Sparse Sets im NP-P:
Exptime Versus Nexptime

J. Hartmanis*
V. Sewelson*
N. Immermant

TR 83-544
November 1983

*Department of Computer Science
Cornell University
Ithaca, New York 14853

iDepartment of Mathematics
Tufts University
Medford, Massachusetts 02155

SPARSE SETS IN NP-P: EXPTIME VERSUS NEXPTIME

J. Hartmanis
V. Sewelson
Department of Computer Science
Cornell University
Ithaca, New York 14853

N. Immerman
Department of Mathematics
Thufts University
Medford, Massachusetts 02155

Abstract

This paper investigates the structural properties of sets in NP-P and shows that the
computational difficulty of lower density sets in NP depends explicitly on the relations
between higher deterministic and nondeterministic time-bounded complexity classes. The
paper exploits the recently discovered upward separation method, which shows for example
that there exist sparse sets in NP-P if and only if EXPTIME % NEXPTIME . In addition,
the paper uses relativization techniques to determine logical possibilities, limitations of
these proof techniques, and, for the first time, to exhibit structural différences between rela-

tivized NP and CoNP.

Introduction and Outline of Results

It is well known that if higher deterministic and nondeterministic complexity classes
do not collapse then the corresponding lower classes are also distinct. This downward
separation is easily obtained by padding arguments and it yields, for example, that
EXPTIME 5 NEXPTIME implies P £ NP. In this paper we prove that for some impor-
tant complexity classes there also exists an upward separation method which reveals that
the structural properties of P, NP, and PSPACE are explicitly determined by relations

between the corresponding higher (exponential) complexity classes. We investigate this

-9.-

strong and unexpected coupling of the structural properties of lower and higher complexity
classes by the upward separation method and use relativization techniques to explore possi-

ble structural properties of NP sets as well as limitations of these proof techniques.

The original motivation for this work was the desire to understand better what makes
the computational solution of problems in NP hard, provided P 7 NP. It is generally con-
jectured that P £ NP [AHU,GJ] and therefore, for example, it is thought to be very diffi-
cult to determine whether Boolean formulas in conjunctive normal form have satisfying
assignments. Furthermore, there is a more explicit belief that the computational difficulty
of finding satisfying assignments for Boolean formulas does not depend only on the
existence of the aggregate of satisfiable Boolean formulas, SAT, but that there are “indivi-
dual” instances of formulas for which it is hard to find satisfying assignments. In particu-
lar, we conjecture that there are syntactically simple, sparse subsets of Boolean formulas for

which it cannot be decided in polynomial time whether they are satisfiable.

In this paper we show that lower density sets in NP and PSPACE (but apparently
not in CoNP) can be coded more compactly to yield denser sets in the correspondingly
higher complexity classes. Therefore, lower density sets can exist in NP-P if and only if

the higher complexity classes do not collapse.

More precisely, a set A is said to be sparse if and only if it contains only polynomially
many elements up to size n [Ha).

Theorem: There exists a sparse set in NP-P, PSPACE-NP, and PSPACE-P if and
only if, respectively, NEXPTIME 7 EXPTIME, EXPSPACE % NEXPTIME, and
EXPSPACE # EXPTIME.

This result has the interesting implication that if P3NP but
EXPTIME =NEXPTIME then any sparse set in NP is already in P. Furthermore, since
A € NEXPTIME-EXPTIME implies that TALLY(A) is in NP-P [Bo, Bet], we conclude
that there exist sparse sets in NP-P if and only if there exist tally sets in NP-P. Later in

this paper we will see that this property does not necessarily hold for CoNP-P.

It is interesting to note that it has been shown by C.B. Wilson [Wi, BWX] that there

exist oracle sets A such that

PA 3 NP* and EXPTIME# = NEXPTIME* .

-3-

Furthermore, it has been shown more recently by S. Kurtz [Ku] that there are oracle sets B
such that P? £ NPP and NPP-PP contains no sparse sets. Since our results hold for
relativized computations as well, we now know that EXPTIMEA = NEXPTIME* if and
only if there are no sparse sets in NPA—-P#. This shows that the two relativization results
mentioned above are equivalent.

The above results can be generalized to show that the collapse of deterministic and
nondeterministic classes below exponential time forces the corresponding sets of higher den-
sity from NP into P and that the collapse starts bounding the computation time of SAT.
Theorem: There are no &n)=n"" (uniformly distributed) dense sets in NP-P if and
only if

| 9 NTIME [2°V® =y TIME[: Ve

and if this happens then SAT € TIME [2“/:].

An interesting question is whether the assumption that SAT can be computed in less
than exponential time has direct structural implications on the higher complexity classes.
We show that at least for relativized computations the computation speed of NP problems

can be decoupled from structural properties of the higher complexity classes.
Theorem: There exists an oracle A such that

NPA C TIME” [n"™]
and

EXPTIME* % NEXPTIME* .

These upward separation results have other implications about the relations between
complexity classes based on the fact that standard diagonalization methods can be “slowed

down" to yield sparse sets which separate complexity classes. We state one such result.
Corollary: If TIME[n*™] C NP then
P # NP, EXPTIME # NEXPTIME,
EEXPTIME # NEEXPTIME, etc.,

as well as

P 5 PSPACE and EXPTIME # EXPSPACE.

Conversely, if we could separate P from NP by a sparse set then we would have

shown that P £ NP as well as EXPTIME % NEXPTIME, which may be a much harder

-4-

task than just showing that P £ NP. Therefore, we conjecture that the separation of P
and NP will be first achieved by an indirect proof or a constructive proof yielding a set in

NP-P which is not sparse. For related ideas see [Ko, KM].

In this connection it is interesting to observe that until now the separations of non-
deterministic complexity classes have been obtained with proofs by contradiction (transla-
tion lemmas), not by explicitly yielding the sets which separate the complexity classes [Co,
Ib, Se]. Furthermore, our results show that Ladner’s [La] delayed diagonalization construc-
tion of an incomplete set in NP-P, under the assumption that P % NP, cannot be modi-
fied to yield a sparse set unless EXPTIME 5% NEXPTIME.

A very interesting open problem is the existence of sparse sets in the polynomial time
hierarchy, PH [GJ, St], under the assumption that EXPTIME=NEXPTIME. Or
equivalently, if there are no sparse sets in NP-P can there exist sparse sets in PH-P?
Quite surprisingly, we show that for some relativized computations the collapse
EXPTIME =NEXPTIME does not imply the collapse of the exponential hierarchy, EXPH,
and therefore even though there are no sparse sets in NP-P there can be sparse sets in
PH-P.

Theorem: There exists an oracle A such that EXPTIMEA=NEXPTIME“ and
TE(A) 3£ NEXPTIMEA. Therefore there are no sparse sets in NPA-P4 but there are
sparse sets in Elf(“ -pA.

We conjecture that the collapse of EXPTIME=NEXPTIME implies the collapse of
the exponential time hierarchy, but the above relativization result suggests that this may be

a very hard result to prove.

Another relativization result reveals a limitation of the upward separation method and
for the first time shows the existence of structural differences between relativized NP and

CoNP sets.

We first observe that the upward separation results for NP relativize and we get the
following generalization.
Corollary: For any A, there are sparse sets in NP4 —-P4 if and only if there are tally sets

in NPA-PA and this happens if and only if EXPTIME* £ NEXPTIME* .

Quite surprisingly this is not the case for relativized CoNP computations from which

we can force out tally sets without forcing out all sparse sets. This clearly indicates that

-5-

the upward separation method does not work for CoNP computations.

Theorem: There exists an oracle B such that CoNPE-P? contains sparse sets but

CoNEXPTIMEE =EXPTIME® and therefore there are no tally sets in CoNPZ-P?Z.

Sparseness Results

In this section we introduce the upward separation method and derive necessary and
sufficient conditions for the existence of sparse sets in NP-P, PSPACE-NP, and
PSPACE-P, respectively. We assume that the reader is familiar with the standard results
and notation about deterministic and nondeterministic polynomial time computations
[AHU, GJ].

 We say that a set §, S CL’, is sparse if and only if there exists a constant k¥ such
that
ISn(e+)" [<nt+k
i.e. the number of elements in S up to size n is polynomially bounded in n. Let P and
NP denote the deterministic and nondeterministic polynomial time acceptable languages,

respectively. Let
EXPTIME = L>JlTIME' [2°*]
c —_—

and
NEXPTIME = l; lNTIME [2%].

Theorem 1: There exists a sparse set S in NP-P if and only if
EXPTIME 5 NEXPTIME .

Proof: If EXPTIME % NEXPTIME then without loss of generality, we can assume that
there exists aset A, A C {0,1}°,

A € NEXPTIME -EXPTIME .
If we prefix each string in A by a 1 and interpret these strings as binary representations of
integers, then we can convert A to tally notation:

TALLY(A)={a"|n € 14} .
Since A is in NEXPTIME and not in EXPTIME

TALLY(A)e NP-P .

Thus we see that under this assumption there exists a sparse set in NP-P [Bo, BWX].

-6-

We now assume that NEXPTIME =EXPTIME and will show that then every sparse
set S in NP is already in P.

A’hume that all the elements of S are lexicographically ordered, S = {z,,z,,...}. Then
define

S = {#n## s t#d (3 2,2,,25,2i,Y1,Y2-Yj € S)
[2,<2,<..<2; <2<y, <y, <..<y;,
|z |=mn,]y; |=n and the 4
digit of z is d]} .

Since the integers n,s,5,¢ in the strings in S' are represented in binary, we see that
S'! e NEXPTIME ,

because in this time for input #n #i¢ #j; #t f#d the appropriate number of strings of
length n or less can be guessed and verified that they are in S and that they satisfy the

required conditions. But then, because of our assumption,
S' € EXPTIME .
From this follows that for input z, |z |=n, in polynomial time we can compute the maxi-
mal i+ § = m, from the strings
#rfit i 140 or foftift i 141,65 <n' + k

(if strings of this type are not in S' then no z of length n is in S). Now each string in S
is identified by a unique ¢ and s such that + + j=m,. Thus z is in S if and only if for

some i, + j, = m, the strings

#n #i, #j, #t #din §', 1<t <n,
define z. Since there are only polynomially many possibilities, they can be checked in poly-
nomial time and we see that S is in P, as was to be shown.

Note: For the sake of emphasizing the importance of the census function in the previous

proof we outline a second proof of Theorem 1:

If NEXPTIME =EXPTIME then for a sparse set S in NP the set

S!'={(n,)|32,<2,<...<z;) -
[2;€S, |2 1<n,0<5<i]},
is in NEXPTIME and therefore in EXPTIME. But then the set
S = {(n,m,) | my=max{i|(n,/)€S"'}}

is in EXPTIME. Thus for input n in EXPTIME we can compute m,. From this follows

that the set
S ={(n,i,t,d)|the i** element of S has n digits
and t* digit is d}

is in EXPTIME. To see this note that for input (n,s,t,d) we can compute m,, and then
guess m, elements in S, verify that they are in S, and then verify that the ¢ * element in
S has n digits and that the t** digit is d. Since this computation can be done in NEXP-
TIME ‘we know that S''! is in EXPTIME. But then § is seen to be in P. O

By similar reasoning we can derive related results for PSPACE.

Corollary 2: There are sparse sets in PSPACE-NP and PSPACE-P if and only if
EXPSPACE 5 NEXPTIME and EXPSPACE # EXPTIME, respectively.

Quite surprisingly, we will show later that related results do not hold for relativized

CoNP computations, whereas all above results hold for relativized computations.

It is interesting to note that it is possible to relativize computations so that
NPA 5 PA and EXPTIMEA = NEXPTIME#, in which case there are no sparse sets in
NPA-P4 [Ku, Wi].

Next we show that the previous result can be sharpened considerably. We say that a
set S is polynomial time printable if and only if there is a k, such that all the elements of
S, up to size n, can be printed by a deterministic machine in time n“-f- k,. Clearly, every
polynomial time printable set is sparse and is in P.

Corollary 3: There exists a polynomia! time printable set S such that SNSAT € NP-P
if and only if EXPTIME 5 NEXPTIME .

Proof: From the previous result we know that if there exists a sparse set in NP-P then

EXPTIME 5% NEXPTIME. Therefore, we just have to show that

-

-8-

EXPTIME # NEXPTIME
implies that the desired set S exists and that
SNSAT e NP-P .
Let A € NEXPTIME-EXPTIME then TALLY(A)€ NP-P. Since TALLY(A) is in NP it

can be reduced to SAT by a one-to-one, length increasing polynomial time reduction g
[BH, AHU]. This guarantees that

9[TALLY(A)] and g(1°)

are sparse sets and furthermore that g(1°) is polynomial time printable. Since g is a reduc-
tion of TALLY(A) to SAT we know that
2€TALLY(A) & g(2)e SAT .

Therefore g[TALLY(A)] C SAT ng(1°) and if g(1')€ SAT then 1 € TALLY(A), yielding
g[TALLY(A)|=SAT ng(1°).
Finally, g[TALLY(A)|€ NP-P since TALLY(A)€ NP-P. This completes the proof.

The existence of sparse polynomial time recognizable sets S such that
SNSAT € NP-P was conjectured by D. Joseph. The above results show that sparse sets

exist in NP-P if and only if there exist polynomial time printable sets S such that
SNSAT e NP-P.

Corollary 4: There exist sparse sets in NP-P if and only if there exist tally sets in
NP-P.

Finally, it is easily seen that we have actually shown that EXPTIME=NEXPTIME if
and only if every sparse set in NP is polynomial time printable. Therefore if one could

show that there are sparse sets in P which are not polynomial time printable it would fol-

low not only that P 7% NP but also that EXPTIME %% NEXPTIME.

Other Densities

For the sake of completeness we extend our results to higher complexity classes.
These results emphasize dramatically that if the higher deterministic and nondeterministic
complexity classes do not collapse, then super sparse subsets of Boolean formulas are in
NP—P: clearly showing that the difficulty of determining whether a Boolean formula is
satisﬁa’ﬂe does not depend on the aggregate of satisfiable formulas, but that ‘“individual”

cases of such problems are computationally hard.

-9-

We say that aset A, A C L’ is super sparsc if there exists a constant k such that
|A n(e+Z)* | < kllogn] .

Theorem 5: There exist super sparse sets in NP-P if and only if

EETIME= o TIME [22 ") #
' —

y NTIME [22""}=NEETIME .
r —

Proof: Again the proof is easy one way. To prove the implication the other way, assume

that a super sparse set S is in NP. Then the set
C={#t#+# |up to size 2 there exist i elements in S}

is contained in

NTIME[2* ™"} .

For z, |z | < 2' the representation of the length of ¢ and 1, is bounded by loglogk| There-
fore in doubly exponential time in the length of the input string #¢t #4¢ # we can guess the
¢ strings in S and verify that they are in S. If

NTIME[2*'"") C TIME[2*'"")

then we can compute in deterministic double exponential time the maximal §; of #¢t #+, #
in C. This gives the number of strings in S up to size 2. But then, a deterministic dou-
bly exponential time machine can compute for input ¢ the sequence of ; strings in S up to

length 2°,
#z, 2 8. #2, # .

From this it follows that for any z, |z |=n, a deterministic polynomial time machine can

compute the same string and check if z isin S. Thus if

u NTIME[2*"|=u TIME[2*"")
r>1 r>1

then S is in P. This completes the proof.

The sparseness results can also be generalized to sets of greater than polynomial den-
sity and the corresponding collapse of deterministic and nondeterministic classes below
exponential time. Furthermore, the collapse of these classes starts bounding the computa-

tion time of SAT. We illustrate these possible generalizations with the next result.

-10-

We say that the set A has density &n)=n's" if
A n(e+Z)" | < én)
To prove the following result we need the assumption that the &n)-dense sets are uni-

formly distributed. We conjecture that this assumption is not needed, but so far have not

been able to eliminate it from the proof.

A set A of density &n) is uniformly distributed if and only if any interval of length
2" /6(n) contains at most polynomially many elements of A up to size n, where an interval

is any set of strings consecutive in the lexicographic ordering of L°.

Please note that for A to be uniformly distributed, it is enough for each of the é(n)
canonical intervals that divide " equally to have only polynomially many elements of A.
A string z of length n belongs to the canonical interval containing only those strings of

length n with the same log(é(n)) leading bits.
Theorem 8: There are no §(n)=n'"¢* uniformly distributed dense sets in NP-P if and
only if
U NTIME[2°V*|= u TIME[2*V"]
c>1 c>1

and if this happens then SAT € TIME [2“,-"].
Proof: To prove one direction, suppose that

U NTIME[2°V*) 5 u TIME[2°V"],
c>1 c>1

and let A C {0,1}° and
A ecLélNTIME’[T"/_']-‘LélTIME[T‘/"].
Define
A = {412 |z e A).
Clearly A' €e NP-P.
Given

w=z#12m|‘|

of length n, |z |=[logn]’>. Therefore, there are at most gllm]® guch w, and so A' must
have density < n’®. Each of the canonical intervals has at most one element of A' since

A' has at most one string of length n beginning with any sequence of [logn]® bits. Thus

-11-

A' is uniformly distributed.
Conversely, suppose S € NP has density &§n)=n log and that each canonical interval

has fewer than n®’'+ k! elements of S. Then the set
C = {ftt#!lfti | in the I** interval of strings of length ¢
there are at least ¢ elements in S}

is in NTIME[2* ‘r"], for some k. Since for z of length ¢, the representation of ¢,+, and [is
bounded by [logt]%, and in time tt—otllost’ we can guess the i <t!'+ k' strings and ver-
ify that they are in the I** interval and in S. A string z is in the {** interval if and only if
its first log(&(n)) bits are I, hence it is easy to verify.

If NTIME [2“/-"_] C TIME [2“/_"-] then in TIME [24'\G] we can compute the maximal
i ; such that #t#H4 € C. This gives the number of strings of S of length ¢ in the It
interval. But then, a TIME [2‘“‘/:] machine can compute, for input #t#l#, the s
strings in S in the I'* interval. Hence, for any z of length ¢, a deterministic polynomial
time machine can compute the strings of S of length n in the same interval as z and check

ifz€S. Thus S€P.
To see how the computation time of SAT is affected, observe that
NP C ulNTIME(zﬂ/T). O
c>

The crucial points that make the above technique work are that when we encode the
6(n) dense set into shorter strings, we encode strings of length n into strings of length
log (6(n)) and that to verify the encoded set, we guess no more than nt+ k strings for some

k. This is where the uniformity was required.

It is our belief and we conjecture that any &(n) dense NP set S is uniformly distri-
buted in the sense that given a string z of length n, we can guess log(é(n)) bits of informa-
tion from which in time n®+ k, we can nondeterministically compute an interval that con-
tains only polynomially many elements of S, including z. If this uniformity conjecture is
true, not only may we drop the uniformity condition from the above theorem, but we have
an interesting connection between NP sets and Kolmogorov complexity with bounded com-

putatioin time.

-12-

Separation Results

Next we show that the upward separation results have very strong implications under
the assumption that NP contains a deterministic, time bounded complexity class above
polynomial. If this happens, then standard diagonalization arguments, when they are
slowed down, can produce sparse and supersparse sets in NP-P. Clearly this forces the

higher complexity classes not to collapse.

Theorem 7: Let T(n) be real-time computable and for all k£ > 1 let

. [
lim

n m—
8 —00 T(ﬂ) =0.

Then TIME[T(n)] C NP implies that
P 5% NP, EXPTIME 7 NEXPTIME,
EEXPTIME # NEEXPTIME, etc.

as well as
P £ PSPACE, EXPTIME 3 EXPSPACE, etc.

Proof: Since T(n) is real-time computable the limit condition permits us to diagonalize
over all deterministic polynomial time machines. Since this diagonalization process can be
stretched out by rejecting large segments of elements before diagonalizing over the next
machine, we see that deterministic diagonalization can yield sets of any desired, computable

density. Therefore, if
TIME|T(n)] C NP,

we know that NP 5 P and because of the arbitrarily sparse sets in NP-P, we also know

that the higher complexity classes do not collapse, EXPTIME 7% NEXPTIME,
EEXPTIME # NEEXPTIME, etc.

Since NP C PSPACE the same reasoning yields the other separation results. O
The previous result can easily be generalized to other complexity classes.

Corollary 8: Let T(n) be real-time computable and for all k>1 let
I nt
amvco T(n)

=0.

Then TIME[T(n)] C PSPACE implies that P y& PSPACE, EXPTIME % EXPSPACE,

etc.

-13-

It is interesting to note that these methods do not extend directly to nondeterministic
time bounded computations. For example, we do not know yet whether
NTIME [n"f*] C PSPACE implies that NEXPTIME % EXPSPACE, since we do not know
whether there are sparse sets separating NTIME [n’®] from NP. It should be recalled
that the usual way of separating nondeterministic complexity classes is by translation lem-
mas, which are proofs by contradiction [Co, Ib, Se].

It is also interesting to note that if we could show that P £ NP by any process which
can be ‘“stretched” to yield sparse and super sparse sets, then we would not only have
shown that P 7% NP, but also that

EXPTIME ## NEXPTIME
and
EEXPTIME 5 NEEXPTIME.

Clearly, one possibility of showing that not only P 7 NP but that the higher deter-
ministic and nondeterministic time computations are different, is suggested by Theorem 7.
This would require showing that NP contains some (properly defined) deterministic time
classes above polynomial. Unfortunately, at this time we do not believe that this is true.
We strongly conjecture that NP contains P properly and that furthermore NP contains no
deterministic time classes above P. We conjecture that the corresponding relations hold

between P and PSPACE and NP and PSPACE.

Relativisation Results

In this section we explore further the consequences of the upward separation method
and use relativization techniques to determine logical possibilities as well as possible limita-
tions of our proof techniques. During the course of this research, relativization techniques
have played a very useful role and yielded some quite unexpected results, strongly influenc-
ing this research.

From Theorem 1 we know that a collapse of EXPTIME =NEXPTIME forces all
sparse sets from NP into P, but it seems to have no direct effect on the dcterministic com-
putation speed of SAT. On the other hand, the collapse of lower deterministic and non-

deterministic complexity classes puts nontrivial computation bounds on SAT. For exam-

ple,

-14-
U TIME[2*Y*]= u NTIME[2°V"]
e>1 c>1

implies that SAT is in TIME[2°V"].

An interesting question is whether this implication also goes the other way: i.e.
whether the assumption that SAT has fast deterministic (nonpolynomial) computation time
has anj structural implications about the higher complexity classes. In the following we
show that at least for relativized computations we can decouple the computation speed of
problems in NP from the collapse of the higher deterministic and nondeterministic com-
plexity classes. As with all relativization arguments, this does not imply that this holds for
regular (not relativized) computations, but it shows that there are “worlds” for which this
result holds and indicates that the result is most likely very hard to prove or disprove for
regular computations.

Theorem 8: There exists an oracle A such that
NPA C TIME* [n"™)] and EXPTIME* 5 NEXPTIME*.
Proof: We will construct A in stages so that A is the disjoint union of the following two
sets
1. Ofz#if 1l e 4 i N2(z) accepts and |z |22m7, where {N;} is an enumera-
tion of all nondeterministic polynomial time oracle machines such that for each i, N;

runs in time n "% + logi .

£={1"|3y)[ly |=2" and 1y €A]}
€ NEXPTIMEA-EXPTIME*.

Condition 1 will assure that NP2 C TIME” [n"f"], since if L € NP4 then L=L(N})

for some + and we have encoded in A all but a finite initial portion of L.

S of condition 2 will be constructed by diagonalization over the deterministic exponential

time oracle machines to ensure the separation of NEXPTIME# and EXPTIMEA.

Let {E;} be an enumeration of all exponential time oracle machines where E; runs in
time 2°°F
Construction:

We add elements to A in stages. Each stage has two parts, one for each condition.

No elements are to be in A except those explicitly mentioned.

-15-

Let I be the index of the last exponential time machine cancelled. Let n; be the stage

at which we cancelled E;.
Stage 0: Ayg=¢, (=0, n,=0

Stage n: A,=A,,

Part 1: Run machines Nf . ,...,N: * on all inputs, =z, where
gVin-1)log(n-1) ¢ |7 | < 2V "o~ | It N,-A'(z) accepts then add Offz#ift 11 ! to
A,.

logl

Part 2: If 2" < 2", run E{::l(l"). If not, go on to the next stage. If E,A;l

accepts 1*, then we want 1" ¢ L. Since there are no strings in L of the form 1y
where |y |=2", we do nothing. If E;::, rejects 1®, we need to add a string, 1y,
to A,. So, we add to A, some string 1y, |y |=2", that was not queried during

E;, ,’s computation.
I=Il+1

n=n

End of construction.

Observe that for any n, no computation in stage n part 1 can query strings of length
greater than 2/ Vlogn logn which is less than 2*+ 1, the length of strings that could be
added to A, in part 2. Thus, part 2 of stage n does not interfere with part 1. Also note
that in part 2 of stage n, a computation can query strings of length at most
glog(i+1)n < gmlogs - g%lor™ 4 nlogn + 5. Since part 1 of stage n just added all the strings of
length less than 2*°f* + nlogn + 5 that any part 1 might add, part 1 will not interfere with
part 2.

n; '0"

In part 2 of any stage, since we run E,A_;l (1*) only when 2 < 2", adding a string of

length 2® + 1 at this stage will not affect earlier stages, which queried strings of length up

L} ‘0”

to 2 . And since E',A;l(l") can query at most 27+)% strings and there are 2°° strings,

y, of length 2®, we can always find a string, 1y, to add to A,. O

-16-

A fascinating and important open problem in this research area is the relation between
the nonexistence of sparse sets in NP-P and other parts of the polynomial time hierarchy.
The main problem is whether the collapse EXPTIME =NEXPTIME which forces all sparse
sets from NP into P also forces all sparse sets from the polynomial time hierarchy [GJ, St]
into P.

The importance of this problem is emphasized by the fact that many interesting
sparse sets are in the polynomial hierarchy. For example, it has been observed by A.R.
Meyer that there exist polynomial size circuits for SAT if and only if there exists a sparse
oracle set S such that SATCPS [BH]. Furthermore, from [KL] we know that if such an
oracle S exists then S is in the polynomial time hierarchy and the hierarchy is therefore
finite. If EXPTIME =NEXPTIME would also force all sparse sets from the polynomial
time hierarchy into P, then the existence of polynomial size circuits for SAT or,
equivalently, the existence of a sparse complete set for NP under polynomial time Turing

reducibility, would imply that P=NP.

We recall that the existence of sparse complete sets under many-one polynomial time

reductions implies that P=NP [Ma].

Another interesting open problem is whether EXPTIME =NEXPTIME implies that
for every sparse subset SCSAT, which we know is in P, we can find in polynomial time a
satisfying assignment for F in S. If EXPTIME=NEXPTIME forces all sparse sets from
the polynomial time hierarchy into P, then we can easily determine the minimal satisfying
assignment of F in S in polynomial time from a sparse set in L, which by assumption is
in P.

To define the ezponential hierarchy, EXPH , let

L E=NEXPTIME and I1E=CoNEXPTIME.

TF consists of all languages C such that there exist a constant ¢ and a polynomial time
predicate R, for which
Cc={z 3y, ly|<2°"IXVz, |z [<2° FIIR. [2,9,2]}};
the other classes are defined analogously.
Equivalently, we can define the ezponential hierarchy as follows:
£ E=EXPTIME and Vk >0 £F=NEXPTIME™".

Thus, for example, £F=NP5AT and LF=NEXPTIME®AT. From this definition it is clear

-17-

that a collapse of the polynomial hierarchy will imply a collapse of the exponential hierar-
chy. Since there is an oracle A such that P4 3 NPA but EXPTIMEA=NEXPTIME*
[Wi], it becomes equally clear that it is possible for EXPTIME =NEXPTIME but yet to
have the exponential hierarchy exist at higher levels. The reason a collapse at the base of
the polynomial hierarchy topples the entire structure is the close coupling of the oracle and
the underlying machine, e.g. TJ =NP™P . In light of this, it is the behavior of the polyno-
mial hierarchy that is peculiar, and not that of the exponential hierarchy. We expect the
exponential hierarchy to collapse if EXPTIME =NEXPTIME only because the hierarchy
with which we have the most familiarity has the accident of being a special case.

As the next result shows, there are oracles for which EXPTIMEA =NEXPTIME* but
the exponential hierarchy does not collapse, thus not all the sparse sets in the polynomial

hierarchy are forced into P4.
Theorem 10: There is an oracle A such that

EXPTIMEA =NEXPTIME* but £F(4) ¢ NEXPTIME* .

Proof: We will build A such that for each nondeterministic machine M; running in time
glsllsi on input z, A will include the string O#M,-#z#"'b’(m)m if and only if M accepts
z. This will ensure that EXPTIMEA =NEXPTIME“. At the same time we will make
sure that

L2(A)is in SFA)-EXPTIME*, where

L2(A)={n |(3u,|u |=n)XVv,|v |=n)[luv ¢ A]}.

Construction:

Just before stage n all strings in A of length less than 2n have been determined and
deterministic exponential time machines D,,...,.D,_, do not accept L2(A), where D, runs in
time 2(P#)s,

At stage n part 1: consider in turn the nondeterministic machines M,;,M,,....M, on

inputs z,, z,,...,2_u) of length [logn]>. 1f M} accepts z, then put O#M,#zl#zb"m"]’

into A and reserve for A the strings queried by M,’s computation whose membership in A
had not yet been determined. At most glos(2)llogn]’ =y o™ elements of length at least 2n are

newly reserved for A.

- 18-

If M{ rejects z, then to preserve this rejection by reserving for all A all strings queried on
all computation paths would determine the membership of too many strings. Therefore, we
consider all the ways of adding one point per class to some of A’s empty classes of the

form:

C(u)={luv ||u|=|v |}, for |u|>n .

If M} accepts z, using any of these A's, then take one and fix the elements of A
queried by one accepting computation.
Do this next for M, on z,,..,.M, on z_.,.,..,M, on z ... The total number of ele-

ments reserved for A is bounded by
n lors [losnlog(2).y plognlos(3)y | 4 plogniogn
< nllogn+ 1)3 < 2--1’

for sufficiently large n.

Part 2 of stage n: Now consider deterministic machine DA's computation on input n.
Reserve for A the at most n“® elements of A that this computation queries. Now if
DX(n) rejects then fine because n is in L2(A). However, if DJ(n) accepts then we must
add one point per empty C(u), |u |=n, to A such that strings in A are not touched.
This is possible by counting and it does not affect any of the previously fixed computations

by construction. 0O

The above results seem to indicate that there may be a fundamental difference
between many-one NP-completeness and Turing NP-completeness. In other words, that
the existence of polynomial size circuits for NP may not necessarily imply that P = NP as

does the existence of sparse many-one complete NP sets [Ma).

In response to this question, very recently, S. Kurtz [Ku] and, simultaneously, N.
Immerman and S. Mahaney [IM], have shown that there exists an oracle A and a sparse
oracle S such that

NP# 9 PA but NPA C (P4)5.
This shows that for these oracles the Karp-Lipton result is indeed different from Mahaney's
result [Ma,KL), i.e. there are worlds in which there exist sparse NP sets complete under

Turing reductions but no sparse set is complete under many-one reductions.

Clearly the strong assumption that the exponential hierarchy collapses to EXPTIME
or the even stronger assumption that EXPTIME =EXPSPACE has interesting implications

-19-

since it forces all sparse sets from PH into P.

Corollary 11: If EXPH=EXPTIME then the existence of polynomial size circuits for
NP and PSPACE implies, respectively, that NP=P and PSPACE=P.
Proof: From [KL] we know that the polynomial size circuits for NP and PSPACE are in
PH and since their descriptions form sparse sets, the hypotheses guarantees that they are
in P and therefore NP=P and PSPACE =P, respectively. O

The upward separation method works well for NP and PSPACE computations for
which we can code down sparse sets based on guessing, verifying, and counting. At the
same time, CoNP computations do not have explicitly the ability to guess as do NP com-
putations and therefore the upward separation method does not seem to apply to sparse
seﬁ in CoNP. Our next result shows that at least for some relativized computations this is
indeed the case.
Theorem 12: There is an oracle A such that there are sparse sets in CoNPA-P# but

there are no sparse sets in NP4 -P4.
Proof: We will construct A in stages so that
1. S={z|(Vy,|y|=|z)12y ¢ A]} € CONPA-P# and is sparse.
2. O#z# 17"'e A iff NA (z) accepts where N is a nondeterministic exponential

time oracle machine running in time 2** such that L(N*) is complete for NE4

for all oracles A.

Condition 1 will be achieved by diagonalization over polynomial time oracle machines.
Please note that condition 2 will force NEXPTIMEA =EXPTIME# which will ensure that

there are no sparse sets in NP4 P4 since Theorem 1 relativizes.

Let {M;} be an enumeration of all polynomial time oracle machines where M; runs in
time n"? 4 logs.
Construction:

We add elements to A in stages. Each stage has two parts, one for each condition.
No elements are to be in A except those explicitly mentioned. At the start of stage n,
M,M,,...M,_,, do not accept S.

Stage 0: A =¢

- 20 -

Stage n: A,=A,
Part 1: We shall diagonalize over the polynomial time oracle machines, adding to

S at most one string of each length, ensuring sparseness.

if

i. gtllos(n+ D)%llog(m+ %150 (4 1)Pn+ (n°f(** Dt log(n+ 1))n < 2*

then find some z, of length n such that for no y of length n has the membership

of 120y been determined. Since the left hand side of condition ¢ is the number

of strings of length 2n+ 1 whose membership in A or A is determined, and there

are 2® z’s of length n, we can find such an z,. Run M;‘;, on input z,, reserv-
ing for A all strings queried whose membership has not yet been determined. If
it accepts, we want z,¢S. So we add some 1z,y, |y|=|z |, to A,. Since we
reserved for A at most n®(** 14 log(n+1) < 2* strings, we can find a free
1zoy. If it rejects, we want zo€S. So, we reserve for A all 1z,y, |y |=|z,].
Note that condition ¢ holds almost everywhere, so we have achieved the diago-

nalization.

In addition, we want S to remain sparse, in spite of strings reserved for A in
future stages. So, we shall make sure that the only strings in S are those put in
by the above diagonalization. To do this, for each z 7 2z of length n, add one
lzy to A,, guaranteeing that z ¢ S. Note that for every z 9z, of length n
there is some y of length n such that the membership of 1zy has not been deter-
mined, since the left hand side of requirement s is the number of strings of length
2n+ 1 whose membership in A or A is already determined and it is less than 2*.
S will be sparse since ¢ is true almost everywhere.
Note: We queried strings of length up to nlt(3+ 1)y log(n+1).

We reserve for A at most (n'f/(*+ D+ log(n+1))n queried strings in part 1's
of all n stages so far.

We add strings of length 2n + 1.
Part 2: Run N** on inputs z such that [log(n)]*< |z |<[log(n+ 1)]%. If N*(z)
accepts, add O#z# 12" to A, and reserve for A all strings queried on some
accepting computation path whose membership in A had not yet been deter-

mined. If NA'(z) rejects, see if we can, by adding to A,, make it accept. If so,

-21-

add those strings and O#z# 12" to A, and reserve for A those strings queried
along onme accepting path. This will free us from reserving for A all queried
strings on all computation paths (which would be too many for the counting
argument), and will guarantee that strings added in future part 1's will not affect
NA'(z). If we cannot make NA'(z) accept, simply reserve O#z# 12" for 7.
Note: We determine the membership of at most
gk (log(n+1)%[log(a+ ‘"zllog(n-i- 1)]’n strings in part 2's of all n stages so far.

We add strings of length 281°#(*+ "4 [log (n + 1)]*+ 3.
End of construction.

" Observe that in part 1, we query strings shorter than those to be added in part 2 so
part 2 does not interfere.

Note that part 2 adds strings as it goes along that are larger than N* could query, so
part 2 does not interfere with itself. Since we reserve for A the strings we queried, the
strings added in future part 1's can not affect what is done here. O

Corollary 13: There is an oracle A such that CoNPA-P4 has sparse sets, but no tally
sets.

Proof: The oracle A of Theorem 12 suffices because CoNP4-P4 contains sparse sets, but
because NEXPTIMEA =EXPTIME* all tally sets in NP* are in PA. Since tally sets have
an easy syntax, this also forces all tally sets from CoNP4 into PA. O

This theorem has many interesting implications. It is the first oracle, A, to display a
structural difference between NP4 and CoNPA. Not only does it show that NP4 and
CoNP* can be distinguished by the existence of sparse sets, but that only for CoNP# can
we decouple sparse sets from tally sets. Note that by the same methods we can show struc-
tural differences for relativized CoNP and PSPACE, since the upward separation method
works for PSPACE (see Corollary 2). It also demonstrates that the proof technique of the
first theorem is in some sense tight, since when the technique is applied to CoNP, we must
go to 223, not CoNEXPTIME to decode the encoded sparse set. And since
EXPTIME =NEXPTIME does not necessarily imply that 223=EXPTIME the CoNP ana-

log of the first theorem fails.

-22-

Acknowledgements

The authors would like to thank Ron Book, Deborah Joseph, Stuart Kurtz, Steve
Mahaney, and Yaacov Yesha for helpful discussions and suggestions. The original search
for the upward separation method was stimulated by Kurtz's relativization result [Ku]

obtained during the AMS Summer Institute on Recursive Function Theory at Cornell

University.

-23-

References

[AHU]
[BGS]
[Bet]
[BH]
[Bo]
[BWX]
[Co]

[GJ]

[b]

(M]

[KL]

[KM]
[Ko]

[Ku]
[La]

[Mal

A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms, 1974, Addison-Wesley, Reading, Massachusetts.

T. Baker, J. Gill, and R. Solovay, ‘Relativizations of the P=fNP Question”,
SIAM J. Computing (1975), 431-442.

R.V. Book, et al, “Inclusion Complete Tally Languages and the Hartmanis-Berman
Conjecture”, Math. Systems Theory 11 (1978), 1-8.

L. Berman and J. Hartmanis, “On Isomorphisms and Density of NP and Other
Complete Sets”, SIAM J. Computing 6 (1977), 305-327.

R.V. Book, “Tally Languages and Complexity Classes”, Information and Control 26
(1974), 186-193.

R.V. Book, C. Wilson, and M. Xu, “Relativizing Time and Space”, IEEE-FOCS
Symposium (1981), 254-259.

S.A. Cook, “A Hierarchy of Nondeterministic Time Complexity”, Journal of Com-
puter and System Sciences 7 (1973), 343-353.

M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide to the Theory
of NP-Completeness, 1979, W.H. Freeman and Co., San Francisco, California.

J. Hartmanis, “‘On Sparse Sets in NP-P”’, Department of Computer Science, Cornell
University, TR82-508, August 1982.

O. Ibarra, “A Note Concerning Nondeterministic Tape Complexities”, Journal of
the ACM 19 (1972), 608-612.

N. Inmerman and S. Mahaney, “Oracles for Which NP Has Polynomial Size Cir-
cuits’’, draft, September 1982.

R.M. Karp and R.J. Lipton, “Some Connections Between Nonuniform and Uniform
Complexity Classes”, Proceedings 12th Annual ACM Symposium on Theory of
Computation (April 1980), 302-309.

D. Kozen and M. Machtey, “On Relative Diagonals”, IBM Research Report RC
8184, April 1980.

D.C. Kozen, “Indexings of Subrecursive Classes”, Proceedings 10th Annual ACM
Symposium on Theory of Computing (1978), 287-295.

S.A. Kurtz, “On Sparse Sets in NP-P: Relativization”, to be published.

R.E. Ladner, “On the Structure of Polynomial Time Reducibility”, Journal of the
ACM 22 (1975), 155-171.

S. Mahaney, “Sparse Complete sets for NP: Solution of a Conjecture of Berman
and Hartmanis", Proceedings 21st IEEE Foundations of Computer Science Sympo-
sium (1980), 42-49.

-924-

[Se] J. Seiferas, “Techniques for Separating Space Complexity Classes”, J. Computer
and System Science 14 (1977), 73-99.

[St] L.J. Stockmeyer, ‘“The Polynomial Time Hierarchy’, Theoretical Computer Science
3 (1976), 1-22.

[Wi] C.B. Wilson, “Relativization, Reducibilities, and the Exponential Hierarchy”,
Technical Report No. 140/80, Department of Computer Science, University of
Toronto, Toronto, Ontario.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif

