THE UNIVERSITY OF MICHIGAN

INFORMATION SYSTEMS LABORATORY
SENSORY INTELLIGENCE LABORATORY

Department of Electrical Engineering
College of Engineering

Technical Report ISL-65-2

MONOTONE CONGRUENCE ALGORITHMS

Richard F.Qérnold
Donald L. Richards

April 1965

This work was supported in part by Grants No. AF-AFOSR-367-63
and AF-AFOSR-36T7-64 of the U.S. Air Force Office of Scientific Re-
search, Directorate of Information Sciences, Office of Aerospace
Research, in part by Contract No. AF 30(602)-3546, Rome Air Devel-
opment Center, and in part by NSF Grant GP-2778. Some of the
material was presented at the ICMCI Conference in Tokyo, Japan
under the title 'Monotone Reduction Algorithms".

Nomenclature

by finite set (alphabet)

s (or Si) arbitrary element of ¥ (letter)

n number of elements of X

=% set of all expressions on % (words)
A empty word

k, k' length of a word

m index on the letters of a word

t, u, v, w, X, y, 2

(or ti’ ui’ ete.) arbitrary word

€ is a member of

G— is a subset of

< is less than (relation of total order on X¥)

> is greater than

~ is congruent to (two-sided congruence relation on 3¥%)

g is included in (relation of partial order on ¥)

X =y simple substitution

X =y concluding substitution

A, B, C arbitrary algorithm

A(w) the word which results when A is applied to w

= is equivalent to (equivalence relation on algorithms)

AL set of words appearing at the left of substitutions of A

AR set of words appearing at the right of substitutions
of A

AT core algorithm for A

T auxiliary alphabet

o class of algorithms

a(w) number of applications of A to w

P, Q, S, Ss, T, U specific sets of words

Abstract

Given an associative system in which each element is assigned a cost
and in which an equivalence relation obtains between elements, it is often
of interest to ask the question: what is the least costly word equivalent
to a given word? The case in which the equivalence relation is a two-sided
congruence relation is studied here, one example being the problem of optimi-
zing a type of computer program. Such optimizing processes may be formalized
as Markov normal algorithms.

A general result concerning order relations on finite alphabets is
established first. Then, the properties of a class of Markov normal algo-
rithms are investigated. It is shown that each such algorithm must always
terminate, and that every class of mutually equivalent algorithms contains a
unique minimal algorithm which can be obtained by applying any algorithm of

the class to itself.

1. Motivation

Giver an associative system (semi-group) in which each element is
assigned a cost and in which an equivalence relation obtains between elements,
it is often of interest to ask the question: what is the least costly word
equivalent to a given word? Three examples of such problems are the travel-
ling salesman problem studied by Dantzig, et al. (1954), the oftimum control
problem (cf. Pontryagin, 1962), and the problem of finding the least word
which performs a given mapping upon the states of a finite automaton. Algo-
rithms do not exist for all such problems, since the solution may in general
require the solution of the word problem for semi-groups, which is known to
be unsolvable (Davis, 1958).

The problems mentioned above involve natural two-sided congruence rela-
tions. Two input words x and y to a finite automaton may be regarded as
equivalent if they perform the same mapping from the set of states of the
automaton to itself; i.e., if M(s,x) = M(s,y) for all states s where M is the
transition function of the automaton. A simplified model of computer pro-
grammirg can be obtained by reinterpreting the input words as programs, and
the initial state as data upon which the programs act; here the programs are
not self-modifying and contain no instructions which transfer contrél, Pro-
grams P and Q are then equivalent if they reach the same result for each set
of data; in that case the programs RPS and RQS must also be equivalent, R
being run immediately before P (or Q) and S being run immediately after.
Thus the equivalence relation satisfies the definition of a two-sided con-

gruence.

The programming and automaton problems can be solved by enumeration if
necessary; however, the solution algorithms are often impractical and may
give no intuitive insight into the structure of the optimizing process it-
self. It is hoped that greater insight and more effective algorithms can
be found by studying the general class of associative systems with two-
sided congruence relations, a class which contains problems of all degrees
of difficulty.

Where such a two-sided congruence relation exists and, in addition,
there is a total order relation on the costs of the words which has certain
natural properties, the theory of monotone congruence algorithms applies.
The properties of this class of algorithms are investigated below. A gen-
eral result concerning order relations on finite alphabets is established
first. Then it is shown that each monotone congruence algorithm must always
terminate, and that every class of mutually equivalent monotone congruence
algorithms contains a unique minimal algorithm which can be obtained by apply-

ing ény algorithm of the class to itself.

2. Monotone Congruence Algorithms
Let X be a finite set called the alphabet, whose elements are called

letters. Let 5% denote the set of all expressions or words on the letters

of X, including the empty word A.

(The letters may be interpreted as computer instructions or subrou-
tines; the words, as programs or as systems of subroutines. The word uv
represents the program formed when the program u is followed by the program
v.)

Let < ("less than") be a total order relation on Z¥. The symbols <,
>, and > will be used in the usual way.

(In the interpretation, "<" will often be derived from a cost function
on the letters, so that the cost of uv is the cost of u plus the cost of v.
Within classes of words having the same cost, the total order can be com-

pleted lexicographically as follows. Assume u and v have the same cost. If

u is shorter than v, let u < v. If u and v have the same length and U=Ws, Uy
=\ : 2, e * i i
and v LEPNEY for 848,€2, sl;és2 and wgul,vlez , define u < v if s, < s, and

v < u otherwise. The total order thus defined can be shown to satisfy
assumptions (1) and (2).

(The cost of a computer program might reflect its execution time, the
space required, etc.).

Assume that:

(1) A <w for all weZ¥;

(2) if x <y, then uxv < uyv, for all u, v, x, and ye¥.

(The first assumption implies that the "empty program" is less costly
than any other program; the second assumption holds wherever the cost of uv

is the cost of u plus the cost of v, and in many other cases as well.)

Let ~ (" is congruent to") be an equivalence relation on Z such that
(3) if x ~ y, then uxv ~ uyv for all u, v, X, and yeI¥.
(x is congruent to y if these two programs compute the same function
upon the internal states of the computer.)
Definition
If v ~ v implies v >w for all v in € X¥, w is a minimal
word (over < and ~)., If v ~w and w is a minimal word,

then w is the minimal equivalent word for v.

Definition
If there exist u, ve Z¥ such that uxv = y, then x is a
subword of y. If u % A Oor v f N\, then x is a proper sub-
word of y.
Theorem 1.
Any subword of a minimal word is a minimal word.
PRQOF: Suppose, for purposes of indirect proof, that w = uxv where w is
minimal and x is not. There must be a word y such that y ~ x, y < x3 but
then uyv ~ uxv = w and uyv < w by (2) and (3), which contradicts the min-
imality of w.

Theorem 1 is a natural generalization of the Principle of Optimality
of Bellman (1957) to two-sided congruence relations. Note that it does not
depend upon the introduction of a particular algorithm.

A general notion of algorithm is now defined following Markov (1961).

Definition
Let "= and "" be symbols not in £. Then "x = y" is a

simple substitution of ¥ and "x = y" is a concluding substi=-

tution of I¥ if x, yeX¥.

Definition

A Markov normal algorithm on ¥ is a finite ordered list of

substitutions of X*.

The letters A, B, and C will be used to denote algorithms. The set of
words which appear to the left of the arrows in the substitutions of A will
be denoted AL ("A-left") while those which appear to the right of the arrows
will be denoted Ag ("A-right").

Definition
The substitution "x — y" (or "X 5 y") applies to weZ¥ if
there exist u, veX* such that w = uxv. An algorithm applies
to w if any of its substitutions applies to w.

By convention, the operation of a Markov normal algorithm upon a word
w is interpreted as follows. If "x = y" (or "x = y") is the first substitu-

tion of the algorithm, w = uxv, and u

1 is at least as long as u wherever

W = uixvi, the first application consists of replacing uxv by uyv. The same
procedure is then repeated for uyv. If the first substitution does not apply
to w the second substitution is considered instead; if neither applies, the
third substitution is considered, etc. Whenever a concluding substitution
applies, the process stops immediately after it has been applied. Otherwise,
the process stops only when a word is reached to which none of the substitu-
tions apply. Since the process is deterministic, it must produce a unique
sequence of words, w, Wi Wy oeo of length 1 or more. The sequence is of

length 1 only if the algorithm does not apply to w. The number of applica-

tions a(w) of A to w is one less than the length of the sequence. The algo-
rithm A produces x from w if x is a member of the sequence. If z is the last

word in the sequence, define A(w) = z.

Definition

A =B ("A is equivalent to B") if A and B are algorithms and

A(w) = B(w) whenever either A(w) or B(w) exists.
The algorithms which form the main subject of investigation can now be
defined.
Let Z be an alphabet, < be an order relation satisfying (1)
and (2), and ~ be an equivalence relation satisfying (3). A

monotone congruence algorithm (MCA) over < and ~ is a Markov

normal algorithm A for which:
(a) A(w) is minimal for all weZ¥ for which A(w) exists; and
(b) for each substitution "x = y" (or "x Hy") of A, x > ¥
and x ~ ¥,
(In terms of computer programs, each substitution gives a way
of replacing a subprogram by a less costly program which com-
putes the same function; if the algorithm terminates, it must
produce the least costly program which computes the same
function.)
Example. For £ = {1, 2, 3}, the following MCA maps X, y €Z¥ to the same
word if and only if the sum of the digits of x is equal to the sum of the
digits of y modulo 4. Let the letters 1, 2, and 3 cost T, 2, and 4 units,
respectively, and let "<" be induced by these costs. The minimal words are
22, 23, 2, and 3. The algorithm is:
222 & 2
32 - 23
1 - 32

33 =2
223 = 3,

(If the letters 1, 2, and 3 are interpreted as shift instructions for
a four-bit circular shift register, the algorithm maps each program of

shift instructions to the least costly equivalent program.)

10

3. Termination
The first principal result to be established is that for any MCA A
and any word w, A(w) exists; i.e., that every MCA always terminates. The
proof depends on a quite general result about total order relations on I¥.

Definition

For x,y distinct words of %, x 9y ("x is included in y")

if x = x5, cee s, for s,e (i=1,2,...,m) and there exist
* = o0 e]
words Vor Vys eees V€ 2% such that y VoS,V S

The partial ordering thus defined is called the incluEEQE

partial ordering.

Observe that every total ordering of ¥ satisfying (1) and (2) is a
refinement of the inclusion partial ordering in the sense that x 4y
implies x < y.
Theorem 2.
Every total order which is a refinement of the inclusion
partial ordering is a well-ordering}
A proof of Theorem 2 is given in the Appendix.
Theorem 3.
For any MCA A and any weZ¥, A(w) exists.
PROOF': A(w) must exist unless A produces an infinite descending sequence of
words w > Wy > W, > ..., which contradicts the fact that "<" is a well-order-
ing.
Markov normal algorithms may in general involve the use of auxiliary
letters. That is, the alphabet of A may consist of disjoint subsets X and =
such that for all weZ¥, A(w) €%, Where attention is concentrated on the

words of X¥, the letters of n may then be called auxiliary letters, since

11

they appear only in the intermediate stages of the application of A to the
words of X. The words with auxiliary letters are required to obey the usual
conditions on the ordering and congruence relations.

The next two theorems show that every monotone congruence algorithm is
equivalent to one which has neither auxiliary letters nor concluding substi-
tutions.

Theorem 4,
If A is an MCA such that A(w)eZ¥ for every word wel¥, then
A is equivalent on X¥ to an MCA whose substitutions involve
only words of X*,
PROOF: Given A, form the algorithm B by deleting each substitution "x — y"
(or "x - y"), for which x£Z% and then replacing each of the remaining words
of AR by its minimal equivalent word. BL and BR then contain only words of
¥, To show that A(w) = B(w) for all wel¥, note that if w is minimal,
A(w) = B(w) = w. If w is not minimal, some substitution "x - y" (or "x > y")
of A must apply to w, with w = uxv and u, x, veZ¥*, Then, by the choice of B,
the substitution "x — z" (or "x > z") must be in B, where z is the minimal
equivalent word for x. It follows from the hypothesis of the theorem that
z is also in X¥, whence uzv € I¥ as well. Thus, after one application, B
has replaced w by a lesser equivalent word from Z¥. The argument can be
repeated for the new word, etc.; after a finite number of repetitions, B
will produce the minimal equivalent word for w. Thus B(w) = A(w) for every
word weX¥*, which was to be shown.
Theorem 5.
Each MCA is equivalent to an MCA which has no concluding

substitutions.

12

PROCF: Given an MCA A, form the MCA B by replacing each concluding sub-
stitution "x = y" by the simple substitution "x = y." If B # A, there must
be a word w such that B(w) # A(w), and the application of A to w must involve
atleast one concluding substitution. By the nature of concluding substitu-
tions, only one can have been applied, and it must have been applied only
at the last step, producing A(w). Since B has the same substitutions as A,
the sequence of words produced by B from w must be identical up to and
including the step which produces A(w); since B(w) # A(w), some substitution
of B must apply to A(w) also, reducing it to a lesser word which is congru-
ent to A(w). Then A(w) cannot be a minimum word, and A cannot be an MCA.
The contradiction establishes that A = B.

Note that if the substitutions of an MCA which has no concluding sub-

stitutions are reordered, the resulting algorithm is equivalent.

15

L. The Core Algorithm
The second main result is that every class of mutually equivalent mono-
tone congruence algorithms contains a unique minimal algorithm which can be
obtained by applying any member of the class to itself. The algorithm is
unique ﬁp to the order of the substitutions and minimal with respect to the
number of substitutions.
Definition

For any MCA A, the core algorithm A' is formed by:

(1) replacing all concluding substitutions by the identical
simple substitutions;
(2) where two or more substitutions have the same left-hand
word, deleting all but one of them;
(3) deleting every substitution "x —» y" for which some
proper subword of x is in AL; and
(4) replacing each remaining word of Ap by its minimal
equivalent word.
Theorem 6.
For any MCA A,
(1) A' is an MCA;
(2) A" = A;
(3) If B=A, then Al B
PROOF'¢ A' is chosen so that x >y and x ~ y for each of its substitutions
"x = y". Thus to show that A' is an MCA and that A' = A, it is only neces-
sary to show that A' applies to every word to which A applies. TIf A applies
to w, some word v € AL must be a subword of w; but then, by the choice of A',
1

either v ¢ Ai or some proper subword of v is in both AL and AL In either

1k

case, A' applies to w also. Thus A' successively reduces each word to lesser
words to which it is congruent until, eventually, the minimal equivalent word
is reached; A' = A.

Observe that A' was chosen in such a way that each proper subword of a
word of x € Aﬂ is a minimal word; for otherwise, the substitution "x — y"
would have been deleted in forming A'. Now suppose that B = A. B must
apply to each word of Ai, since none of them is minimal. At the same time,
B .cannot apply to any proper subword of any of the words of Ai since all the
proper subwards are minimal. Thus each word of Aﬂ must appear as the left
side of a substitution in B. The words of Aﬁ being distinct, it follows that
Ai g;; BL' This completes the proof.

For any class of equivalent MCA containing A, Ai_is the unique set of
non-minimal words whose proper subwords are all minimal, each word of A'! is
the unique minimal equivalent word for the corresponding word of Aﬁ, and

there are no concluding substitutions. Thus A' is unique except for the

order’in which the elements of A'! appear.

15

5. Uniform Optimality
The core algorithm is minimal with respect to the number of substitutions.
A further kind of minimality based upon the number of steps required to reduce
a word is now considered.
Definition

An algorithm C is uniformly optimal within a class O of

equivalent algorithms if, for all Aex and all wel ,
a(w) < c(w).
Note that a(w) (defined earlier as the number of applications of A
to w), usually depends on the order of the substitutions of A.
Theorem 7.
The only MCA which is uniformly optimal within a complete
class of equivalent MCA is the algorithm which has no
substitutions.
PROOF's The algorithm which has no substitutions is not equivalent to any
other MCA. If, on the other hand, A applies to any word w, it must also
apply to each word of the sequence ww, www, Let z be any member of
this sequence which is not in the finite set AL; then a(z) > 1. Form B
from A by adding the substitution "z — y" at the beginning, where y is the
minimal equivalent word for z. Then b(z) = 1 <a(z), and A is not uniformly
optimal within its complete class of equivalent algorithms.
Theorem 8.,
If C is uniformly optimal within the class of o of equivalent
MCA such that AL = CL for every Aed, and no two substitutions
of C have the same left-hand word, then each word of CR is a

minimal word.

16

PROOF: Suppose that in the substitution "x — y" of an MCA A, y is not a
minimal word. Then a(x) > 1. If y is replaced by its minimal equivalent
word to form the algorithm B, then B = A and b(x) = 1 < a(x), so A is not
uniformly optimal within the class.

Tt was shown in Theorem 6 that any algorithm with a minimum number of
substitutions must have the same set of left-hand words as a core algorithm.
Theorem 8 shows that within those with the same set of left-hand words, only
the ones which have the same set of right-hand words as the core algorithm
can be uniformly optimal. Thus the study of optimality reduces to the study
of the algorithms which can be produced by reordering the substitutions of
the core algorithm. It will be shown in conclusion that a uniformly optimal
ordering of the subsitutions does not always exist, and that more than one
uniformly optimal ordering may exist.

Example. It can be shown that

0L = A

10 = A

00 = 1

11 -0
is a core algorithm which is uniformly optimal for the class of equivalent
MCA which have the same left sides. Other uniformly optimal orderings of
the same core algorithm can be obtained by interchanging the first and
second substitutions or the third and fourth substitutions. Note that the
left-hand sides are not ordered according to the < relation for any of these
optimal orderings; for if O < 1, then 00 < Ol.

Finally, there exist core algorithms which cannot be reordered to produce
an algorithm which is uniformly optimal within the class of equivalent algo-

rithms with the same left sides.

17

Example.

0L - 2

10 -2

02 —» 20

12 - 21.
Let u = 010 and v = 101. If A is any ordering of these substitutions such
that "Ol — 2" precedes "10 — 2", then a(u) = 1 and a(v) = 2. If, on the
other hand, B is any ordering of the substitutions such that "10 — 2"

precedes "Ol — 2", then b(u) = 2 and b(v) = 1. Since a(u) < b(u) and

a(v) > b(v), neither A nor B can be uniformly optimal.

18

Appendix
Included here are the proofs of Theorem 2 and of a lemma concerning the
inclusion partial order; the proof of the latter is the principal step in
proving the theorem.
The definition of the partial order <& is restated here for reference.
Definition
For x,y distinet words of £ , x <y ("x is included in y")

if X =88, ... 8 fors, ex (i=1,2,...,m) and there exist

172
words VO,Vl,,.,,vmeZ such that y = VOSlVlSQVE cee SV
Lemma 1.

Every infinite subset of ¥ contains two words v and w such
that v < w.
PROOCF: A set of words such that no word in the set is included in any
other word of the set will be called iggependent. An infinite independent
set of words whose alphabet has at most n letters and whose shortest word
is of ‘length k will be called an (n,k) i.i. set. The proof that no infinite
independent set exists proceeds by an indirect proof involving simultaneous
backward induction on n and k; i.e., it is shown that if an (n,k) i.i. set
exists, then either an (n,k-1) i.i. set exists or an (n-1, k') i.i. set
exists for some k', Repeated application of the argument must yield a (1,1)
i.i. set. Since such a set obviously does not exist, the hypothesis that an
infinite independent subset exists must also be false.
Suppose, then, that an (n,k) i.i. set S is given. If the alphabet has
less than n letters, the induction step is immediate. Otherwise, pick any

word w from S which is of length k and let s denote the first letter of w.

19

Throughout the proof, it is frequently convenient to divide the infinite
set under consideration into two subsets and to prove for one of them that
if it is infinite, either an (n, k-1) i.i. set or an (n-1, k') i.i. set
exists. Since the induction step is completed in that event, the subset
can be discarded, and the other of the two subsets can be assumed infinite.

The process just outlined can be applied to the set Ss of all words
of S which start with the letter s. The set of words formed from SS by
removing the initial letter of each word of Ss contains a word of length
k-1 (namely, the word formed by deleting the initial letter of w) and is
an independent set (or else, trivially, Ss is not independent). Thus if
S, is infinite, an (n, k-1) i.i. set exists.

Similarly, the set of words of S which do not include the letter s is
either finite or it is an (n-1, k) i.i. set. When both this set, and all of
Ss except w are eliminated from S, there remains a set T = {ti} which can be
assumed to be infinite. Thus T is an (n, k) i.i. set in which each word con-
tains at least one occurrence of the letter s, and no word except w begins
with s.

The word to = w is of the form 8V, for some word Vo3 each other word
ti of T is of the form.xisyi, where X, does not contain the letter s and
each Xy is of length 1 or more. Let X denote the set {Xl, Xy oes }, re-
ordered so that if X, g Xj’ then 1 < J.

It will now be shown that X contains either an infinite ascending

chain P = {pl, D for all i, or else an infinite inde-

Doy oo } where p, <P,

+1

pendent sequence Q. The two sequences P and Q of elements of X can be cho-

sen as follows, beginning with the element x At each stage, ask whether

1

the element X, then under consideration is included in (or equal to) an

20

infinite number of elements of X. If so, include Xy in P and go on to con-
sider the next element in the order which includes (or is equal to) X If
not, include X, in Q@ and go on to consider the next element in the order
which includes no earlier element of Q (and which is not already in Q). At
each stage only a finite number of elements of Q have been chosen, and each
has been chosen so that it includes (or is equal to) only a finite number of
elements of X. Therefore an infinite number of elements which include no
earlier element of Q (and which are not already in Q) must remain at each
stage, and the process can be continued indefinitely.

Q is an independent set on an alphabet which does not contain the
letter s; it is therefore either an (n-1l, k') i.i. set or finite. Accord-
ingly, P can be assumed infinite.

The elements ti = xisyi of T for which Xy is not a member of P may be
discarded. The remaining members of T can be ordered according to the order
of the elements in P; then if ti = xisyi appears before tj = xjsyj, either
X, = X, Oor Xy q Xja Here the words 3 must all be distinct; otherwise

J
X, 8Y. f

1594 syJ for some i, j, which contradicts the independence of T.

J

Wherever Vj d Vo J > 1, in the above ordering, remove tj leaving a set

o
e

U. U is independent because it is a subset of the independent set T.

Now suppose that U is infinite. The set of tj Just removed must then
be infinite, and each yJ must be included in one of the y which remains.
The number of words included in each remaining v must be finite, since none
can be longer than vy itself. Since the number of v is also finite, the
infinite number of yj included in them cannot all be distinct, which is a

contradiction. Hence U is infinite.

21

So far it has been shown that either an (n, k-1) i.i. set, an (n-1, k')
i.i. set, or the infinite independent set U constructed above must exist.
In conclusion, it is shown that the set Y of all the Yy which appear as tails
of elements of U is an (n, k-1) i.i. set. The word ¥, of Y is of length
k-1, since w = syo and w was assumed to have length k. If Y < yj, i<y,
then X8y <'xjsyj, wh;ch contradicts the independénce: of T, since
already X, g x34 On the other hand, U was defined so as to exclude the case
in which Yy <1yj for i > j. Thus Y is an (n, k-1) i.i. set and the lemma is
proved.
Theorem 2.

Every total order which is a refinement of the inclusion

partial ordering is a well-ordering.
PROOF': Let < be a total order on Z¥* such that x <y implies x <y. 1If
< is not a well-ordering, there exists an infinite sequence of words

W.,o> LY > .50 » An infinite independent set V = {vl, v ... } can be

1

selected from the sequence as follows. Let vy

2)

i * +
For i > 1, let Vil

il

Wl.

be the first word of the sequence which is not included in Vs V sevy O

25
vy Since only a finite number of words is included in any given word,

such a \A always exists and must precede an infinite number of words of

+1
the sequence. Thus V is an infinite independent set, contradicting the

lemma above, and the hypothesis that < is not a well-ordering must be false.

22

References

Aris, R. (1963) Discrete Dynamic Programming, Blaisdell, New York.

Bellman, R. E. (1957) Dynamic Programming, Princeton University Press,
Princeton, New Jersey.

Dantzig, G. B., Fulkerson, D. R., and Johnson, S. (1954) Solution of a
Large~-Scale Travelling-Salesman Problem, Journal of the Operations
Research Society of America, Vol. 2, No. 4, pp. 393-410.

Davis, M. D. (1956) Computability and Unsolvability, McGraw-Hill,
New York.

Markov, A. A. (1961) Theory of Algorithms The Israel Program for Sci-
entific Translations, Jerusalem.

Pontryagin, L. S. (1962) The Mathematical Theory of Optimal Processes,
Interscience Publishers, New York.

25

3 9015 02493 8964

