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Evaluation of Likelihood Functionst

TyronE E. Duncan
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An expression is obtained for the likelihood funection for the detec-
tion of a stochastic signal (diffusion process) in white noise. A sto-
chastic differential equation is then obtained for the evolution of the
likelihood function and the coefficients of this differential equation
are related to a corresponding nonlinear filtering problem. Some ex-
tensions are noted to diffusion process signals in correlated noise and
to more general stochastic signals.

1. INTRODUCTION

To solve many problems in statistical detection theory a likelihood
function (Radon-Nikodym derivative) is calculated and evaluated
against a threshold to determine a decision. Probably the most well
known method for evaluating the likelihood function for the case of a
Gaussian signal in Gaussian noise is to solve an integral equation for a
function which is to be the kernel of a quadratic form in the observa-
tions. Difficulties with this method are that integral equations are
usually difficult to solve and the solutions obtained often require storage
of all the observations. Some work for continuous time detection prob-
lems has been done that removes these difficulties. Schweppe (1965)
considered the ease of a Gauss-Markov signal in white noise and by
first solving the problem in discrete time and then formally passing to
the limit to obtain the result for the continuous time problem he ob-
tained a recursive method for evaluating the likelihood function which
used the linear filtering results of Kalman and Buey (1961). Sosulin
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and Stratonovich (1965) considered the detection problem of a diffusion
process in white noise and using the Stratonovich (1966) definition of
stochastic integral formally obtained a differential equation for the
likelihood function and related the terms of this differential equation
to some nonlinear filtering results.

In this paper we provide a rigorous derivation of a stochastic dif-
ferential equation for the evolution of the likelihood funection for a
diffusion process in white noise using the K. It6 (1951a) definition of
stochastic integral. Some differences which are noted between our
results and the results of Schweppe and the results of Sosulin and
Stratonovich are related to the transformation caleulus used and to the
different definitions of stochastic integral. We also consider the case of a
stochastic signal (diffusion process) in correlated noise (diffusion proe-
ess) and obtain in some cases necessary and sufficient conditions for
nonsingular detection. We relate the nonsingular problem to a white
noise detection problem. We also indicate how the general diffusion
process signal in diffusion process noise detection problem can be solved
and the extension of our solution to more general stochastic signals.

2. PROBLEM STATEMENT

The detection problem will be described in terms of stochastic differ-
ential equations rather than white noise, because white noise does not
exist as an ordinary random process, and in general when a random
function is integrated with white noise, the integral can be defined in
different ways (Stratonovich 1966). For a diseussion of stochastic
differential equations the reader is referred to XK. It6 (1961) or Doob
(1953).

It will be convenient to initially make some assumptions that will
be continually used throughout this paper. Consider a stochastic differ-
ential equation

dz, = a(t, z,) dt + b(t, ;) dB, (1)

where @ , B, and a(l, ;) are n vectors and b(%, 2¢) is an » x n matrix.
We shall always assume the following hypothesis, H:

H: The process {B:} = {(B/}, B/, ---, B,")"} will be a vector of n
independent standard Brownian motions. This will be called
n dimensional Brownian motion. The components of the vector
a(f, ) and the matrix b(¢, z) are continuous in ¢ and globally



64 DUNCAN

Lipschitz continuous in z. The domain of the solution of the
differential equation will be the bounded interval [s, 1].

We note that given an initial condition independent of the future
Brownian motion and assuming H the solution of (1) exists and is
unique (K. It6 1961). ‘

The initial detection problem that we shall consider is described by
the following stochastic differential equations

dy; = f(4)z. dt + h(¢) dB, for signal present @
= h(t) dB; for signal not present
where
da: = a(t, x:) dt 4+ b(t, x.) dB,

z(s) = a,y(s) =0 ®)

We also assume, in addition to H, that 1(t) exists and is continuous.

The 7 dimensional process {x; corresponds to the (stochastic) sig-
nal which is obtained by (8) and {B:} is an m dimensional Brownian
motion independent of the n dimensional Brownian motion {B;}. The
process {y4 Is an m dimensional process of our observations.

3. SOME PRELIMINARY RESULTS

Before establishing our main result we must note a few preliminaries.
The first theorem gives some sufficient conditions for the absolute con-
tinuity of the measures corresponding to solutions of stochastic differ-
ential equations. The result stated is due to Girsanov (1960) while
similar, less general results have been given by Prokhorov (1956) and
Skorokhod (1960).

TuaroreM L. Suppose that

da; = alt, ) dt + b(t, z,) dB, (4)
dye = (a(t, ye) + b(t, y)h(t, yo) dt + b(t, ye) dB.  (5)
Wheré .
D) ¢ € ls, a(s) = y(s)

it} o and h are n vectors and b is an n X n mairic
i) a(-, -),b(-, ) and h(-, -) are measurable in both variables, in
. particular o and b are continuous in their first variable and
globally Lipschitz continuous in their second variable
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1
iv) f | h(t, ) P dt < o as.

v) [Alt @) | < ho( |2 |)

where hy 18 a nondecreasing function of a real variable.
Then the measures ux and uy tnduced on Cyls, 1] (the space of all continuous
functions with values in ®") by {xd and {y} respectively are mutually
absolutely continuous.
The Radon-Nikodym derivative, duy/dux , is given by

r — exp [/ Wiuz) B~ 5 [ |2 du} (6)

If 5" exists, this can be rewritten entirely in terms of {z;} as

duy r : T —1
= exp L B (u, )07 (u, ) dx,

— f: BT (uy )6 (0, ) (u, 2.) du — éf: | h(u, z) | d“]

We next describe a result from nonlinear filtering theory. Given the
following nonlinear filtering problem

dz, = a(t, x;) dt + b(t, ;) dB; (8)

dy, = f(t)z. dt + h(t) dB. (9)
where (8) describes our state and (9) describes our observations (This
is our detection problem with signal present with the assumptions as
made there).

TrrorEM 2. The conditional mean for the above filtering problem is
gwen by the following expression

E HX [\I/t xt]
E 115:4 [‘I’t]

where E,; corresponds fo integration with respect fo the function space
measure ux generated by the solution of (8) and

Y, = W20, t;s<u<t)

' K (11)
= exp [ / qufuTgZI Ay — % f qufuTgZ,lfuzu du}

Ea | th;s<usit]l =4 = (10)

and g = hh.
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The proof of this result will not be included here but it can be easily
proved from our absolute continuity results and the fact that the process
{z:} has a finite second moment. A stochastic differential equation can
also be obtained for its evolution in time. These results are discussed by
Kushner (1967) and by Duncan (1968).

4. MAIN RESULT

We have now established sufficient preliminaries so we shall return to
the detection problem. We first derive an expression for the likelihood
function (Radon-Nikodym derivative).

Lemma 1. The likelihood function, A; , for the deiection problem (2) 1s
given by

Ay = BT (12)

where ¥, and E,y are defined in Theorem 2. _

Proof. The likelihood function is the Radon-Nikodym derivative of
the measures, say p: and po , corresponding to the two hypotheses, signal
present and signal not present. Fix fand let T' € ®(yu ;8 < u < t) (the
augmented Borel field generated by {y. ; s < u < ). Since the likeli-
hood function is & martingale of Brownian motion we have

pl(r) = fj;‘ VA d(l.l-x X Po)

= [[ Bl oG v s S u < e x ) (13)

= ‘/:/;‘I’t dlex % po)

Since {2, ; s < u < #} is a functional only of the Brownian motion
{By,;s < u <t (cf. the construction of {z;} K. It 1961) the measure
generated by the Borel field B(z. — ., By, ;s < u £ t) is the product
of the measures ux and po . Therefore

Pl(r) = ffr ¥, dﬂx dPo
(14)
= [ Bl an

By definition of the Radon-Nikodym derivative we have then
Ay = E W] as. po (15)
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This was done for fixed ¢ but it follows immediately for a countable
dense set {#;} in [s, 1]. Since z; , y; , and ¥, are continuous in ¢ (a.s.) and
the sequence <¥,,> is uniformly integrable we have for all ¢

Ay = B W] as. po (16)§

To obtain a stochastic differential equation for the likelihood function
we shall use the following result of K. It6 (1951b) for obtaining differ-
entials of smooth functions of solutions of stochastic differential equa-
tions.

Lemma 2. If G(1, x) has a continuous first partial derivative with respect
to t and a continuous second parital derivative with respect to ©, — o <
r < w,8 <t <1 and of the functions f(1, w) and g{i, ») are independent
of the future Brownian motion and [ | f°dt < o, [|g|dt < = a.s. and

de(t, ©) = g(t, w) dt + f(t, @) dB(L, ») (17)

then a.s.

G(1l,5) — Q(s,z,) = flgg (i, 20)f(t, @) dB;

+f1{5G(t 2¢) g(t, )_{_aﬂ(t 'at)-{— f(t )aG(tzt)}dt

We now establish a simple result for interchanging an expectation
and a stochastic integral.

Lrvma 3. Consider the likelihood function A, . The following equality 1s
valrd a.8. pq

(18)

t
A = EMX .| = E#X {;1 + f qufuTg;kIfu dyu]
, S (19)
» f Eux [quﬁLngl‘I!u] d'lu

Proof. We obtain the first line by applying the stochastic differential
rule (Lemma 2) to

T = ¢
where
dee = 271797 dye — 2,797 o, dt
and
g = k'h.
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We can define the stochastic integral

17
f 2T g W dy,
as a limit in L'(dP) of finite sum approximations from the martingale
property of this stochastic integral, i.e.,

n i
lim 21 xfiff,; gt_,-I‘I’t,-(yti_'.l - yt,-) = f -'EquuTg;l‘I’u dyu
n i= s

as the partitions become dense in [s, 1], Since {y. ; s < » < ¢} is the vari-
able of integration for p, it is independent of {x, ; s < u < . Therefore
for the finite sum approximations we can interchange the expectation,
E,., and the finite sum. Therefore we have

t &
E“xf qufuTg;I d?/u = f EI‘X qufuTg;1 dyu a.s. po (20)

To establish this result for all ¢ € [s, 1] use the continuity of the stochastic
integral. |
We are now prepared to establish our main result.
TarorEM 3. Consider the detection problem (2). The process {T4 de-
fined as

T; = InA;, = In B [¥] (21)
satisfies the following stochastic differential equation
dry = £"f,"g7 " dy. — 371 g7 fbo dt (22)
where
4, = Bual¥izd (23)
E %]

Proof. (Note that A; is strictly positive and finite a.s. so In A, is well
defined and finite a.s.) Applying the stochastic differential rule to
In A, we obtain

_ E,, 2 f g, dy, _ Bl gs Buylfex ¥, dit

1
are ol 5 B

Thus »
ar,; = ﬁJzTg?l dy: - %ﬁtTftTg—; ftff?t di. '



EVALUATION OF LIKELIHOOD FUNCTIONS 69

Remark. We shall now briefly mention some comparisons with results
that were mentioned in the introduction. Our results differ in form from
both the results of Schweppe and of Sosulin and Stratonovich. Sosulin
and Stratonovich (1965) indicate that their stochastic integral is to be
interpreted in the Stratonovich sense and it is known that in general
this integral is not identical to the K. 1t6 stochastic integral. Schweppe
(1965) obtained his result from a formal passage to the limit from dis-
crete time using ordinary caleulus. If we do some simple manipulations
and use the correction term (Stratonovich 1966) that relates Stratono-
vich stochastic integrals to K. It6 stochastic integrals we can reconcile
our result with Schweppe’s result and verify that his result must also
be interpreted in the Stratonovich sense.

5. SOME GENERALIZATIONS

We shall now discuss some detection problems of stochastic signals
(diffusion processes) in correlated noise (diffusion processes). Consider
a detection problem described by the following stochastic equations

y: = Hz: -+ 2, for signal present

(24)
=z for signal not present
where
dz: = a(t, x;) dt + b(t, x,) dB, (25)
dze = g(t, 2;) dt + h(t) dB, (26)

z(s) = az(s) =0

We assume H and that the inverse of the diffusion matrix i(z), A7(2),
exists and is continuous and that the derivative of the time-varying
matrix H, , H,, exists and is continuous in &

For this detection problem we shall give necessary and sufficient
conditions for nonsingular detection and relate the nonsingular problem
to a white noise problem.

We first note a result for the quadratic (second order) variation of
the solution of a stochastic differential equation. This result is obtained
by K. Ité (1951b), Wang (1964) and Wong and Zakai (1965). Some
related results have been discussed by Baxter (1956), Gladyshev (1961),
Bithlman (1963), Cogburn and Tucker (1961) and Pierre (1967).

LevMa 4. Let {x:} be the process which satisfies

do, = ¢(t, z) di + T(t, z.) dB, (27)
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wheret € [s, 1], z(s) = o, {x = (&}, 2/, -+, x")" s an n dimensional
diffuston process and {B;} is an n dimensional Brownian motion. The
n-vector ¢(t, ) and the n % n mairiz T'(t, x) have components which are
continuous in t and globally Lipschitz continuous in x. Then

E(n)—1

, X n 4
lm 3 ) — W =2 [ e e (@)

>0 g=s]

in the mean square and almost surely where the parlition {ti™) is a
refinement of {1i" "} for all n and these partitions become dense in s, 1],

(P(t7 xt) = {'Yij(ti xt) } )
Lemma 5. Consider the detection problem (24). For this detection problem
to be nonsingular it is necessary and sufficient that for oll ¢

H(@)b(@, z:) =0 as. (29)

Proof (sufficiency). It will be convenient to change the form of the
above detection problem by describing the hypotheses by stochastic
differential equations (i.e., apply the stochastic differential rule to the
two hypotheses).

dy: = H' (8, dt + H(t)a(t, ;) dt + H(t)b(t, z.) dB; + g(t, y.
— H(t)x,) dt + h(t) dB, for signal present (30)
= g(t, y.) dt + h(t) dB, for signal not present
Now let H(#)b(¢, z.) = 0 a.s. Then the two hypotheses are a.s.
dy, = H' (z dt + H(t)a(t, z) dt + g(t, y. — H(t)z,) di
+ h(t) dB, for signal present (31)
= g(t, ys) dt -+ k() dB, for signal not present

Since the process {z;} is generated by the n dimensional Brownian mo-
tion {B,} it is independent of the process {y,} satisfying
dy: = g(t, ye) di + h(t) dB;

y(s) =0
With this independence and the fact that K" exists for all ¢ we can apply
Girsanov’s theorem as we did in the white noise case (Lemma 1) and
obtain for the likelihood function

Ar = B 1)) (33)

where ¥, is obtained from Girsanov’s theorem (Theorem 1).

(32)
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Proof (necessity). If for all ¢, H()b(t, 2¢) # 0 a.s. then for some {,
say t*,

H(D(" z0) £ 0 for z# €A, P(A) >0

Trom the continuity conditions there exists an interval [f(w), t{w)]
sweh that for ¢ € [to(w), tl(w)]

H(@)b(t,z,) £ 0 for z, € A

Thyefore applying our quadratic test statistic (Lemma 4) we are able
on te set A to distinguish with zero error between the two hypotheses.
If signal is present we have

1~ 1
Zfbﬁj(s,ws)ds-i-f hi(s)ds i=1,2---,n
i vs s

whereb(t, z,) = {bi;j(t, z.)} = H(t)b(t, z,) and for signal not present
we have

1
Z/k?,-(s)ds t1=1,2,---,n a
J VYs

We nete that in the nonsingular case we have the two hypotheses
K (t)z, dt + H(t)a(t, z) dt + g(t, ye — H(¢)z,) dt + k(t) dB,

for signal present

dyt

= g{t, y.) dt -+ h(t) dB, for signal not present

For the hypothesis for signal not present we can use the absolute con-
tinuity results (Theorem 1.) to show that the measure corresponding
to the solution of (33) is absolutely continuous with respect to the
measure corresponding to the solution of
dus = .

Yt h(t) dB, (34)

Y» =0
So we can consider this correlated noise problem as a detection problem
with respect to white noise.

Remark 1. For the necessary and sufficient conditions for nonsingular
detection we have to determine if H(£)b(¢, z.) = 0 a.s. Without addi-
tiona] assumptions on the coefficients of the stochastic differential equa-
tions this is not equivalent to H(£)b(t,2) = 0z € Q" ¢t € T = [s, 1],
though this latter condition is clearly sufficient. The detection problem
may still be nonsingular even if H(¢)b(t, ) = 0 for somez € " teT.
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This can oceur if the process {z;} does not take values (a.s.) in the re-
gion of & ® T where H(¢)b(i, ) 0. Trivial examples can be con-
structed, for example, when {z;} is constant (a.s.). Some sufficient con-
ditions do exist to prove that {x;} “fills” the state space ®" but these con-
ditions will not be described here.

Remark 2. If we consider a more general correlated noise problem

ys = H{t, z) + G, 2) for signal present )
= G(t, 2:) for signal not present (

where z; and z; are given by (25) and (26) respectively. Then it should
be “‘clear” how to proceed. If sufficient smoothness is assumed on € and
H then we proceed by taking derivatives or differentials (whicherer is
appropriate) using Lemma 2 in the vector case (K. It6 1951b) unil we
obtain some Brownian motion. Depending upon whether it is {34 or
{B,} will determine whether our problem is nonsingular or singulsr. For
the Gaussian (linear) detection problem other techniques are available
to determine singular or nonsingular detection (cf. e.g., Root 1963).

Remark 3. The expression for the likelihood function (¢”*) also arises
in the nonlinear filtering problem and can be used to simplify especially
the nonlinear smoothing problem. '

Remark 4. The analogy with the detection of a sure signal snould be
noted, i.e., the expression for the likelihood function (e"*) uses, instead
of the known signal for the sure signal case, the best estimate (in a mean
square sense) of the signal for the stochastic signal case.

Remark 5. After submission of this paper, extensions of the likelihood
funetion form (Theorem 3) for more general stochastic signals have been
obtained independently by T. Kailath and by the author. In a paper to
appear, Kailath uses a different technique to approach the detection
problem by reformulating the stochastic differential equation for signal
present. Absolute continuity results for these more general signals can
be obtained by using some entropy results (c¢f. A. Perez, Notions gen-
eralisees d’incertitude, d’entropie et d’information du point de vue de la
theorie de martingales, ¢n Transactions of the First Prague Conference
on Information Theory, Statistical Decision Functions, Random Proc-
esses,” pp 183-208. Publishing House, Czech. Acad. Sci., Prague (1957).
With uniqueness of the stochastic differential equation with signal pres-
ent and the appropriate absolute continuity, the result in Theorem 3
easily generalizes. Kailath in his forthcoming paper also has some dis-
cussion on the stochastic integral of K. It6 as contrasted with some
other proposed definitions.
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