurable set A. The condition (5) implies that (4)
holds with probability one.

If we put k (¢, { — s) = h(Z, s) then the equation

y(t) = fabh(t, Oe(s)ds, a<t

IIA

b (6)
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may be written,

t—a

y(t) = /H) ECt wyz(t — u) du, a =t

A

b. (7)

We shall refer to ¢, s, and u in these equations, respectively, as the
observation time, emission lime, and age variables. If the channel is
deterministic the integral operator defined by Eq. (6) or (7) as an
operator on Ls(a, b) is Hilbert-Schmidt, for any finite @, b. If the
channel is stochastic, then with probability one this operator is Hilbert-
Sehmidt. It is convenient to work with both forms of the kernel, and
we shall continue to use the letters h and % as in Egs. (6) and (7).

We say a deterministic channel is realizable if k(t, u) = 0 for all
% < 0; has finite memory if there exists v ({) = 0 and bounded on every
finite interval such that k(¢, u) = Oforallu > y(), —o < i < «;
is time-tnwariont if k(t, u) = k(/, u) for all ¢, {’, so that & does not
actually depend on {. We shall say a stochastic channel is realizable,
has finite memory, or is time invariant if for every finite i-interval [a, b
the respective conditions above hold except on a set of sample functions
of k(t, s) of probability zero. (This implies of course that the conditions
hold for all (-, -; w), — < s, t < o, except for @ € ¢, where
pI'Ob Qo = 0)

We shall agsume in what follows that any stochastic channel to be
considered will have the properties

EE(t,u) = 0,
and
Ek(G, wk{, ') = R, ¢ ;u,u) (8)

exists and is continuous in all its variables simultaneously. The. first
condition entails no loss of generality, because if there is a deterministic
component it may be subtracted out and treated separately. The
second condition will automatically imply (5). We can now define a
stochastic channel to be stationary in the observation time' (ot-stationary)
it Rt u, u') is a function of ¢ and ¢ only through their difference

1 We do not bother to distinguish weak stationarity from strict stationarity,
for, except in the Gaussian case where the two are the same, we are always con-
cerned here with the former. See Bello (1962) for a complete clagsification of
stochastic channels. '
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t — ¢. In this case we write
Ee@ k@, u) =RE (u,v) =RE —5uu).

Before proceeding further the following notational conventiong are
established. If f(#) is a square integrable function on L./}, where
Lo{1] is the Lo-space with respect to Lebesgue measure on an interval I,
we denote its norm by ||| or || f 2. If it is absolutely integrable we
denote its norm in I,{I] by [|f]:. If A, s) is square-integrable on
I X I, we denote its norm in L[l X I] by [k]; 2(¢, s) may then be
the kernel of a Hilbert-Schmidt (HS) operator H on L[] and the HS
norm of H is denoted also by [H]. One has {H]} = []. The usual
operator norm is denoted by || H ||.

We shall say a deterministic channel is admissible if it satisfies con-
dition (4) and is realizable; a stochastic channel is admissible if it
satisfies conditions (8) and is realizable. We note that for an admissible
channel, with respect to the interval [0, 71,

[HF = fonoTyh(t,s)Pdtds - [onotiku,u)Pdudt.

If the channel operator H has a time-invariant kernel so that k{2, u)
does not actually depend on ¢, we put g(u) = k(t, w).

111. CHANNEL MEASUREMENTS AND DETERMINABLE CLASSES

Part of the over-all problem of communicating through unknown
time-varying channels is making the short-term measurements which
are intended to provide the temporarily valid estimates of channel
behavior. There are questions of when these can be made and how. If
there is no a prior: information restricting the class of possible kernel
functions k (i, s),0 < {, s £ T, then there is no way to determine A (¢, s),
0 £t s £ T, by measurements performed during the observation
interval [0, T; i.e., given the equation y = Hz, x € L0, T], H an
arbitrary Hilbert-Schmidt operator on .0, 77, there is no way to
choose z so that knowledge of y determines H. Hence the class of pos-
sible kernels must be restricted in advance in such a way that for suit-
able z, y = Hzx does determine (or nearly determine) H.

A definition is stated below which is intended to offer a reasonable
criterion as to when a class of channels can be measured effectively.
The definition essentially imposes two kinds of restrictions: the first is
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to impose constraints to cut down on the “degrees of freedom” of H
g0 that the equation y = Hz can be solved uniquely for H, the second
is to insure that H can be approximated arbitrarily closely with a
finite set of measurements. The necegsity of the first kind of restriction
is evident if one considers the analogous situation (actually, a special
case) in which z and y are n-vectors and H is an » X n matrix. For
then, solving y = Hzx for H amounts to solving n equations for n’
unknowns, unless additional information about H is available.

It should be noted that the point of view adopted in this section
does not include the notion of any statistical characterization of the
channel. For the moment at least the channel is treated as an unknown
operator, not a random operator.

We now introduce precise definitions. By a linear measurement of
a channel in the time interval [0, T] is meant a finite collection of inner
products (px,w), k=1, --- K, py € L0, T, defined when w € L]0, T,
where

w(t) = [He]@t) +n@), O0=t=T

is the received waveform, as in Eq. (1). In this context the transmitted
signal z (1) will sometimes be referred to as the test signal. In the defini-
nition to follow n(f) = 0.

We shall say a class 3¢ of admissible channel operators H is uniformly
determinable (e, I) if in the time interval I there is a test signal (¢}, a
linear measurement {(p1, w), -+, (px, w)}, and a function f from
k-dimensional Euclidean space R, to the HS operators on Lo[7] which is
continuous with respect to operator norm, such that for each H in the
class 3C

is an admissible operator and
lH—-—H| =«

The test signal x(¢), the linear measurement, and the function f we
call a channel determination (e, I'). If for fixed [ there is for each ¢ > 0
a determination (e, 1), we say the class of channels is uniformly deter-
minable (0, I). If for each ¢ > 0 there is an interval I (¢), where I (¢)
approaches « as e — 0 and a determination (e, I (¢)), we say the class
of channels is uniformly determinable (0, ).

The notion of uniform determinability is not restricted to classes
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of time-invariant channels, as we show later by examples, but we con-
sider them first. They are of importance here especially as approxima-
tions for slowly-varying channels and as prototypes for channels with
known trend. First, we observe that the class of all admissible time-
invariant kernels is nof uniformly determinable (e, I), where I is any
finite interval and ¢ > 0 is quite arbitrary. In fact, consider any (e, I)
determination of H, f((¢:, Hx), ---, (¢, Hz)). Now

A

t T

A

#H)®) = [ gl —wdu, 0

can be interpreted as an operator X with kernel x (t — u) operating on

g € L0, T1.
Hence the mapping ¢ carrying ¢ into z defined by
g = ‘P(g) = ((¢1 ’ Hx); T (¢k ’ HCI:)) = ((¢1 ’ g*’C), Tty <¢k ’ g*ﬂ))

is a bounded linear mapping from L0, T into a finite-dimensional
linear space, and cannot be 1:1. Let g’  ¢” and suppose ¢g = ¢g”.
Then for any constant ¢ > 0, ¢ (ag’ — ag”) = 0, so that the kernels
ag’ and ag” will yield the same determination, while || ag’ — ag” || may
be as large as desired. Then if H' and H” are the convolution operators
with kernels g’ and ¢” respectively, || aH — aH” || may be made as
large as desired, thus violating the assertion that there was given an
(¢, I) determination.

If one considers the restricted class of admissible time-invariant
kernels for which || H || < C = constant, then a trivial refinement of
the above argument shows that for each [ there is an ¢ > 0 such that
this class is not uniformly determinable (e, I) for € < ¢ .

Example 1. There are various ways of putting further restrictions on
the class of admissible time-invariant kernels to make them uniformly
determinable. For example, suppose {¢;} is a complete orthonormal set
in L,[0, T, then the class of all admissible time-invariant kernels g (u)
whose Fourier coefficients with respect to the ¢, are dominated in mag-
nitude by the elements of a fixed sequence belonging to I is uniformly
determinable (0, I), where I is the interval [0, T1.

To prove this we consider determinations in which the test signal
x (t) is an approximate d-function and the function f is given by a partial
sum of a Fourier series. Let H be the unknown channel operator with
kernel k(¢, u) = g(u) as before. We note that since z(¢) and ¢ () both
vanish for ¢ £ 0,
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21(0) = [ )t — ) du

o0

= [ att—wetw)du, 0stsT.

A

Take z.(f) to be an approximate identity in L, under convolution such
that x.(¢) vanishes outside [0, T (e.g., 2.(¢) = nfor 0 < ¢ £ 1/n,
zero otherwise, satisfies this condition, but there is a wide choice of
such 2, , including many sequences of continuous functions). Then the
L (0, T)norm of z,, |lz. |, is equal to one for all n (|| ., || must
approach ), and if

<]

w® = [ - wgd, 0stsT

then
lynll S lzalifiglh = ol

(this follows, a fortior: for this truncated convolution from the usual
inequality for convolutions with g(u) set equal to zero for u > 7).
We designate the truncated convolution above by z.*g. The determi-
nations referred to can now be written

K K
Jrx,n = > @r, Yn)dr = 2 (B s Tk )y,
= =

where K and n are positive integers.
Let {a;} be any sequence of real numbers such that Y 1 ai® < .
Put

Zak2= M
1

We now consider the class of all kernels g(u) = 2 3 bigu(u), 0 € u <
T, for which |b]* £ @)”. Then,

K w©
Jr.n = Z (¢ xn*z bybp )
k=1 =1

Any determination of the kind in question is given by

K K

K 0
D Gyt = 2 (G, Taxgddn = <¢k,xn*§=‘,1 botp) i

=1 k=1 k=1
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for some positive integer K and some approximate 3-function z, . Given
an arbitrary e > 0, let K be chosen large enough so that Z§+1 al <
¢ M’. Thenlet N = K be large enough that )~ ai° < €M*/K, and
in the sequence of approximate §-functions {z.}, let n be large enough
that || ¢x — Zdr || < ¢/Nfork =1, ---, N. Since z, has L;-norm of 1.
| @y zrde) | = el [ lillgnll =1,
and from the condition on z, it follows immediately that
[(‘ﬁksxﬂ*d)k)lgl-e/Ny k=17""K7

and

‘<¢17mn*¢k)s§E/N7 j#k7k=]—;"':K-
Then,

”g - k;xl (s Yu )t

X

kZI (br — (¢, yn)]‘ﬁk%!

(10)

By the choice of K the second term is dominated by ¢ M°. For the
coefficients in the first term one has,

b, — (M, Yn) = bl — (i, Taky)]
N o
- E bp<¢k; xn*d)p) - <¢k7 Zn Z bp¢p>
p#k N1

and hence,
[br — (¢, 9n) [ = lbk1N+Zibl + ol fzalha
Me Me
< b =+ 25
=iyt AT VR

Thus the square of the first term on the right side of the inequality (10)
is bounded by

;lbk — (i, y0) ' = 4{N2 kE}bkl +

4M% (% + % + 1)

12M°8,

KME

+ & 2}

A

IIA
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and we have

=< bMe

K

for all g satisfying the stated condition. This implies the corresponding
error in HS operator norms is less than 5Me~/T.

If the ¢5(t) are taken to be the sines ane cosines of the ordinary
Fourier series, this condition says it is sufficient for uniform determina-
bility that the energies in each frequency component be uniformly
bounded and tail off uniformly at high frequencies.

Ezxample 2. Consider admissible kernels with the periodicity property
h{t, s) = h(t + Ty, s + T,) for all real ¢, u, which have finite memory
v. Let n be an integer large enough that nTy > v, and let {¢.(f)} be a
complete orthonormal set on [0, nT]. Each admissible operator, being
Hilbert-Schmidt, can be expressed as an infinite matrix with coeflicients

nTo anTy
hij = fo fo h(t, s)i(t)¢;(s) dt ds

where

> hiy < .

E=1,7=1

Let {a;;} be an infinite sequence of real numbers such that

Z a;%j < 0.
k=1,7=1
Consider the subclass of the periodic kernels with finite memory which
satisfy the condition hi; < aij, k,j = 1,2, - - - . This subclass of periodic
channels is uniformly determinable [0, «). The proof runs parallel to
the one in the preceeding example and will not be given. The idea is
that by using ¢ (¢) as a test signal an arbitrarily good approximation
can be obtained in the time interval [0, nT] for the first column of the
matrix. After a relaxation interval of length nT, a second determina-
tion will yield an arbitrarily good approximation to the second column
of the same matrix, ete. Channels with periodicity of this sort do not
seem at the moment to be of very much practical interest in communica-
tion. However, a slight modification may be of interest. If the channel
is a linear system (“plant” in control engineering ) which is under man’s
control and can be reset to a fixed initial state after being probed, then
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it can be tested again as indicated and it will be uniformly determinable
if the regularity conditions stated above are satisfied.

In practice one is presumably not really interested in knowing how a
channel transmits all signals of finite energy, but only those in a certain
subclass, as for example, those in a certain frequency band. The notion
of determinability is extended, therefore, to apply to subclasses (not
necessarily linear) of signal functions. A class of admissible channels C is
uniformly determinable (e, I) with respect to S, S a subset of Lo[[], if
there is a determination yielding a bounded linear operator H on L,[I]
such that for each H belonging te C

p 1 Ho = Iz

i S N

Ezxample 3. An obvious and often practical way to get an approximate
determination of a time-invariant channel is to estimate its transfer
function. If the time-invariant kernel is g(u), the transfer function is
defined to be

6 = [ otwe™ au.

It is assumed the channel has finite memory <+v and that || g |, < B =
fixed constant (it is sufficient because of the finite memory that |[ ¢ |l <
fixed constant ). We take as observation interval the interval I = {0, 77,
and as the class S the set of all funetions z(¢) € L0, T] which satisfy
for afixed 0, 0 < ¢ < 1, and fixed f, > fu > 0,

fy b
2 [C1x(Par 2 [ 1X() P
L L >1-4 (11)

[}Xmﬁw Iz |?

where

=) T
Mﬁ=[ﬂmwm=fme%L
—% 0

If o is chosen too small the class S is empty, of course. We exhibit a
uniform determination (e, 1), where € = e(J), for the clags of channels
specified with respect to S. The idea is to transmit something like a
“comb” of frequencies across the frequency band, [f,, f»), of interest
and measure the response to each. The transfer function cannot vary
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rapidly because of the finite memory, hence an approximation to the
transfer function across the entire band can be obtained. This is the
ordinary frequency-response method of testing a linear time-invariant
system, just as the determination of example 1 is the ordinary impulse
response-method.

First, by the assumption of finite memory, one has

'Y 1 .,
f [eﬂ'n(f+i) . eszﬂ]g(t) dt
0

2ev [ &g 1.

Now choose £ > 0 arbitrarily; it is temporarily fixed. Let {fi} be a finite
net of frequencies, fix1 — fi = &,4 =1, -+, m, such that 0 < f; —
Jo 2 8,0 <fo — fu £ 5. Let 2,(1), 7 = 1, -+, m, be signals which
vanish outside the interval [0, T'], each of which (for convenience) has
the same L, norm. The ¢th signal is to be concentrated about the fre-
quency f; ; that is, the number ¢; > 0 given by

|G(f+ £ — G|

(12)

IIA

fitéo 2
2 f X; d,
fimto I (f) i f (13)
2 [P
is to be small if possible. Put the transmitted signal z(¢) = D _im 2 (¢)

and put pi () = ax:(t) (P:(f) = oX;(f), where P;(f) is the Fourier
transform of p; (1)) where « is chosen so that

Fit+to fit+ko .
[ rnxanydr=o [ 1K) Fdf =
Fi—fo Fi—to
Then the quantity (p;, Hz) is taken ag an estimate of G(f;), and the
step function
G(f)=(p¢,Hf$), fi—£0<f:—<—-fi+£0) i=1)"'5m

is an estimate of G(f) over the intgrval lfi — &, fm + & which includes
[fs, f2). Outside this interval set G(f) = 0. Denote the union of the
intervals [f; — &, fi + &), and [—fi — &, —fi + &] by A:, then

i

G(f:) — (pi,Gx) = G(f:) — [ Y0 f g(t — m)a(r) dr dt

= @) - [ PCH @px(n) af
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= o [ X0 FM6(1) = 6P df
+ o[ 1Xdp) PG df
Ag*

+ o[ XD 2 60X &
where A;* is the set eomplementary to A; . Hence,
| G(f) = (pi, Gz) | £ 20y [ o [l gl + @l g lhos || |
ralloh S {[ XX 1+ [ xoxn 14}

where the fact that | G(f) | £ || g 1 has been used. From the definition
of the constants o; and « it follows that || z; | = 1/a(1—s;). Thus,
by the Schwarz inequality,

FG(f) — (pi, Gz) | S gl {271'\ £
oy Tt 1/<1 =T =
and hence from (12),

|G -GN =6 — Q)|+ 6(f) ~ (pi , Gz) |

= ||1{41r &l o0 BZe 1 — o (14)

+ 3 gi }

Py — o)1 ~ o%)

Since || ¢ 1 < B by assumption, the bound in (14) can be made arbi-
trarily small as T — . First, £ can be chosen to make the first term
arbitrarily small. The choice of & determines m. Then T ean be chosen
large enough to allow each of the o, to be arbitrarily close to 1. Estimates
of possible values of the ¢’s for given £ and T are given by Pollak and
Landau (1962). If we call the bound on | G(f) — G (f) | given by (14),
A, and denote the union of the intervals [ £, , fil, [~f» — ful by A then
forz € 8,
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Voo =1 = [ 16t — 8 P 1 X() P ar

1A

afixgra+ 5[ 1x(0 Py

< (A4 Bo) |z |-

This kind of estimate is of interest when ¢ is very small, as it usually
will be in examples from radio engineering. Of course, if the signals of
interest tail off uniformly in energy away from a reference frequency,
o can be made arbitrarily small, for any T, by taking the band [ f,, fi]
wide enough.

A class of channels is determinable only if the “degrees of freedom”
are restricted in some way, or if there is the possibility that the measure-
ment consists really of repeated measurements with the channel each
time in the same state. One way to restrict the degrees of freedom is to
require time invariance; another possible way would be to require all
the channel operators to have the same principal axes, but this does not
seem to be of practical interest; another way, which is a generalization
of time invariance, is to require that all the channel operators evolve in
time aceording to a known trend. We investigate now a notion of known
trend. The idea is that if ko (¢) is the response of a channel to an impulse
-oecurring at time zero, the response to an impulse occurring at time s is
to be given by a new function which is the result of a trend operator
4, operating on he .

For each s in some interval 7 (which may be infinite), let ¢, be a
bounded linear transformation with domain and range contained in
L,[0, v] which satisfies the conditions:

(i) Domain ¢, = Domain ¢, for all s, s’ € I.

(ii) For all » € Domain ¢, and a.e. ¢ € [0, 7]

| (Weh — b)) () | S n(s, 8) | B

where 0 £ 7(s,s’) = #5(s,s) — 0 as § — sand 5is a continuous
function of both variables for s, s” € I.
(iii) For any &, i € Domain ¥,
b — ek ]l < ¢(s) | — 2|

where 0 < ¢(s), ¢(s) — 1 as s — 0 and { (s) is of integrable square on
any finite interval C I. Then {y.} defines a class of channel kernels
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with known trend as follows: for any he € Domain ¢, put A(t, 0) = ho(t)
and then define

h<t7 S) = [¢Sh0]<t - S):S € IJt € [87 8 + 7]'

Condition (i) is obviously necessary for the definition to make sense.
Conditions (i) and (iil) are more or less arbitrary continuity conditions
chosen to guarantee that if two channel kernels are close together at one
observation time they do not drift apart too rapidly, and to allow an
easy characterization of determinable classes. In fact, if 2 (u, 0) = ¢ (u)
belongs to 3, a uniformly determinable class (0, 7') of the type defined
in Example 1, then h(f, s) = [¢:he] (¢ — s) belongs to a uniformly de-
terminable class (0, 7).

To prove this statement let {z,(f)} be a sequence of approximate
s-functions, as in 1, which vanish outside the interval [0, u.] and satisfy
the condition that the product of the least upper bound of z., say
B., and u, is bounded, u.B, = C. Then p, has to approach zero, since
z. Is an approximate §-function, and one has

fT h(t, s)za(s) ds — fT g(t — s)z.(s) ds

I " ko) (t = 8) — ho(t — )lza(s) ds

A

é Bn H h() H -/O‘ﬂn 77(87 0) ds = Bn,un H hO H 77(% 30)’ 0 é Ty Mn s

by (ii). This approaches zero as n — o, uniformly for ke in a deter-
minable class of the type specified. Hence, in the space
L0, TV, | Hz, — Gz, || = || Hx. — g*x. | is arbitrarily small for
sufficiently large, uniformly over 3¢. Here G is the convolution operator
with kernel g(u) = h(u, 0), and H is the integral operator with kernel
k{t, s). Now suppose, given ¢, n is large enough so that both

| He, — gxx, | < e
and

ll¢r — 2utdr || < ¢/N, k=1, K,

where K and N satisfy the required inequalities in the proof of Example
1. Then consider the same determination as used there. One has

Yo = Hz, = Gz, + (H — Gz,
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%0 that

K K

’; (d’k » yn)¢k = kZ=1 (¢'Ic 3 Tn*g)qbk + Y
where || ¥ || £ e by the assumption above. Then

”g ~ i (¢k)yn)¢ki

g— kf: (fr , Turg)e — ¥ “

o £ o |+

which by the result in Example 1,
< 5Me + e (15)

The determination Y & (¢, ¥ ) yields an approximation to ho(t) =
h(t, 0); we call this approximation ho(t), ie., ho = D% (¢r, yn)és. The
final determination of an approximate kernel is

};’(t’S) = (szﬁ()) (t'—S), O§S<t§ T
The square of the Hilbert-Schmidt norm of the error is then

fT ‘/O‘T ! h(t, S) - w’si%](t - S) IZ dt ds
T sty . .
= fo f [ h(t,8) — [Yhol(t — s) ["dt ds

= j: [ Weho — Wobo [Pds < || b — o |I* foT§‘2(s) ds

= Const. - || ho — ho |I”

and this, by (15), may be made uniformly small for # € X.

Example 4. This family of examples includes channel models for
situations in which electromagnetic or sound radiation is scattered from
a body of scatterers which is expanding or drifting. Given a constant
C > 0, let g(u) be a continuous function on the line vanishing outside
[0, v] which satisfies the condition

lgu) —g@ )| C- gl -lu—d| (16)

The set of such functions for which |} ¢ || is less than a fixed bound, say
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1, is a uniformly determinable class (0, T') of time-invariant kernels.
In fact, if one takes as orthonormal set on [0, y] the trigonometric fune-
tions

2 2ant 2 . 2wt 1
= cos ——, - 8ln —— , =, n=12---,
v v v v Vv

the nth Fourler coefficients of the class of ¢’s satisfying (16) are domi-
nated by C' | gl (1/n) where C' > 0 is fixed (see, e.g., Titchmarsh
(1939)). Hence the subclass with || ¢ || £ constant is a determinable
class of the type of Example 1.

Now define k(f, s) by

Bt s) = gl — s) = g(als) + B(s)( — 3)) 17)

where «a(s), 8(s) are continuous in an interval 7, «(0) = 0, 5(0) = 1
and B(s) is bounded away from zero. Functions h (i, s) as defined by
Eq. (17) are channel kernels with known trend; condition (i) of the
definition is obviously satisfied, conditions (ii) and (iii) may be verified
easily (condition (ii) requires, of course, the Lipschitz condition on g¢).
Furthermore, if one considers only those g(u) satisfying the Lipschitz
condition and || g || = constant, the class defined by Eq. (17) is uni-
formly determinable (0, T').

The formal definitions of determinable class and determination have
been introduced partly to indicate classes of channels for which an
effective measurement is possible and partly to help keep straight the
bookkeeping in an error analysis of such measurements. The idea being
suggested here is that a channel measurement is feasible if the channel
is known from prior information to belong to a specified uniformly de-
terminable class or to be “near” such a determinable class, perhaps only
in a statistical or average sense. Then a determination suitable to this
class is used to estimate the actual channel operator. In this procedure
errors may be caused for three reasons: 1) the presence of additive noise,
2) the fact that the channel being measured does not belong to the de-
terminable class in question, but is only near to it, 3) the existence of
residual error in measuring an element of the determinable clags
because of the finite nature of the determination, or because the
class itgelf is too large. This third kind of error has already been dis-
cussed in the examples of determinable classes. We treat errors of the
first two kinds essentially as perturbations on the measurement of
channels belonging to a determinable class. Consider the second source
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of error. Suppose the observation interval is fixed, I = {0, 7; suppose
the actual channel operator for this interval is H and that there is an
operator Hy in a bounded uniformly determinable class (e, I) such that
| H — Hy|| < 7. Let z(t) be the test signal, (p,, w), k=1, ---, K,
the linear measurement and f the continuous function from K-dimen-
sional space into L, which constitute the (e, I)-determination. If there
is no noise

wt) = Hz) () = (Hx) () + (H — Hy)x(t) (18)
and
(pk ) ’LU) = (pk ) Hﬂx) + (pka (H — Ho).’L’)
Thus, putting . = (px, (H — H,)z), the determination yields
ﬁ = f((’plny)} Tty (pKny))
= f((pr, Hix) + €1, """, (px,Hox) -+ ex)
where
lal = |H—Hol [l | loell £ nllall o]l

ByAhypothesis H,, defined to be f ((pr, Hox), -+, (p, Hix)), satisfies
| Hy — Hy || < ¢, hence

|H-H| =||H—-H| +||H — Hol| + | Hy — H |
= ”.f((plyﬂox) + €1, """, (pK7H0x) + EK)
— f((p1,Hex), -+, (px, Hx)) || + € + 1.

Now, since f is a known operator-valued function which is uniformly
continuous on any closed bounded set in K-dimensional Fuelidean space,
given any § > 0 there is an 59 > 0 such that for 4 small enough so that
allzfl | px || £ no, the above inequality reduces to

| H—H| <6+ e+

We have actually proved that the class of all H which are within a dis-
tance 7 of a bounded uniformly determinable class (e, I'), are themselves
a uniformly determinable class (¢, I), where € — e as 5 — 0.

If there is noise present, or if the channel is known to be in or near a
determinable class only in a statistical sense, we can no longer establish
sure error bounds, but can only make probabilistic statements about
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error bounds. To illustrate this point, let us consider the case where the
channel is characterized stochastically and we know only that for some
a > 0, H satisfies B | H — Ho ||’ < «, for some Hy in a prescribed
bounded uniformly determinable class (¢, /). Further, let us suppose
there is additive noise present and we know that for some 8 > 0,
E | n|* < B.One has

(pr,w) = (i, Hor) + (pr, (H — Hoz) + (pr,n).

Let 71, n2 be arbitrary positive numbers. Then

PUH —H| s m) 21 -5
P{Hnném}zl—%,

and if these events are independent, one can say that with probability
exceeding [1 — (/)] [L — (8"/n")],

HI—I — H| = f{(p1, Hex) + e, -+, (px, Hor) + ex)
_f<(p17H0x)) Ty (pK)HOx)) H + € + M
where || < mlla |l | psll + n 1l pr|l. Again, the right side of the

inequality (IQ) approaches e as 7 12 — 0, but, of course, the error
bound is valid with probability nearly one only if «, § are small. The
condition that the determinable class be bounded can be dropped by

replacing the first term of the inequality above by

(19)

|1f((p1,’W), T (pL,UJ)) _f<(p17w) — &1, "ty (pK:'w) - EK) H

but then the bound is no longer uniform, and the (p;, w) must be known
before the bound can be determined.

It is worth remarking that if preliminary smoothing filtering is done
to minimize the relative noise intensity, the smoothing filters in cascade
with the original channel define a new channel to be determined as above,

IV. MEASUREMENT AND USE OF SLOWLY-VARYING CHANNELS

We consider now channels which are varying with time in an unknown
faghion, but at a sufficiently slow rate to permit approximation over a
useful interval by time-invariant channels, or, more precisely, by integral
operators with time-invariant kernels. If a channel is alternately proved
and used as a medium for communication, there are errors introduced,
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first in the channel measurement, and second in the extrapolation of the
measured channel characteristics into the near future. It is proposed to
treat this situation in a way which is partly statistical and partly deter-
ministic, and which uses the ideas of the preceding section.

We suppose that any transmitted signal z (), 11 £ { £ 72, results in
a received signal of the form

w(t) = f ht, )z(s) ds + n(t), n<t<m

where 7. () is noise {(to be specified in more detail later) and A (%, s), de-
fined for — o < {, s < o, is an ot-stationary stochastic kernel with
mean zero which characterizes the channel. That is, we suppose (pre-
sumably from some knowledge of the physics of the channel, and pre-
liminary statistical tests) that it is reasonable to model the channel as
an ot-stationary stochastic channe]l and that the channel autocorrela-
tion function,

R(r;u,v) = Bk + 7, wk(t, v)

is known, at least to a rough approximation. If the autocorrelation func-
tion R (7; u, v) has certain properties, the channel will be slowly-varying
on the average, so it makes sense to approximate the sample functions
of k (¢, ) by time-invariant kernels for {-intervals that are not too long.
Measurement procedures can be given, based on the results of the pre-
ceding section, which will yield such a time-invariant approximation.
This approximation to the channel can then be used in the signal proc-
essing when the channel is used as a communication medium.

We refer to the Appendix for proofs and elaboration of the following
facts about approximation by time-invariant kernels and the connection
with ot-stationarity:

(i) Let k(t,u) be an admissible kernel. The time-invariant kernel
g (v) which most closely approximates k (¢, %) in HS norm on the interval
[0, T, i.e., which minimizes

forfot | (t,u) — g(u) |* dt du,

is given by

9(u) = Tl_ ufu k(r, u) dr. (A1)
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(i) If k(¢ ) is an admissible ot-stationary stochastic kernel, the
stochastic process g (u) which best approximates (¢, ») in the sense of
minimizing

Efofot L E(tw) — g(u) [P dt du (20)

is still given by Eq. (A.1), and the error, that is the value of (20), is
given by ‘

T T ,min(¢,7)

L]

where p(t, ) = R(0; 4, u) — R({;u, w).

Example 1 (cont.). Consider a stochastic channel kernel function
k(t, ) which is ot-stationary, and which has the property that with
probability one for a.e. ¢, k(f, -) satisfies the condition of uniform
domination of Fourier coefficients with respect to some cons {¢;} re-
quired in Example 1. Then the best time-invariant approximation of
kE(t, ), given by Eq. (A.l), satisfies this condition, as does also the
simple approximation given by simply fixing ¢ in k(¢, ») (for a.e. t).
Thus a uniformly determinable clags of the type of Example 1 is appro-
priate, and || H — H || satisfies the inequality (20) with the probability
stated. The number @, which is a bound on E || H — H, |’, can be
taken from Eq. (A.7) or (A.9), where the former gives the best possible
(i.e., the smallest) value. The number 8, which is a measure of noise
intensity, must be a datum of the problem. Since in this example the
determination is simply a partial sum of a Fourier series, one has for the
H — H, contribution to the error, where ¢ (u) and g, () are the time-
invariant kernels for A and H, respectively,

”(’ ) du dr dt (A7)

G —go= 2, (o, wr — 2 (bn, Hot)ds

K

2 o, (H — H)z) + (b, n)lew,

whence

g —goll =I1H—-Holl ]| +lIn],
and

A - A} ~VTIIH-H| |z|+I»]]
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Thus, from (20), one can say that with probability exceeding
L — @/m) 1 — /)
|A-H|=mvVTlz|+ VTt +et+m (21)

where e is the residual error in the determination, » > «a, 72 > B are
arbitrary and «, 8 are given as above. One should recall that a lower
bound for || || in this inequality is fixed by the choice of ¢; once a re-
sidual error e is established a sufficiently good approximate é-function
2 (t) is required. Since the L;-norm of x(t) must be held at one (be-
cause of the normalization of the ¢;) the Ly-norm of z must exceed some
lower bound. Note that any H, in the determinable class may be used
in obtaining the estimate (21) if a is chosen appropriately. The best
estimate of this kind is obtained with minimum e, and this is achieved
in this example by using for H, the best approximation as given by Eq.
(A.1), which implies, as already stated, that o can be given by Eq.
(AT).

In order to bound the error which occurs in using the measured value
of the channel kernel function in the immediate future one need modify
the inequality (21) only slightly. Let us suppose the channel has finite
memory v, that it is to be measured during the interval [0, ] and used
during the interval [b, b + T], when 0 < a < b < b + T. The measure-
ment is to be accomplished by reference to the same determinable class
as specified in the preceeding paragraph.

Let H be the actual channel operator during the measurement in-
terval and H, the actual channel operator during the use interval.
H, is to be an operator for the use interval whose kernel is a time-in-
variant approximation to that of H belonging to the same determinable
class as above; Hy is the estimate of H, which would be yielded by the
determination if Hy were the actual channel operator and if there were
no noise, and I is the estimated operator. H, o is a time-invariant oper-
ator for the measurement interval with the same kernel as H, . Suppose,

E\H—-H'| <o
EfH, — Hol’ < &2

and 71, ne , are arbitrary positive numbers. Then,

P{HH_HOHé"]l)”Hc_Honé’flz}gl——é——~_2’
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and since

O—H.= - H)+ (H— Ho) + (Hy — H)

one can say by an argument paralleling the previous one that, with
probability exceeding

(2D
U N2 ¢ (22)
|H-H. | =uVT|z|+iVT+etn.

In the previous paragraph it was pointed out that the inequality (21)
was derivable with suitable constants no matter what H, was used for
comparison, but that the best result was obtained if E | H — H, [|* was
a minimum. Again, (22) follows with suitable constants for any H,
in the determinable class, but it is no longer clear what is the best choice
of H, in deriving the inequality since || H — H, || and || H, — H. || can
have quite complicated behavior relative to each other as H, is varied,
depending on the actual autocorrelation function. If, for example, we
take for Hy the integral operator on I.[b, b 4+ T] with kernel k(c, u)
where ¢ is a constant, 0 = ¢ < b 4+ T, then by (A.10) oy and o2 can
be taken

o QfWW—RU—MM

o7
w® = 2[1) [R(0) — R(t — ¢ + b )] dL.

There is a hidden constraint on the measurement interval [0, a] which
is implicit in these inequalities. Suppose T > «. Then since H, is an
operator on an interval of length 7, determining H, so that
| Ho — Hy || < eas required necessitates a measurement interval of
length nearly v, and its length must be 2+ in the limit as ¢ — 0. Thus,
practically one can say that a > v. For a to be greater than is necessary
to make the determination weakens the error inequality (22), however,
by increasing oy . Thus, the interpretation of (22) agrees with the com-
mon sense idea that one can apply the test signal, take measurements
until the channel stops ringing, then use the channel until it has drifted
far enough to cause an unacceptable error.

The successive measurements of the channel are, of course, available
for improving an estimate of R (¢; u, v), but that aspect of the problem
will not be discussed here.
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Ezxample 3. (cont.). This will just be indicated. Let a stochastic kernel
function which is ot-stationary have finite memory =<+. Then again
since averaging on ¢ preserves the finite memory property, this channel
can be referred to a determinable class of the type discussed in Example
3. Then the probabilistic inequality of (19) is valid, where the deter-
mination referred to is that of Example 3. In this case, of course, H and
H are restricted to the subset of nearly-band-limited signals introduced
in Example 3. The error which occurs in using the estimated channel
operator at a future time is subject to bounds established in the same
way as in the example above.

V. AN APPLICATION TO SIGNAL DETECTION AND MEASUREMENT

The material of the preceding sections is intended to describe classes
of channels which can be measured approximately, and to provide
estimates for how much the actual channel operation may differ from
what the receiver thinks it is. Results of this kind can be used to show
when in signal-detection problems certain standard statistical data-
processing procedures may be used, if information about the channel is
continuously updated, and how much loss in performance may be in-
curred because of the time-varying nature of the channel. We illustrate
this application in this section with a known example (Grenander,
1949).

Let the received signal be

wit) =yt a) + ), n=t=mn (1)

where now we fix the noise n(f) to be a Gaussian process continuous in
mean-square and with mean zero, and y(-; «) to be a known real-
valued function els[ri, 2] for each a in a parameter set 4, where 4 is
either a finite set or a compact subset of B; . Let R(t, s) = En(t)n(s),
and let

f2 R(t7 S)d)n(s) ds = )\nd’n(t)’ nEtE .

The \. are nonnegative; we shall assume the {¢. ()} are taken to be ortho-
normal and real and that the integral operator in question has zero null
space, so that {¢,} is a complete set. We define

we = f w(t)du(t) dt

1
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) = [yt @ento) d (23)

flusa) = 3 veole),

The w; are jointly Gaussian random variables. If for each « ¢ A.
> i (@)/M < , then the series defining f(w; a) converges with prob-
ability one and also in mean square with respect to the measure induced
by any o € A. Also

Buf(us ag) = 3 Uelealon) (24)
var, f(uns ag) = 3 L (2) (25)

and f(w; ) is Gaussian. The subscript « refers to the measure induced
by the parameter . Then the logarithm of the “likelihood ratio,” i.e.,
the logarithm of the Radon-Nikodym derivative of the two probability
measures induced on the sample space of the w(¢) by the parameters
a1 and ap is given by

lim logp(wl’ ,’wN;ao)
N> plwr, -+ , Wy ;)

= f(w; 1) — f(w; a0) + Cloa, a)

where C (a1 , o) depends on s(f; ag), s(t; 1) but noton w(¢). Thus any
inference procedure (i.e., hypothesis test or point estimation) based on
likelihood ratios is determined by the test functionals f(w; o). The be-
havior of any such inference procedure depends on the distributions of
the f(w; a); and since these are all jointly Gaussian, on the first and
second moments of the f(w; a). Thus, for the class of sure-signal-in-
noise problems indicated, and from an applicational point of view this
is a wide class, one can investigate the effect of unknown perturbations
on the prior data of the problem entirely by first and second moment
calculations of the f(w; ). Such a problem is said to be stable (5) if a
small change in the noise covariance (in the sense of Ly-norm ) necessarily
causes only a small change in the distribution functions of the f(w; «).
A necessary and sufficient condition for stability is that

iy";(‘;) < . (26)
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If this condition (26) holds then it also follows immediately that for
any o the mean value of the test functional f(w; ay) varies continuously
with perturbations of the signal y(¢; &), where again the Ls-norm is
used to measure the perturbations. Infact, let ¥ (t;2) = y (¢;a) + e(t; @),
where e (t; ) is to be regarded as a perturbation, be the actual received
signal so that

w' () =y (t; a) + n(t).

The test functionals f(-; @) are unchanged because they represent
fixed data processing procedures. However, their mean values are
changed,

,,f(w o) = B, 3 wyi(e) y;(“") (27)
Y (a)yk(ao)
- St (2
where
wa@) = [ elt; )ult) dt + yula)
= ek(a) -+ yk(a).
Thus

Eaf(w" ) = af(w7 a ) + Z ek(a)i/kk(a())

and the absolute value of the change in the mean is
= [le(a)]] 22° e ao) /W)™

The variances of the f(-; a) are unaffected by changes in actual re-
ceived signal.

The simplest example in which to carry through the effect of pertur-
bations on the final inference is a pure detection problem, but even
though simple it illustrates the situation adequately. Let « = 0 or 1,
takey (1;0) = s(t), £ t £ r,, a known function, and take y (¢;1) = 0.
Then a likelihood test for the presence of the signal s(¢) is to compare
f(w; 0) with a fixed threshhold for 7, and decide the signal is present
if f(w; 0) > 7. One has then that the probability of correctly deciding
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that the signal is present is

—u2/2
e d

P{f(w;0) > n|a = 0} =7§—;fn/ﬁ_%

where b = % 4,"” /A is the signal-to-noise ratio. Now suppose that
the actual signal is s(¥) + ¢(2), and put

b = Bof(w;0) = -+ Z-‘i’“-%’“@.

Then

1 ® —u2 (2
P{f(w;0) > n]|a=0} = 7—2—7‘_];"_1)’)/\/5 ¢ du.

The change in the lower limit of the error function integral is

-2 s /3 (1 O) (29)
and the absolute value of this change is less than or equal to

> g0
el [ > yf<o>/xj ' (30)

Of course the effect of this perturbation on the probability of detection
depends where on the tail of the Gaussian distribution (n — 5)/+/b
is located, and as the signal-to-noise ratio b becomes larger the effect is
less.

Now for the time-varying linear channel

T2
y<t;a>=f Wt )x(s; @) ds, m<t<m (31)
T1

and if h(f, s) is known (it is assumed z(s; «) is known) one has the
necessary prior data on the signal for a sure-signal-in-noise problem.
The application of channel measurement techniques is obvious. One
uses the estimated channel kernel h (¢, s) (or k¢, u)) to yield a nominal
received signal for each «o:

iA

Ty.

T2,
volts @) =f W, $)zs; o) ds, 7 < ¢

The data processing is based on yo(t; «). The actual received signal
function y (t; ) is given by Eq. (31), and e(t; a) = y(f; a) — %o(t; @),
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is the difference between it and the nominal signal. Then,
le(-; )l S N H — A fla(;al.

From results of the type of those obtained in Section IV, one can say
that for certain numbers ¢, 4 (a) > 0, [|e(-; a)|| £ A (a) with prob-
ability = 1 — ¢, and hence with probability = 1 — ¢ the mean-value
of the test functional f(w; ) is changed by less than

e >§:(y““”) (32)

from its nominal value, where yi(a) is the Fourier coefficient with
respect t0 ¢ of the nominal signal ¥ (¢; o). It should be mentioned that
the factor

i yio(a) (33)
A2 '
can also be written as || 2(-; «)||* where z(¢; «) is the solution of
f R(t, s)z(s; a) ds = yo(t; a)y 7 nE<tEh.
71

This equation has a solution in Ly[r; , 2] if the series in (26) converges,
and it is unique by the assumption that the integral operator has zero
null space.

APPENDIX: THE APPROXIMATION OF OBSERVATION-TIME-
STATIONARY KERNELS BY TIME-INVARIANT KERNELS

The best mean-square approximation to an arbitrary realizable kernel
by a time-invariant kernel is obtained by averaging the original kernel
over the observation time. More precisely, one can state the following:

Lemma. If k (¢, 'zf) € L0, T1 X [0, T and k(t, w) = O for all u > ¢,
then

T
o) = g [ B(r,u) dr (A1)
is defined for ae.u,0 = u = T,
T st
[[ ¢ au< e, (A2)
0

and amongst all functions g’ (u) satisfying (A.2), g provides a minima-m for
the expression



TIMBE-VARYING COMMUNICATION CHANNELS 419

[ [kt~ deoraua= -t @3

In other words, g(u) is the kernel for the realizable, time-invariant ¢ntegral
operator which most closely approzimates the channel operator in Hilbert-
Schmidt norm.

Proof: Since k(t, u) is of integrable square on [0, 77 X [0, T it is
integrable on [0, 7] X [0, T] and hence g (u) is defined for a.e. u. We
calculate a bound for the expression (A.3) with g (%) used for g' (u):

T 2
[ Wt w) = k(r, w)] dr| du df

o= [ u |

- j;TLT(T_i_J)é]:[k(t,u) — k(r,u)l di

. fOT ke(t, u) — k(+', w)l dr dt du

- foT(’rjw‘i—W f:f:f; (B (t, w) k(t,w)k(s, u) (A4)

— Bt wk(r,u) + k(r,u)k(+,u)} drds’ dt du

_ j;T{];Tkz(t,u) dt—-,_I%a

. f:f; k(4 w)k(r, ) di dT} du

7 T k(t, u) 2
ot [ 2T
Thus g | = 2{ k ]} and (A.2) is satisfied. Furthermore, it follows from
the Schwarz inequality applied to the last term in Fq. (A.4) that
(k — gl = 0if and only if k(¢, ) does not depend on t. Now ¢’ = ¢
will minimize [k — ¢ ] if

[ 10w = ot = ) Fauae = [ [ 1460 — o) P aude

_1
T — u

for any n{(u) € L0, T]. This condition reduces to the requirement that

foT]o.t n(u)lk(t, w) — g(w)l du dt = 0

or
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Tt n(u)
f f k(t, w) — k(r,u)ldrdudi =0
for any 7 (u) € Ls[0, T]. This integral can be rewritten

fo fomxn(t ) n(U) k(t w) — k('r, )] du dr dt. (A5)

The bracketed expression in (A.5) is an antisymmetric function of ¢, 75
hence, since the double integral in (A.5) is over the square 0 £ ¢ £ T,
0 £ 7 £ T, it vanishes for all 4 (%) as required.

If k(t, u) is a stochastic kernel satisfying the condition (A.3) then
it follows immediately that g (u) as given by Eq. (A.1) is defined, except
for a set of realizations of k(f, w) of probability zero, for a.e. u, and
minimizes E || k — g ||* within the class of all g(u) satisfying

T at
E’f f 7)) du < .
o Jo
The mean-square error of approximation of an ot-stationary kernel
by the best time invariant one as given by Eq. (A.1), i.e., the expected

value of the HS norm of the difference, is given for an arbitrary interval
la, @ + T} by

E ]d‘l’T f
Ef(T—wfm

T a+T aat+T pat+T ,
f (T-— u)2L j:l"‘u ‘[a.-l-u (O’u,u) _R(t_ T,U/’u)

— R(r — t;u,u) + R(r — 75 u,u)} dr d7’ dt du
T
= [ - wROww) @ (A6)

—2] _uf fTR(f—t;u,u)drdtdu

R(T -7 su,u) dr dr’ du

k(t,u) — du di

a+T 2
f k(r, ) dr
atu

dt du

a+T 2
fu [k(t, u) — k(r, u)] dr

= fOT (T — w)R(0; u,u) du

B £TLTLT T 1_ w {R(r — t;u, u)} dr dt du.
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One notices In Bq. (A.6) that the mean-square error of the time-in-
variant approximation does not depend on the translation parameter a;
this is true because of the ot-stationarity and would be expected. The
right side of Eq. (A.6) may be rewritten as

[L =P e (a7

where p(, ) = R(0; u, u) — (R(t; u, u) is a statistical measure of
how rapidly the channel is varying,.

The rather awkward expression (A.7) can sometimes be replaced
by a somewhat crude but very simple upper bound as follows. Let
8 = min[T, v], v the upper bound on the memory of & (¢, ). Then

T i[ 1 ki \2
B[ [ wew - () dr| du dt

§Ef0Tf05!k(t,u) -—1Tf0Tk(T,u)dT

(A8)

i2

du dt,

since the integrand is positive and since (1/7) f§ k(r, u) dr is a time-
invariant kernel yielding no better approximation than the optimum
one, The right side of (A.8) can be easily evaluated to give

TRO) ~2 [ RO dy+ 7 [ ak(ndr  (A9)
where &
R(g) = ]; R(t; u, u) du.

Now if the condition R(0) — B(n) = efor| n| £ T is satisfied, the error
bound (A.9) is less than or equal to 2 e T'.

In general, the mean-square error (in the sense we have been using
that term here) in approximating a stochastic kernel over a finite in-
terval by any linear transformation of the same kernel can obviously be
expressed in terms of its autocorrelation function. One other simple
example of this, which is used here, is

[Tfot L e(t, ) — (b, w) [ du dt
- szft (B(0;w,w) —~ R(t — b;u, u)] du dt (A.10)
(]

§2£Tm®)~RU—bﬂm
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where R () is defined as before.
Recervep: July 16, 1964
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