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Evaluation of Likelihood Functionsi" 
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An expression is obtained for the likelihood function for the detec- 
tion of a stochastic signal (diffusion process) in white noise. A sto- 
chastic differential equation is then obtained for the evolution of the 
likelihood function and the coefficients of this differential equation 
are related to a corresponding nonlinear filtering problem. Some ex- 
tensions are noted to diffusion process signals in correlated noise and 
to more general stochastic signals. 

1. I N T R O D U C T I O N  

To solve many  problems in statistical detection theory a likelihood 
function (Radon-Nikodym derivative) is calculated and evaluated 
against a threshold to determine a decision. Probably  the most well 
known method for evaluating the likelihood function for the  case of a 
Gaussian signal in Gaussian noise is to solve an integral equation for a 
function which is to be the kernel of a quadrat ic  form in the obseI~a- 
tions. Difficulties with this method are tha t  integral equations are 
usually difficult to solve and the solutions obtained often require storage 
of all the observations. Some work for continuous t ime detection prob- 
lems has been done tha t  removes these difficulties. Schweppe (1965) 
considered the case of a Gauss-Markov signal in white noise and by  
first solving the problem in discrete t ime and then  formally passing to 
the limit to obtain the result for the continuous t ime problem he ob- 
tained a recursive method for evaluating the Iikelihood function which 
used the linear filtering results of Ka lman  and Bucy (1961). Sosulin 
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and Stratonovich (1965) considered the detection problem of a diffusion 
process in white noise and using the Stratonovich (1966) definition of 
stochastic integral formally obtained a differential equation for the 
likelihood function and related the terms of this differential equation 
to some nonlinear filtering results. 

In this paper we provide a rigorous derivation of a stochastic dif- 
ferential equation for the evolution of the likelihood function for a 
diffusion process in white noise using the K. It6 (1951a) definition of 
stochastic integral. Some differences which are noted between our 
results and the results of Schweppe and the results of Sosulin and 
Stratonovich are related to the transformation calculus used and to the 
different definitions of stochastic integral. We also consider the case of a 
stochastic signal (diffusion process) in correlated noise (diffusion proc- 
ess) and obtain in some cases necessary and sufficient conditions for 
nonsingular detection. We relate the nonsingular problem to a white 
noise detection problem. We ~lso indicate how the general diffusion 
process signal in diffusion process noise detection problem can be solved 
and the extension of our solution to more general stochastic signals. 

2. PROBLEM STATEMENT 

The detection problem will be described in terms of stochastic differ- 
ential equations rather than white noise, because white noise does not 
exist as an ordinary random process, and in general when a random 
function is integrated with white noise, the integral can be defined in 
different ways (Stratonovich 1966). For a discussion of stochastic 
differential equations the reader is referred to K. It6 (1961) or Doob 
(1953). 

I t  will be convenient to initially make some assumptions that will 
be continually used throughout this paper. Consider a stochastic differ- 
ential equation 

dx, -- a(t, x,) dt -t- b(t, xt) dBt (1) 

where x, ,  Bt and a(~, mr) are n vectors and b(~, xt) is an n x n matrix. 
We shall always assume the following hypothesis, H: 

H:  The process {Bt} = { (B, 1, B~ ~, . . .  , B,~)r I will be a vector of n 
independent standard Brownian motions. This will be called 
n dimensional Brownian motion. The components of the vector 
a(t, x) and the matrix b(t, x) are continuous in t and globally 
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Lipschitz continuous in x. The domain of the solution of the 
differential equation will be the bounded interval [s, 1]. 

We note that given an initial condition independent of the future 
Brownian motion and assuming H the solution of (1) exists and is 
unique (K. It6 1961). 

The initial detection problem that we shall consider is described by 
the following stochastic differential equations 

dyt = ](t)x~ dt + h( t )  dB~ for signal present 
(2) 

= h(t)  dl~ for signal not present 

where 

dxt = a(t, xt) dt d- b(t, xt) dBt 

x(s)  = a, y(s)  -= 0 (3) 

We also assume, in addition to H, that h-l ( t )  exists and is continuous. 
The n dimensional process {xt} corresponds to the (stochastic) sig- 

nal which is obtained by (3) and {/3t} is an m dimensional Brownian 
motion independent of the n dimensional Brownian motion {Btl. The 
process {Ytl is an m dimensional process of our observations. 

3. SOME PRELIMINARY RESULTS 

Before establishing our main result we must note a few preliminaries. 
The first theorem gives some sufficient conditions for the absolute con- 
tinuity of the measures corresponding to solutions of stochastic differ- 
ential equations. The result stated is due to Girsanov (1960) while 
similar, less general results have been given by Prokhorov (1956) and 
Skorokhod (1960). 

THEOaEM 1. Suppose that 

dx~ = a(t, xt) dt d- b(t, xt) dBt (4) 

dyt = (a(t, Yt) -~- b(t, yt)h(t ,  yt) ) dt d- b(t, yt) dBt (5) 

where 

i) t E Is, 1] x(s)  = y(s )  

ii ) a and h are n vectors and b is an n × n matrix 
iii) a( . ,  . ) ,  b( . ,  .) and h ( . ,  .) are measurable in both variables, in 

particular a and b are continuous in their first variable and 
globally Lipsehitz continuous in their second variable 
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f l I ~ iv) I h(t ,  xt)  dt < m a . s .  

v) l h(t, x,) I < h0( Ix, I ) 
where ho is a nondecreasing function of a real variable. 

Then the measures ttx and ttr induced on C~[s, 1] (the space of all continuous 
functions with values in ~ )  by {xt} and {yt} respectively are mutually 
absolutely continuous. 

The Radon-Nikodym derivative, dtLr/d#x, is given by 

Ef _if d~r _ exp hr(u,  x~) dB~, -~ [ h(u,  x~) du (6) 
d#x 

If b -1 exists, this can be rewritten entirely in terms of {xt} as 

d~r _ exp h (u ,x~)b (u ,x~)  dx~ 
dpx [_ 

(7) 
h~(u, _~ 1 1 -- x~)b (u, x~)a(u, x~) du -- ~ I h(u, x~) 12 du 

We next describe a result from nonlinear filtering theory. Given the 
following nonlinear filtering problem 

dxt = a(t, x,) dt q- b(t, xt) dB, (8) 

dy, = f ( t )x t  dt -~ h(t)  dBt (9) 

where (8) describes our state and (9) describes our observations (This 
is our detection problem with signal present with the assumptions as 
made there). 

THEOREM 2. The conditional mean for the above filtering problem is 
given by the following expression 

E[xt i Y~ ; s < u < t] = 2t E~x[~txt] (10) 

where E~x corresponds to integration with respect to the function space 
measure px generated by the solution of (8) and 

• t = ~ t ( x ~ , y ~ ; s ~  u<_  t) 

T~ T --1 1 T~ T --1~ = exp x~ j~ g~ dy~ -- ~ x~ 1~ g~ j~x~, du 

and g = hrh. 
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The proof of this result will not be included here but  it can be easily 
proved from our absolute continuity results and the fact that  the process 
{xt} has a finite second moment. A stochastic differential equation can 
also be obtained for its evolution in time. These results are discussed by  
Kushner (1967) and by  Duncan (1968). 

4. M A I N  R E S U L T  

We have now established sufficient preliminaries so we shall return to 
the detection problem. We first derive an expression for the likelihood 
function (Radon-Nikodym derivative). 

LE~M.~ 1. The likelihood function, At, for the detection problem (2) /s 
given by 

At = E~z[~I't] (12) 

where ~ and E,z are defined in Theorem 2. 
Proof. The likelihood function is the Radon-Nikodym derivative of 

the measures, say pl and p0, corresponding to the two hypotheses, signal 
present andsignal not present. Fix t and let P E (~(y~ ; s ~ u _< t) ( the 
augmented Borel field generated by IY~ ; s ~ u ~ t} ). Since the likeli- 
hood function is a martingale of Brownian motion we have 

= f fr  qi d(g~ × pi(P) p0) 

= ffr E[*I t y ~  ; s <_ u <_ t)] d ( ,x  × 0o) (13) 

= f fr  '~t d(~: x oo) 

Since {x~ ; s _< u < t} is a functional only of the Brownian motion 
{B~ ; s _< u <_ t} (cf. the construction of {xt} K. I t5  1961) the measure 
generated by  the Bore1 field ®(x~ - x , ,  ~ ; s ~ u _< t) is the product  
of the measures ~x and p0 • Therefore 

pi(D) = ff~ ~t d~x dpo 
(14) 

= y E~ z [~]  dpo 

By  definition of the Radon-Nikodym derivative we have then 

A, = E~x['I'tl a.s.  p0 ( 1 5 )  
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This was done for fixed t but  it follows immediately for a countable 
dense set {td in [s, 1]. Since x t ,  y~, and 'I~t are continuous in t (a.s.) and 
the sequence <,Itt# is uniformly integrable we have for M1 t 

A, = E,x[gS] a.s. m (16)1 

To obtain a stochastic differential equation for the likelihood function 
we shall use the following result of K. I t5  (1951b) for obtaining differ- 
entials of smooth functions of solutions of stochastic differential equa- 
tions. 

LEM•A 2. I f  G( t, X) has a continuous first partial derivative with respect 
to t and a continuous second partial derivative with respect to x, - ~ 
x < ~ ,  s < t < 1 and i f the func t ions f ( t ,  ~) andg( t ,  w) are independent 
of the future Brownian motion and f I f I ~ dt < ~ , f I g I dt < ~ a.s. and 

dz(t, ~o) = g(t, ~o) dt + f ( t ,  o~) dB(t ,  co) (17) 

then a.s. 

G(1, zt) - G(s, z~) = f t  OG (t, z~)f(t, ~) dBt 
" . o  ~ z  

(18) fl~o{~(t' Zt) OG(t'zt) Ji- ~f2(t, oJ) 032~ } 
+ J, [ Oz g ( t , ~ )  + Ot ~ ~z 2 (t, zt) dt 

We now establish a simple result for interchanging an expectation 
and ~ stochastic integral. 

LE~MA 3. Consider the likelihood function A t .  The following equality is 
valid a.s. po 

El '  ] A~ = E, x[gS] = E,x  1 +  x~J~ g~I '~dy~  

(19) 
f t T T --I = 1 + E ,  x [x~ L, g~ ,I[~] dye, 

Proof. We obtain the first line by applying the stochastic differential 
rule (Lemma 2) to 

el = e  ~t 

where 

and 

dzt T~ T --i IX Tp T --I,, = xtJt g~ dyt- ~ ~Jt gt.hxtdt 

g = ]~rh. 
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We can define the stochastic integral 

f s  t T ~ T - -19  X j~  g~ ~ dy~ 

as a limit in L~(dP)  of finite sum approximations from the martingale 
property of this stochastic integral, i.e., 

X ~" ~ '  - -19  / lira ~ J t ~ g ~  ~ y q + ~  -- yt~) = x~ j~ g~ ,, dy~ 
n i=I 

as the partitions become dense in Is, 1]. Since {y~ ; s < u < t} is the vari- 
able of integration for p0 it is independent of {x~ ; s _< u _< t}. Therefore 
for the finite sum approximations we can interchange the expectation, 
E,x, and the finite sum. Therefore we have 

~X T~ T --I T~ T --I x ,  ]~ g~ dy~ = E ,  x x ~  ]= g~ dy~ a.s. po (20) 

To establish this result for all t E [% 1] use the continuity of the stochastic 
integral. | 

We are now prepared to establish our main result. 
T ~ o ~ E M  3. Consider the detection problem (2). The process {F,} de- 

f ined as 

r t  = ln At = In E~x[~I't] (21) 

satisfies the following stochastic differential equation 

dr~ = ~ L ~ g ?  ~ dyt - ½~trft~g-[~ft~t dt (22) 

where 

E.i~.,  x,] 
~t - ( 2 3 )  

E.~['I',] 

Proof. (Note  that  At is strictly positive and finite a.s. so In At is well 
defined and finite a.s.) @ply ing  the stochastic differential rule to 
In A, we obtain 

X T~ T --1_~_ T T --1 
dr ,  = E~x , ~, gt "~ dyt _ 1 E~x[X~ fi  9t]gt E~[ftxtg~] dt 

z~x[9,] 2 {E~[9, ]}  ~ 

Thus 

~ T --1 1 T T --1 d r ,  = j ,  g~ dy~ --  dt. 
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Remark. We shall now briefly mention some comparisons with results 
that were mentioned in the introduction. Our results differ in form from 
both the results of Schweppe and of Sosulin and Stratonovich. Sosulin 
and Stratonovich (1965) indicate that their stochastic integral is to be 
interpreted in the Stratonovich sense and it is known that in general 
this integral is not identical to the K. It6 stochastic integrM. Sehweppe 
(1965) obtained his result from a formal passage to the limit from dis- 
crete time using ordinary calculus. If we do some simple manipulations 
and use the correction term (Stratonovich 1966) that relates Stratono- 
rich stochastic integrals to K. It6 stochastic integrals we can reconcile 
our result with Schweppe's result and verify that his result must also 
be interpreted in the Stratonovieh sense. 

5. SOME GENERALIZATIONS 

We shah now discuss some detection problems of stochastic signals 
(diffusion processes) in correlated noise (diffusion processes). Consider 
a detection problem described by the following stochastic equations 

yt = H~xt + zt for signal present 
(24) 

-- z, for signal not present 

where 

dxt = a(t, x~) dt + b(t, xt) dBt (25) 

dzt = g(t, zt) dt + h(t) dBt (26) 

x ( s )  = ~ z ( s )  = 0 

We assume H and that the inverse of the diffusion matrix h(t), h-l(t),  
exists and is continuous and that the derivative of the time-varying 
matrix H t ,  H J, exists and is continuous in t. 

For this detection problem we shall give necessary and sufficient 
conditions for nonsingular detection and relate the nonsingular problem 
to a white noise problem. 

We first note a result for the quadratic (second order) variation of 
the solution of a stochastic differential equation. This result is obtained 
by K. It6 (1951b), Wang (1964) and Wong and Zakai (1965). Some 
related results have been discussed by Baxter (1956), Gladyshev (1961), 
Bfihlman (1963), Cogburn and Tucker ( 1961 ) and Pierre (1967). 

LEMMA 4. Let {xt} be the process which satisfies 

dxt -- ¢(t, x~) dt + F(t, xt) dBt (27) 
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where t C Is, 1J, x(s)  = ce, {xt} = (x~ 1, xt 2, . . .  , xt'~) r is an n dimensional 
diffusion process and {Bt} is an n dimensional Brownian motion. The 
n-vector ¢(t, x) and the n × n matrix P(t, x) have components which are 
continuous in t and globally Lipschitz continuous in x. Then 

~(,~)-1 ~ ] f [  l i rn ~ ]  j (,~) x j t(,~) 2 2 (x (t~+l) --  " ( , ) )  (28) = , y # ( t ,  xt) dt 
n~¢~ i=1 r= l  

in the mean square and almost surely where the partition {t~ ~)} is a 
~(,-1)~ for all n and these partitions become dense in [s, 1], refinement of L °~ , 

( r ( t ,  x~) = {.r~;(t, x~)}).  
LE~MA 5. Consider the detection problem (24). For this detection problem 

to be nonsinguIar it is necessary and su~cient that for all t 

H(t )b( t ,  xt) = 0 ~.s. (29) 

Proof (su.~ciency). It  will be convenient to change the form of the 
above detection problem by describing the hypotheses by stochastic 
differential equations (i.e., apply the stochastic differential rule to the 
two hypotheses). 

dy~ = H' (t)xt dt --k H( t )a( t ,  xt) dt --k H(t)b( t ,  xt) dB~ q- g(t, y~ 

- -  H(t)x t )  dt q- h(t) dB, for signal present (30) 

= g(t, yt) dt --k h(t) dB, for signal not present 

Now let H(t)b( t ,  x~) =- 0 a.s. Then the two hypotheses are a.s. 

dyt = H'( t )x t  dt q- H( t )a( t ,  xt) dt q- g(t, yt -- H( t )x t )  dt 

q- h(t) dBt for signal present (31) 

= g(t, yt) dt --k h(t) dJ~t for signal not present 

Since the process {xt} is generated by the n dimensional Brownian mo- 
tion {Bt} it is independent of the process {yt} satisfying 

dyt = g(t, yt) dt -+- h(t) d~t 
(32) 

y(s)  = 0 

With this independence and the fact that h -* exists for all t we can apply 
Girsanov's theorem as we did in the white noise case (Lemma 1) and 
obtain for the likelihood function 

.~, = E~,~[~,] ( 33 )  

where ~t is obtained from Girsanov's theorem (Theorem 1). 
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froof (necessity). If for all t, H(t)b( t ,  xt) ~ 0 a.s. then for some t, 
say t*, 

H(t*)b(t*, x~.) ~ 0 for xt* E A, P(A) > 0 

7rom the continuity conditions there exists an interval [t0(co), tl(co)] 
s~ch that  for t C [t0(~), tl(~)] 

H(t)b(t ,  x~) ~ 0 for xt E A 

Th~¢efore applying our quadratic test statistic (Lemma 4) we are able 
on t~e set A to distinguish with zero error between the two hypotheses. 
If signal is present we have 

f l f l b~i(s,x~) ds -~ h~(s)  ds i = 1, 2, . . .  n 

whereb(t, x~) = {b~(t, xt)} = H(t)b( t ,  x~) ~nd for signal not present 
we h ~ e  

h~¢(s) ds i = 1, 2, . . .  , n ! 

We note that  in the nonsingular case we have the two hypotheses 

dyt = t t ' ( t )x t  dt -~ H(t)a( t ,  z,)  dt + g(t, yt - H( t )x t )  dt ~- h(t) dB, 

for signal present 

= g(t, y~) dt -~ h(t) dBt for signal not present 

For the i~ypothesis for signal not present we can use the absolute con- 
t inui ty results (Theorem 1.) to show that  the measure corresponding 
to the solution of (33) is absolutely continuous with respect to the 
measure corresponding to the solution of 

dy, = h(t) dBt 
(3~) 

y, = 0 

So we c~n consider this correlated noise problem as a detection problem 
with respect to white noise. 

Remark 1. For the necessary and sufficient conditions for nonsingular 
detection we have to determine if H(t)b(t ,  xt) ~ 0 a.s. Without addi- 
tional assumptions on the coefficients of the stochastic differential equa- 
tions this is not equivalent to H(t)b(t ,  x) = 0 x C ( ~  t E T =--- [s, 1], 
though this latter condition is clearly sufficient. The detection problem 
may still be nonsingular even if H(t)b(t ,  x) ~ 0 for some x E 5~ ~ t e T. 
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This can occur if the process {x~} does not take values (a.s.) in the re- 
gion of ~" ® T where H(t )b ( t ,  x ) ~  O. Trivial examples can be con- 
structed, for example, when {x~} is constant (a.s.). Some sufficient con- 
ditions do exist to prove that {x~} "fills" the state space ~" but these con- 
ditions will not be described here. 

Remark 2. If we consider a more general correlated noise problem 

y~ = H ( t, xt ) -{- G( t, zt ) for signal present 
(:-5) 

= G(t, zt) for signal not present 

where xt and zt are given by (25) and (26) respectively. Then it sh)uld 
be "clear" how to proceed. If sufficient smoothness is assumed on (-and 
H then we proceed by taking derivatives or differentials (whichever is 
appropriate) using Lemma 2 in the vector case (K. It5 1951b) ur~il we 
obtain some Brownian motion. Depending upon whether it is {:~t} or 
(B,} will determine whether our problem is nonsingular or singular. For 
the Gaussian (linear) detection problem other techniques are available 
to determine singular or nonsingular detection (cf. e.g., Root 196~). 

Remark 3. The expression for the likelihood function (er ~ ) al~o arises 
in the nonlinear filtering problem and can be used to simplify e~,pecially 
the nonlinear smoothing problem. 

Remark 4. The analogy with the detection of a sure signal mould be 
noted, i.e., the expression for the likelihood function (e r ' )  use~,, instead 
of the known sigLal for the sure signal case, the best estimate (i~ a mean 
square sense) of the signal for the stochastic signal case. 

Remark 5. After submission of this paper, extensions of the likelihood 
function form (Theolem 3) for more general stochastic signals ]mve been 
obtained independently by T. KMlath and by the author. In a paper to 
appear, Kailath uses a different technique to approach the detection 
problem by reformulatin~ the stochastic differential equation for signal 
present. Absolute continuity results for these more general signals can 
be obtained by using some entropy results (cf. A. Perez, Notions gen- 
eralisees d'incertitude, d'entropie et d'information du point de rue de la 
theorie de martingales, in Transactions of the First Prague Conference 
on Information Theory, Statistical Decision Functions, Random Proc- 
esses," pp 183-208. Publishing House, Czech. Acad. Sci., Prague (1957). 
With uniqueness of the stochastic differential equation with signal pres- 
ent and the appropriate absolute continuity, the result in Theorem 3 
easily generalizes. Kailath in his forthcoming paper also has some dis- 
cussion on the stochastic integral o~ K. It5 as contrasted with some 
other proposed definitions. 
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