THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY!

A ZERO-ONE LAW FOR LOGIC
WITH A FIXED-POINT OPERATOR
ol
AndreaxBluQ, Yuri Gurevich
and
Dexter Kozen

CRL-TR-38-84

September 1984

Room 1079, East Engineering Building
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

'Any opinions, findings, and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the funding agency.

LA

1K (/ HE b

A ZERO-ONE LAW FOR LOGIC

WITH A FIXED-POINT OPERATOR

Andreas Blass
Dept. of Mathematics

University of Michigan, Ann Arbor, M1 48109

Yuri Gurevich
Dept. of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI 48109

Dexter Kozen
IBM Research

Yorktown Heights, NY 10598

Abstract

The logic obtained by adding the least-fixed-point operator to first-order
logic was proposed as a query language by Aho and UHman [AU] and has been
studied, particularly in connection with finite models, by numerous authors
[CH,Gu,Im,Va]. We extend to this logic, and to the logic containing the more
powerful iterative-fixed-point operator, the zero-one law proved for first-order
logic in [GKLT] and [Fa]. For any sentence ¢ of the extended logic, the propor-
tion of models of ¢ among all structures with universe {1, 2, . . . ,n} approaches
0 or 1 as n tends to infinity. We also show that the problem of deciding, for any
@, whether this proportion approaches 1 is complete for exponential time, if we
consider only ¢'s with a fixed finite vocabulary, (or vocabularies of bounded
arity) and complete for double-exponential time if ¢ is unrestricted. In addition,

we establish some related results.

Introduction

Many statements about finite structures satisfy the following zero-one law.
Consider the probability that the statement holds for a structure with universe
1,2, ..., n} and relations chosen at random. This probability approaches
either 0 or 1 as n tends to infinity. For numerous examples, see [BH] and the

references cited there.

Glebski, et al. [GKLT] and independently Fagin [Fa] showed that every
first-order sentence satisfies the zero-one law. Grandjean [Gr] showed that the
problem of deciding which of the two limit values is correct for a given first-
order sentence is PSPACE complete. (We state these results precisely and
review their proofs in §1.) Kaufmann and Shelah [KS] have shown that the zero-

one law is violated badly within monadic second-order logic.

We extend the zero-one law to sentences in the logic obtained by adding to
first-order logic the least-fixed-point operator studied in [AU,CH,Im Ko,Va] or
the more powerful iterative fixed point operator [Gu,Li]. We show that any for-
mula in these extended logics is equivalent, in random structures (i.e. with pro-
bability approaching 1 as the structures get larger), to a first-order formula.
This result, which immediately implies the zero-one law, contrasts with the well-
known fact that the least-fixed-point operator greatly increases the expressive

power of first-order logic.

Contrary to what one might expect, our equivalence result does not allow us
to transfer PSPACE completeness of the theory of random structures from
first-order logic to the logics with fixed-point operators. The difficulty is that
the translation process, from the extended logics to first-order logic, can vastly
increase the length of formulas. This difficulty cannot be overcome without
proving PSPACE =EXPTIME, for we show that the decision problem for the

theory of random structures in logic with a fixed-point operator is EXPTIME

complete.

12

The structures in the isomorphism class given by the theorem will be called
random structures, and their first-order theory will be called RANDOM (o). 1t is
easy to see that, if o' is another vocabulary, then RANDOM (o) and RANDOM (o')
contain the same sentences of the common vocabulary o n ¢', so it makes sense

to say that a sentence is in FANDOM without specifying o.

Proof sketch. To describe Gaifman's axiomatization of RANDOM (o), we first
introduce some terminology. For a finite list ¥ = v,, ... ,v; of distinct vari-
ables, a simple ¥ —formula is an atomic formula, with variables from the list v,
and not involving the equality symbol. (Thus, every atomic formula is either a
simple ¥-formula for some ¥ or an equation between two variables.) A complete
quantifier-free description for ¥, or just a v —descriplion, is a conjunction of
simple v-formulas and negations of simple v-formulas such that, for every sim-
ple U-formula «, exactly one of @ and -« occurs as a conjunct. If w is a variable
distinct from the w;'s, then a ¥,w-description £ extends a U-description D if
every conjunct of D is also a conjunct of £. Every such pair D,E (for every ¥

and w) gives rise to one of Gaifman’s axioms:

L 17] [(iﬁjui;tvj/\D('ﬂ)) - dw (%vi #ZWAE (T ,w))] .

An easy computation shows that every such axiom holds in almost every
structure with universe w. A back-and-forth argument shows that every two
countably infinite models of these axioms are isomorphic. These facts suffice to
establish Theorem 1.1 once we observe that no finite structure can satisfy all the
Gaifman axioms. (We could avoid this observation by adjoining to the Gaifman

axioms the sentences which assert the existence of at least n objects, for each

We record, for future reference, two corollaries of the proof of Theorem 1.1.

13

Corollary 1.2. The theory RANDOM (o) is Ng-categorical. (Recall that this

means that all models of the theory of cardinality Ny are isomorphic.)

Corollary 1.3. The theory RANDOM (o) is complete and recursively azioma-

tized, hence decidable (uniformly in o).

The decidability result could also be obtained, with a better decision pro-
cedure, by an effective elimination of quantifiers. In fact, Grandjean has shown

that we can do considerably better yet.

Theorem 1.4. [Gr]. The decision problem for RANDOM (o) is PSPACE com-

plete (with respect to PTIME reduction).

We remark that the degree of the polynomial that bounds the space
required by the decision algorithm in [Gr] increases with the arity of the rela-
tion symbols in 0. It is thus essential that we are dealing with a fixed finite voca-

bulary o.
Proof. We begin with some preliminary facts.

First, the same back-and-forth argument as in the proof of Theorem 1.1
shows that, if M is a random structure and ¥ and ¥ are lists of distinct elements
satisfying the same complete quantifier-free description (for a suitable list ¥ of
variables), then there is an automorphism of M sending z to §. It follows that, if
D(v) is a v-description and Z is a tuple of distinct elements satisfying D in some
rand »m structure M, then, for any formula ¥(%) with free variables among ¥, &
satisfies ¥ in M if and only if all solutions of D by distinct elements in all random

models satisfy ¥, i.e., if and only if A w;#v;AD(7) implies ¥(7) in the theory
i< :

RANDOM . This implies the following equivalences which will be crucial for the

correctness of our algorithm; for brevity, we write "D(¥) }‘;‘) 8(v)" for

"W (A v, #v;AD(T) » (7)) is provable in RANDOM ."

i<j

14
D(7) ;) -9(¥) if and only if D(7) ?19(17)
D(v) ? 9,(v) v 95(v) if and only if D(v) R—> 8,(7) or

D(@) = 32(7)

D(v) ? dw¥(v,w) if and only if
either £(v,w) ;) 8(v,w) for some extension E of D

or D(v) ;) ¥(v,v;) for some v; in the list 7

(The two cases in the last equivalence distinguish whether or not w equals one of

the v's.)

The second preliminary fact that we need is a bound on the number of v-
descriptions in terms of the length I of the list ¥, the number m of relation sym-
bols in ¢, and the maximum arity r of these symbols. Each relation symbol
yields, when we assign it arbitrary tuples from v as arguments, at most I" sim-
ple v-formulas. So there are at most m-I" simple v-formulas and therefore at

aqr - . .
most 2™ ¥-descriptions.

The last preliminary fact is the result of [CKS] that PSPACE is equivalent to
APTIME, so it suffices to give an alternating PTIMFE Turing machine to decide
membership of sentences in FANDOM (). It is convenient to describe first an

alternating PTIME algorithm which decides, for any ¥, any @-description D(¥),
and any formula 9(U) with free variables among ¥, whether D ;) 4. We may

assume that disjunction and negation are the only connectives and d is the ohly

quantifier in 9. The algorithm proceeds recursively as follows. If ¥ is -¢, the

machine enters a negation state and computes whether D ;) p. 1f¥is 9 v U,

1-6

the machine enters an existential state with two successors g, and gg; in g; it
computes whether D ;') ¥;. 1f 8 is Jwe(?,w), the machine enters an existential

state with two successors g; and g,. From g,, it goes through a sequence of

logsl] existential states, guessing an i € {1, ... ,1}; then it computes whether

D ;9 ¢(v,v;). From qp, 1t goes through a sequence of (at most m.-1") existential

states, guessing an extension EF(7,w) of D(¥); then it checks whether E ? p. It

¥ is a simple U-formula, it accepts or rejects according to whether ¥ or -4 is a
conjunct of D(¥). Finally, an equation between variables is accepted if the vari-

ables are the same and rejected otherwise.

To decide whether a sentence ¥ is in FANDOM (o), we apply this algorithm to
decide whether TRUE ? ¥, where TRUF, the empty conjunction, is the unique
complete quantifier-free description for the empty list of variables.

Our first preliminary fact shows that this alternating algorithm gives
correct answers. Our second preliminary fact shows that it operates in polyno-
mial time, since m and r are fixed {by ¢) and ! is bounded by the length of the
input. Our third preliminary fact allows us to convert the algorithm into a

deterministic one that operates in polynomial space. So RANDOM (o) € PSPACE.

For the other half of Theorem 1.4, we give a polynomial time computable
reduction of the decision problem @BF for quantified Boolean formulas to the
decision problem for FANDOM (¢). Since @BF is known to be PSPACE -complete
[St], this will suffice to complete the proof. To simplify notation, we assume that
¢ contains a unary predicate symbol P; if it contains only non-unary symbols,

just replace variables with sequences of variables in what follows.

The idea of the reduction is simply to let elements satisfying (resp. not

satisfying) P act as surrogates in RANDOM (o) for the truth value 1 (resp. 0) in

1-6

@BF. More precisely, define for each quantified Boolean formula ¢ a
corresponding o-formula ¢' as follows, For a propositional variable p;, let p'; be
P(v;). Let (~¢) be -(¢'), and similarly for the other connectives. Let (Ip;%)' be
dv;(¢"), and similarly for ¥ Then, for every ¢(p,, . . . ,p;) with free propositional
variables among p,,....p;, ¢ is true under the truth assignment

fi1, ... ,11-10,1} (i.e. when p; has value f (i)) is and only if the sentence

Jugduy (~Pug) A P(uy) A @'(upqry, . .. %pqy))

is in RANDOM . (The proof of this is a straightforward induction on ¢.) In particu-
lar, a sentence ¢ (with no free propositional variables) is in @BF if and only if ¢'
is in FANDOM . This is the desired reduction, so the proof of Theorem 1.4 is com-

plete.

Until now, we have treated only countably infinite structures. However, the
theory RFANDOM can also be used to provide information about large finite struc-

tures, despite the fact that no finite structure can satisfy all of Gaifman's

axioms.

For any sentence ¢ and every positive integer n, let FRACTION (¢,n) be the
quotient of the number of models of ¢ with universe {1, 2, ... ,n} by the total
number of o-structures with this universe. We shall be interested in the
behavior of FRACTION (p,n) as n tends to = (with ¢ fixed). This behavior indi-

cates the probability that ¢ is true in a randomly chosen large finite structure.

Theorem 1.5. [Fa,GKLT]. If the sentence ¢ is in RANDOM (o), then FRAC-

TION (pn)->1 as n-c. [f ¢ is not in RANDOM (o), then FRACTION (¢,n)-0 as

n »c0,

Corollary 1.6. (Zero-one law). For any first-order sentence ¢, lim FRAC-

n o

TION (¢ n) exists and equals zero or one.

1-7

Notice that this theorem and corollary would be false if we had permitted

zero-place relalion symbols in o, for such a symbol would be a ¢ with
FRACTION (p,n) = —;— for all n. Allowing constant symbols would lead to similar

counterexamples.

Sketch of proof of Theorem 1.5. The second sentence follows from the
first, since if RANDOM (o) doesn't contain ¢ it must contain -¢, by complete-
ness (Corollary 1.3). So we need only prove the first assertion. Let ¢ be a sen-
tence in RANDOM (o). 1f ¢ is one of Gaifman's axioms, then straightforward esti-
mates, which we omit, show that FRACTION (¢,n)-1. In the general case, ¢ is a
logical consequence of finitely many Gaifman axioms, say &y, . . . , &¢. Any struc-
ture not satisfying ¢ must also violate at least one of the a;'s. So

1—-FRACTION (pn) < ‘2 (1-FRACTION (a;,n;) .
i=1
Since each summand on the right side approaches 0, we see that

FRACTION (¢,n)-1 when n-, as desired.

We note for future reference that the last part of the proof actually estab-
lishes the general fact that the property "FRACTION (pn)-1asn-e" is
preserved by logical consequence. We also note that the definition of
FRACTION (¢p,n) makes sense for any sort of sentence ¢ (with a well-defined
semantics), not just for first-order ¢. The preservation of "FRACTION -»1" under

logical consequence also 'continues to hold as long as the number of premises is

finite.

2. The iterative fixed point

In this section, we introduce the two extensions of first-order logic that we
shall study. These extensions admit formulas defining the least fixed point of a
monotone operator or the iterative fixed point of an inflationary operator. Both
of these fixed-point constructions have been extensively studied in recursion
theory under the names of "monotone” and "non-monotone"” induction, respec-
tively;, see, for example, [Mo1,Mo2,Sp]. Much work has been done on logics
involving the least-fixed-point operator, sometimes called u-calculi; see
[AU,BR,CH,HP, Ko,Pa,Ro,SB]. The extension of first-order logic by the iterative-

fixed-point operator was introduced in [Gu]; a similar concept occurs in [Li].

Given a structure S of vocabulary ¢ and a natural number I, consider an
operator 7 which associates with each l-ary predicate P on S a new l-ary predi-
cate m(P) on S. Any formula ¢ of the vocabulary au}]'Jg (where P is a new l-ary
predicate symbol), with free variables v,, .. . ,v,;, defines such an operator = in

every o-structure S.

m(P) = {Z € S*|p holds of Z in the structure (S,P)}

If ¢ has additional free variables, they can be viewed as parameters; an operator
7 is obtained for any fixed values in S of these parameters. A relation P is a
fized point of n if n(P) = P.

The operator 7 is monotone if, for all l-ary relations P and @ on S, P C @

implies m(P) ¢ n(Q@). For monotone operators, a classical construction [Kn,Ta]

provides a least fixed point,

N {P ¢ St n(P) c P}.

This least fixed point is also obtained by the transfinite inductive construction

[Sp]

22

>
1

¢,
Pa+1 = ﬂ(Pa) '
Py = U {Pq|a<A} for limit ordinals X .
It is easy to check that a<g implies P, C Pp, so there must be an ordinal

number a (of cardinality at most that of St) with P, = P,,,. This P, is the least

fixed point of .

Deciding whether a given first-order formula defines a monotone operator is
difficult in general. It is shown in [Gu] that this problem is (recursively) unsolv-
able, that it remains unsolvable if one restricts attention to finite structure, and
that there is a formula ¢ such that the problem of deciding whether ¢ defines a

monotone operator on a given finite structure is co-NP-complete.

There is, however, a simple syntactic condition on ¢ that implies monotoni-
city of the associated operator: P should occur only positively in ¢ (that is,

under an even number of negation symbols). This observation motivates the

Least Fixed Point Formation Rule: Let ¢ be a formula with only positi-e

occurrences of the l-ary predicate symbol P let v,;, ... ,v, be distinct vari-
ables, and let u,, . . . ,u; be variables. Then
(uy, ..., w) e (LFPP, v, . s JU) @

is also a formula.

The vocabulary of the new formula consists of all symbols except P from

the vocabulary of ¢. The free variables of the new formula are u,, ... ,u; and
the variables other than v, ...,v, that are free in ¢. (Thus, LFP binds
P,v,, ... ,v.) An occurrence of a predicate symbol (other than P) in the new

formula is positive (resp. negative) if it is so in ¢. The new formula is true (in a
structure S with specified values for its free variables) if and only if the l-tuple

of values of wy, . . . ,%; belongs to the least fixed point of the operator defined by

23

¢ (and vy, . . ., v, using the specified values for the other variables as pérame-
ters). It may be worth remarking that, if we had allowed vocabularies to contain
function symbols, then the »'s in the new formula would have been allowed to be
arbitrary terms and the definitions of vocabulary, free variables, and truth of

the new formula would have been modified accordingly.

For non-monotone operators, the sequence of predicates P, need not stabil-
ize and may t_herefore yield no fixed point. There is, however, another condition
on 7 that suffices to ensure that P, C Pg for a<f and therefore that P, = Py
for some o. This condition is that the operator be inflationary, which means
that P ¢ m(P) for all P. (The terminology is due, as far as we know, to Freyd
[Fr] and was first used in the present context in [Gu].) Although such an opera-
tor need not have a least fixed point, it has a canonically defined fixed point,

namely P, for any sufficiently large a; we call this the iterative fized point.

Deciding whether the operator defined by a formula ¢ is inflationary is, in
general, difficult in the same senses (and by virtually the same proof) as for

monotonicity, However, any operater 7 can be easily transformed into an infla-

tionary operator, P PPy n(P), which agrees with m if 7 happens to be infla-

tionary already. This observation motivates the semantics of the following rule.

Iterative Fixed Point Formation Rule: Let ¢ be a formula, P an {-ary predi-

cate symbol, vy, . . . ,v; distinct variables, and v, . . ., variables. Then

(wy, ...) (AFPP, v, ... 1)

is also a formula.

The syntactic properties of this new formula are the same as for LFP. The

formula is true if and only if the l-tuple of values of %, ..., u; belongs to the

iterative fixed point of P P> Pun(P), where 7 is the operator defined by ¢. If 7 is

inflalionary or monotone, then this is the iterative fixed point of m. In

24

particular, if P occurs only positively in ¢, then IFP and LFP agree, so the logic
FO + IFP obtained by adding the iterative fixed point formation rule to the for-

mation rules of first-order logic subsumes the logic F'O + LFP.

It will be useful to have a notation for the stages of the iteration leading to

the iterative fixed point.

Iteration Stage Formation Rule: For ¢, P ¥, 4 as in the preceding two forma-

tion rules and for a an ordinal number,

(U, .. w)e(aP vy ... u)p

is a formula.

The syntactic properties of the new formula are as for the preceding two
rules; truth is defined as for IFP but with "the o* stage P," in place of "the
iterative fixed point." We shall need this formation rule only for finite «, and we
adopt for complexity-theoretic purposes the convention that the new formula

should contain a written in binary notation.

For finite o, o steps in the iteration of a first-order definable operator can
be carried out in first-order logic. Thus, the new formula % € (od",ﬁ)gp is
equivalent to a first-order formula if ¢ is, so the iteration stage formation rule
adds no expressive power to first-order logic unless « is infinite. Indeed, w € (0
P,ﬁ)gp is always false, and © € (k+ 1 P,*E)go is equivalent to the result of first sub-
stituting & for ¥ in ¢ (renaming bound variables if necessary), then replacing
every subformula of the form P(E) (for arbitrary w) with w € (kP'ﬁ)gp and
finally forming the disjunction of the result with @ € (kf’.ﬁ)go. Recursive appli-
cation of this procedure lets us reduce any formula in first-order logic with the
iteration stage rule for finite o, FO+IS, to a first-order formula. It should be
noted, however, that this translation process may result in a formula vastly

longer than the initial formula. Thus, although the iteration stage rule for finite

25

o does not increase expressive power, it does affect complexity.

31

3. The zero-one law for first-order logic with iterative fixed point

The purpose of this section is to extend the zero-one law, Corollary 1.6,

from first-order logic to the stronger logic FO + IFP introduced in §2.

Theorem 3.1. let ¢ be a formula of FO + IFP with vocabulary o. There
exrist a first-order o-formula ¢' and a finite subset S of Gaifman’s axiom set for

RANDOM (o) such that ¢ and ¢' are equivalent in all models of S.

Corollary 3.2. (Zero-one law) Let ¢ be a sentence of FO + IFP. Then

lim FRACTION (¢,n) exists and equals zero or one,

n -+

Proof of corollary. Let ¢' and S be as in the theorem. Since each sen-
tence in S has FRACTION —>1, and since either FRACTION(¢'mn)—>1 or

FRACTION(-¢',n)—>1 by Corollary 1.8, we have that either p, which is a logical

consequence of Sufp'}, or -y, which is a logical consequence of Su{-¢'{, has
FRACTION —> 1.

Proof of Theorem 3.1. Let o be the vocabulary of ¢. Since the theory KAN-
DOM (o) is No-categorical, we need only invoke Theorem 1 of Appendix 3 of [Gu].

For the sake of completeness, we sketch the proof.

We proceed by induction on the depth of nesting of IFP in ¢. The only non-
trivial case is that ¢ is Z<(IFP 15,17)1[1. We cannot apply the induction hypothesis
to ¥ since ¥ involves P (whose interpretation is certainly not random here), but
we can apply it to any finite stage in the iteration of 4. More precisely, define,
for each natural number k, a first-order formula ¥, (Z) that does not contain P
and is equivalent to we(k Pﬁ)w in all models of a certain finite subset S, of
Gaifman's axioms. For k=0, let 9o(%) be FALSE. Let ¥y+,(Z) be obtained from
¥ by first substituting @ for ¥, then replacing every subformula of the form
P(E) with % (w), then applying the induction hypothesis to get an almost

equivalent first-order formula, and finally forming the disjunction with ¥ (&).

32

Here "almost equivalent" means "equivalent in all models of enough of the Gaif-
man axioms." Comparison with the discussion at the end of §2 shows that the

¥, 's have the desired properties.

In a countable model M of RANDOM(c), each (@) is equivalent to
7z € (k P,ﬁ)w, since all of Gaifman's axioms hold. In particular, we have the
monotonicity property that each ¥, implies the next, ¥,4;, in M. Since KAN-
DOM (o) is Ng-categorical, a version of Ryll-Nardzewski's theorem (Theorem
2.3.12(e) in [CK]) asserts that there are only finitely many inequivalent (in #)
formulas with a fixed finite set of free variables; in particular, some ¥, and ¥,
with k <! must be equivalent in #. Then ¥, is equivalent to ¥+, in M, because of
the monotonicity property. This equivalence, being a first-order statement true
in M, is deducible from finitely many Gaifman axioms. In any model of these fin-
itely many axioms plus the finitely many more needed to ensure that ¥, (%) and
Y +1(%) are equivalent to u € (k 15.17)1// and 7 € (k+1 15,17)1;' respectively, all
these equivalences together ensure that the iteration defining ¢ stops after the

k' step and that ¢ is equivalent to 4. This completes the proof of Theorem 3.1.

We have presented this proof in a form applicable to any Nj-categorical
theory. For the particular theory RANDOM (o), we can obtain an improvement,
which will be useful in §4, by replacing the use of Ryll-Nardzewski's theorem with
the more explicit bounds obtained, as the second preliminary fact, in the proof
of Theorem 1.4. In that proof, we saw that there are at most AR
descriptions, where ! is the length of ¥ and m and r are determined by o (the
number of predicate symbols and the maximum arity). Since tuples satisfying
the same complete quantifier-free description are related by an automorphism
of M (the first preliminary fact in the proof of Theorem 1.4), they satisfy the

same formulas of FO + IFP. If follows that, as k& increases, the sequence of

predicates defined by @ € (k 15,17)10 cannot strictly increase more than

33

p(l) =2™*" times, where I is the number of free variables of ¥. Thus, in
u € (IFP P,'U)-t//, we can replace IFP by p(l) (or any larger number). Doing this
systematically, we can transform any FO + IFP formula ¢ into an equivalent (in
M) formula of FO + IS in which the iteration stage formation rule is applied only
with a = p (1), where ! is the number of variables in ¢. As we saw at the end of
§2, this FO + IS formula is equivalent (in all structures) to a first order formula

1"

@". Since this ¢" and the ¢' obtained in the proof of Theorem 3.1 are equivalent
in the countable models of RANDOM(c¢), they are also, by compactness,
equaivalent in all models of a certain finite set of Gaifman axioms. Therefore, ¢"

has the property asserted of ¢' in Theorem 3.1.
The following proposition summarizes this discussion for future reference.

Proposition 3.3. 7The ¢' in Theorem 3. 1. can be taken lo be the first-order

translation of a formula of FO + IS in which the stages mentioned are all 2™V,

where | is the number of variables in g,

41

4. The complexity of the FO + IFP theory of random structures

The proofs of the zero-one laws for first-order logic and for FO + IFP show

that a sentence is true in random (countably infinite) structures if and only if it
is true in almost all finite structures in the sense that FRACTION(¢.n)—>1 as

n >~ We say that a sentence with these equivalent properties is almost surely
true, This section is devoted to determining the complexity of the decision
problem for almost sure truth of sentences in O + LFP and FO + IFP. Recall

that for first-order logic this problem is PSPACE complete (Theorem 1.4).

Theorem 4.1. The decision problem for almost sure truth of FO + IFP sen-

tences can be solved by an alternating Turing machine in polynomial space.

Proof. The machine proceeds according to the following algorithm. Given
an FO + IFP sentence ¢ with [variables, it replaces every occurrence of IFP with
p where p = p(l) = 2m1" and m and r are, as before, the number and the max-
imum arity of predicate symbols in 0. By Proposition 3.3, this replacement
almost surely does not alter the truth value of ¢. Since p is written in binary
notation, and since 1< length of ¢, the space required is polynomial in the length

of 9.

The rest of the algorithm is exactly like that in the proof of Theorem 1.4,

with the following additional steps to handle the iteration stage formation rule.

To decide whether D;’ﬂ € (k+1 P,ﬂ)w, where D is a complete quantifier-free

description for appropriate variables, decide instead whether D?i‘} where 4 is

obtained from ¥ by substituting # for v, replacing every P(fu‘) with

w € (k P,ﬁ)w, and forming the disjunction with Z € (k }5,17)1//. (See the end of
§2). Finally, to decide whether D:’ﬁ € (0 P,E)x{z, reject. The algorithm never

needs to deal with complete quantifier-free descriptions for more than I vari-

42

ables, so every description it uses is a conjunction of at most m-i" simple for-
mulas and negations of simple formulas. Thus, the machine needs only polyno-
mial space to record descriptions and iteration stages. Its other storage needs

are comparatively minor, so it operates in polynomial space, and the theorem is

proved.

In the following corollary, EXPTIME refers to deterministic Turing compu-

tation with a time bound 2/™) where f is a polynomial (not necessarily linear)

function of the input length n.

Corollary 4.2. Almost sure truth of FO + IFP sentences is decidable in

EXPTIME.

Proof. EXPTIME is equivalent to alternating PSPACE, by [CKS].

Theorem 4.3. The decision problem for almost sure truth of FO + LFP sen-

tences is EXPTIME hard,

Proof. Because of the result of [CKS] just quoted, it suffices to reduce, to
the decision problem for almost sure truth of FO + LFP sentences, every
language recognized by an alternating Turing machine that operates in polyno-
mial space. For simplicity, we assume that our alternating machines have only
universal and existential states, not negation states; it is shown in [CKS] that
this assumption causes no loss of generality. Let M be such a machine, and let
S(|w]) be a polynomiat in the length of its input w that bounds the space used
by M. We show how to compute, in polynomial time, from any given input w a

sentence ¥,, in FO + LFP such that ¥, is almost surely true if and only if ¥

accepts w.

To construct ¥,,, we use the well-known fact [Ck] that the activity of a Tur-
ing machine can be described by a string of truth values (or bits). In the
present situation, the computation of ¥ on input w is too large to be useful for

our purposes, but each configuration (instantaneous description) of ¥ can be

43

coded by a string of length polynomial in |w|. For concreteness, we adopt the
convention that, if ¥ has s states and a tape syfnbols, then the bit strings have
length s + (a+1) - S(]w) and consist of the truth values of the following state-
ments about the configuration: "# is in state ¢ " for each of the s states g, "M is
scanning square n" for each of the S(]w|) relevant squares, and "The symbol in
square n is Z" for each of the S(|w |) relevant squares and each of the a sym-
bols Z. Of course, a string corresponds to a configuration only if it satisfies
some obvious consistency conditions: M is in exactly one state, scanning exactly
one square, and each square has exactly one symbol in it (when the blank counts

as a symbol).

As in the proof of Theorem 1.4, we may assume for notational simplicity
that o contains a unary predicate symbol &. For each input word w, we can
easily construct, in polynomial time, first-order formulas INITIAL,(Z),
UNIVERSAL, (Z), EXISTENTIAL,(Z), YES,(Z), and SUCCESSOR,,(Z,¥), in which |
z and ¢ are sequences of l=s+(a+1)S(|w|) variables, and which assert, respec-
tively, that the string of bits @(Z) = @(z,) - - - @(x,) codes the initial configura-
tion with input w, that @(Z) codes a configuration where M is in a universal
state, that @(Z) codes a configuration where M is in an existential state, that
Q(Z) codes a configuration where M is in an accepting (terminal) state, and that
M can go in one computation step from the configuration coded by @(Z) to that
coded by @(y). Of these five formulas, the last four depend on w only through

the dependence of I on the length of w.

Recall that, by the definition of the way alternating Turing machines
operate, the set of configurations that M accepts is the smallest set A such that
(i) A contains every configuration in which M is in an accepting terminal state,
(ii1) A contains every universal configuration all of whose successors are in A4,
and (iii) A contains every existential configuration at least one of whose succes-

sors is in A. This means that the set of Z for which @(Z) codes an accepting

configuration is definable by

ACCEPT,,(Z) back.arrows T € (LFP P'E)cp

where ¢ is

YES, (V) v

(UNIVERSAL, (¥) A VZ(SUCCESSOR,, (7,Z) = P(2)) v

(EXISTENTIAL, (7)) A3 2 (SUCCESSOR,, (T,2) A P(Z)) .

This definition works in any structure where at least one element satisfies § and
at least one does not, so that every code occurs as @(Z) for some 2; no other

properties of random structures are needed for this proof.

Finally, we have that ¥ accepts w if and only if the following sentence 4,, is

almost surely true:

AZ (INITIAL,(Z) A ACCEPT,, (%)) .

Since ¥, can clearly be written down in polynomial time when w is given,

Theorem 4.3 is proved.

Corollary 4.4. The decision problems for almost sure truth in FO + LFP

and FO + IFP are EXPT{MF complete.

Proof. Combine Corollary 4.2, Theore n 4.3, and the fact that IFP subsumes
LFP.

51

5. Unbounded vocabulary

In the preceding sections, we have worked with a fixed finite vocabulary o.
The number m of relation symbols in ¢ and the maximum arity r of these sym-
bols played an important role in the proof of Theorem 4.1, where we constructed
an alternating Turing machine that decides in space roughly proportional to
m-1l7, whether a FO + IFP sentence ¢ with { variables is almost surely true. If
we remove the restriction to a fixed vocabulary o, then m and r are no longer
constant. They are, of course, majorized by the length of ¢, but the space bound
so obtained for our algorithm is exponential, rather than polynomial, in the
length of ¢ because r occurs as an exponent. (If o is allowed to vary with r
bounded, then the complexity estimate of Theorem 4.1 remains correct.) Thus,
the method of Theorem 4.1. gives only the following upper bound for the com-
plexity of the FO + IFP theory of random structures, with no restrictions on the

vocabulary a.

Theorem 5.1. The FO + IFP theory of random structures is decidable in

alternating exponential space.O

By [CKS], alternating exponential space is equivalent to deterministic

double-exponential time.

The purpose of this section is to prove that Theorem 5.1 is optimal, i.e., that
RANDOM is complete for alternating exponential space. The proof is similar to
that of Theorem 4.3, the Aifferences being that the space bound S5 is now
exponential rather than polynomial and that we can (and must) use relations of

high arity for the coding of machine configurations.

Theorem 5.2. The decision problem for RANDOM in FO + LFP is hard, with

respect to polynomial time reductions, for alterndting exponential space.

Sketch of proof. As in the proof of Theorem 4.3, let ¥ be an alternating

Turing machine with only universal and existential states, and let the space it

52

needs, for input w, be bounded by S(|w|), where now S(n) = 2?(*» and p is a
polynomial. To code configurations of #, we use s unary relations STATEq, one
for each state g of #, a p(|w |)-ary relations CELLz, one for each tape symbol
z of M including the blank symbol O, and one additional p(|w |)-ary relation
HEAD. We now define what it means for a pair of distinct elements z,y in a
structure for this vocabulary to code a configuration C of M. In the definition,
we let ¢ stand for a tuple of length p(|w|) each of whose components is z or y;
the 2P(%1) = S(|w|) such tuples are lexicographically ordered (with z preced-
ing y¥), and the i tuple in this ordering is to be considered a name of the i

tape cell of ¥. Then (z,y) codes C if, for all g,z ,f as above,
(1) STATEq(x) holds if and only if q is the state in C,

() HEAD(t) holds if and only if £ names the square scanned in C,

and

(3) CELLz(t) holds if and only if the square named by £ contains the

symbol z in C.

Of course, a pair (z,y) codes a configuration only if the truth values in (1), (2),
and (3) satisfy appropriate consistency conditions. We use randomness to

ensure (via finitely many Gaifman axioms) that every configuration has a code.

Pairs {z,y) will play the same role in the present proof that tuples £ played
in the proof of Theorem 4.3. We shall define INITIAL, (zy), UNIVERSAL,(z.y),
EXISTENTIAL,(zy), YES,(z.y), and SUCCESSOR, (x.y.x'y') with the same
meanings as the formulas with the same names in the proof of 4.3; once this is

done, the construction of 4,, is exactly as before.

The formulas /NIT/AL,(x.y), etc., can be produced by the well-known
methods of [Ck] once we have formulas describing the way tape squares are
named. We shall exhibit formulas NAME,(z.y.u), <,(z,y.2,9),

NEXTy(z .y, 2,v), and FIRST,(z,y,2) which assert that, with respect to z and

53

y, % names a tape square, the square named by « is to the left of that named by
¥, the square named by % is immediately to the left of that named by v, and u
names the leftmost square, respectively. In all these formulas, # and v are
p(|w |)-tuples of variables. For readability, we shall suppress the subscript w
and the arguments z,y, we shall write < between its arguments, and we adopt

the convention that i and j range from 1 tép(]w 1.

NAME (@) € A (u;=z v u;=y)

uU <v «—> Vi(u,;=x ANU=Y A A j<iuj='Uj)
NEXT(@,5) € @<t A-3E(NAME (£)nZ <t At <D)

FIRST(@) € A, u;=z .
Now we are in a position to define INITIAL, UNIVERSAL, EXISTENTIAL, YES,
and SUCCESSOR. Since the ideas involved are quite standard, we define /N/-
TIAL as an example and leave the rest to the reader. In this definition, ¢ ranges

over the states of M, qq is the initial state, k ranges from 1 to |w |, wy is the k%

letter in the word w, O is the blank symbol, and ¥, @', ..., @*! are p(Jw])-

3

tuples of variables distinct from each other and from z and y.

INITIAL,(z.y) <> STATEqq (2) A Agnq, ~STATEq(z) A

dat - AW FIRST (@) A Yo ((HEAD(D)ANAME (D)) € w=a')A
A <jw (NAME(@* ")ANEXT (@* @* 1)) A Ay CELLw; (@°)A
VU ((NAME ()M, - (U =1*)) = CELLO(¥)) .

UNIVERSAL, EXISTENTIAL, and YES are much easier to define; they refer only

to STATEq predicates. SUCCESSOR is more tedious but straightforward. Once

54

these definitions are available, we can produce ¥,, as in the proof of Theorem

4.3, thereby completing the present proof.0

The coding technique used in the preceding proof and the technique used in
the well-known proof [HU] of Stockmeyer's theorem that QBF is PSPACE-
complete can be combiﬁed to show that the decision problem for the first-order
theory RANDOM is EXPTIME-hard. This decision problem is solvable in
AEXPTIME = EXPSPACE by means of the algorithm in the proof of Grandjean's
Theorem 1.4 above. The problem of determining the exact complexity of RAN-

DOM is open.

6-1

6. Fixed-points of bounded arity

In this section, we reinstate the assumption that we are working with a fixed
finite vocabulary o, and, in addition, we restrict the arity of the predicates that
we allow IFP or LFP to define. More precisely, let FO + IFP,, where k is a non-
negative integer, be the logic obtained by adding to first-order logic the IFP for-
mation rule subject to the constraint that IFP can be applied only to formulas
with at most k free variables. We show that the complexity of the decision prob-
lem for almost sure truth in this logic is, for each fixed k, the same (modulo

PTIME reductions) as in first-order logic.

Theorem 6.1. The decision problem for almost sure truth of FO + IFP,-

sentences is, for each fized k, PSPACE-complete.

Proof. In view of Theorem 1.4, it suffices to give an algorithm for solving the
decision problem in polynomial space. As in Section 4, we proceed by extending
the algorithm in the proof of Theorem 1.4 to cover formulas involving IFP. This
time, however, it will be convenient to work with the deterministic polynomial
space version of the alternating polynomial time algorithm of 1.4. This deter-
ministic version, as constructed in [CKS], is essentially a systematic depth-first
search of the computation tree of the alternating algorithm; its space require-
ments are only polynomial because it keeps track of only the choices made by
the alternating machine on t.he branch leading to the node currently being simu-
lated and it re-uses the space previously used for computations from other

branches.

To handle IFP, we expand the algorithm as follows. Before beginning its
actual computation, the machine writes, on a portion of the tape that will not be
needed otherwise, a list of all complete quantifier-free descriptions D(v) for
some lists U of variables, one list of each length <k. It leaves a little space after

each D(7) to allow descriptions to be marked later in the algorithm; this mark-

62

ing space after each D(¥) is to consist of as many tape squares as the maximum
depth of nested IFP's in the formula ¢ to be tested. Since the number of v-

descriptions is at most ZLS,‘B"”T, independently of ¢, the space used here is

linear in |¢|.

After these preparatory steps, the algorithm begins to operate like the
deterministic version of the one in 1.4. When it encounters an IFP operator, of
depth d (measured from the outside), it proceeds to mark (in the d* square of
each space provided for this purpose) those v-descriptions D(¥) such that the
tuples satisfying D(¥) also satisfy the predicate defined by this IFP. It does this
by starting with all ¥-descriptions unmarked in the d* space, erasing, if neces-
sary, any marks already there (corresponding to Py = ¢ in the definition of
iteration stages) and following the definition of the stages Pn to mark D(v)'s as
the tuples satisfying them enter the predicate being inductively defined. At the
nt stage, the descriptions of tuples in P,_; are already marked, and the algo-
rithm evaluates the formula ¥ to which IFP was applied, for tuples satisfying the
remaining descriptions, using the currently marked descriptions to interpret P
Any tuples found to satisfy ¢ are marked at the next stage, for they belong to
P, . The evaluation of ¥ may, of course, involve further uses of this marking pro-
cedure, if ¥ involves IFP's. The maximum number of marking processes that
ever proceed simultaneously during execution of the algorithm equals the max-
imum nesting of IFP's in ¢, which is why we provided this much space for

markings.0

Note that it was essential to this proof that not only the number of free vari-
ables in the scope of an IFP be bounded (by k) but also that the vocabulary be
fixed so that m and r are constants. With unbounded vocabulary, replacing IFP
with IFP, does not improve the complexity estimates. To see this, simply

observe that, in the proof of Theorem 5.2, IFP was applied only to a formula with

just two variables.

The restriction on the IFP formation rule in FO + IFP; bounds not only the
number of variables bound by IFP but also the number of additional variables
(parameters) in the formula to which IFP is applied. We do not know the com-
plexity of the decision problem for almost sure truth in a logic where only the

number of variables quantified by IFP is bounded while the number of parame-

ters is unrestricted.

7. Additional remarks

We pointed out in the proof of Theorem 4.3 that the coding of alternating
Turing machines used there can be done in any structure where at least one ele-
ment satisfies @ and at least one element does not satisfy @; no further use is
made of randomness. In particular, we could take the structure to be the two-
element Boolean algebra and take @(z) to be z=1. Thus, if we extend the theory
@BF of quantified Boolean formulas by adjoining LFP to the logic, the resulting
theory is EXPTIME hard. In fact, so is the FO + LFP theory of any structure
with more than one element, since we can use the binary predicate of equality in
place of the unary predicate @. It is easy to check that the FO + LFP and
FO + IFP theories of the two-element Boolean algebra or of any non-trivial set

(with only the equality predicate) are decidable in EXPT/ME and are therefore

bomplete for this class.

The results proved in this paper for general structures also hold for certain
restricted classes of structures, for example undirected graphs (=irreflexive
symmetric binary relations). A zero-one law for the first-order theory of almost
all structures in a first-order definable class can be transferred to the FO + IFP
theory by our methods provided the almost surely true first-order sentences
constitute an No~categoriéal theory. If we have, in addition, effective estimates
for the number of inequivalent types of I-tuples (a number that is finite for each
! by Ryll-Nardzewski's ltheorem) and effective ways of describing these types,
then our method’s also provide upper bounds on the complexity of the decision
problem for almost sure truth. All of these apparently stringent hypotheses are
salisfied in the case of undirected graphs and in the case of simplicial com-

plexes (of arbitrary but fixed dimension).

Although we worked with finite structures with a fixed universe

{1, 2, ... ,n} (labeled structures), our results apply also to isomorphism classes

=

(unlabeled structures). Indeed, if FRACTION(p,n) were defined using numbers
of isomorphism classes in both the numerator and the denominator, the new
numerator and denominator would be asymptotically equal to the old divided by
n! and the value of FRACTION would thus be asymptotically unchanged, because

almost all structures have no non-trivial automorphisms.

References

[AU] A. Aho and J. Ullman, Universalily of data retrieval languages, Proc,
6th ACM Symp. on Principles of Programming Languages, 1979, 110-
120. .

[BH] A. Blass and F. Harary, Properties of almost all graphs and complezes,
J. Graph Theory 3 (1979), 225-240.

[BR] J.W. DeBakker and W. DeRoever, A calculus for recursive program
schemes, Proc. 1lst Internat. Coll. on Automata, Languages and Pro-
gramming, North-Holland, Amsterdam, 1972, 167-196.

[CH] A. Chandra and D. Harel, Structure and complexily of relational
queries, J. Computer System Sci. 5 (1982), 99-128.

[CKS] A. Chandra, D. Kozen, and L. Stockmeyer, Alternation, J. Assoc. Comp.
Mach. 28 (1981), 114-133.

[CK] C. C. Chang and H. J. Keisler, Model Theory, North-Holland Publ. Co.,
Amsterdam, 1973.

[Ck] S. Cook, The complezity of theorem-proving procedures, Proc. Third
Annual ACM Symposium on the Theory of Computing, 1971, 151-158.

[ES] P. Erdos and J. Spencer, Probabilistic Methods in Combinalorics,
Academic Press, New York, 1974,

[Fa] R. Fagin, Probabilities on finite models, J. Symbolic Logic 41 (1978),
50-58.

[Fr] P. Freyd, Aspects of topoi, Bull, Austral. Math. Soc. 7 (1972), 1-76.

[Ga] H. Gaifman, Concerning measures in first-order calculi, Israel J. Math.
2 (1964), 1-18.

[GKLT] Y. V. Glebskii, D. I. Kogan, 1. M. Liogonki and V. A. Talanov, The extent
and degree of satisfiability of a form of the restricted predicate cal-
culus, Kibernetika 2 (1969), 31-42.

[Gr] E. Grandjean, Complezity of the first-order theory of almost all finite
structures, Preprint (1982), and also in Logique des Structures Finies
et Complexite Algorithmique, thesis, Universite Lyon 1 (1984), 11-47.

[Gu] Y. Gurevich, Toward logic tailored for computational complezxily,
Technical report CRL-TR-3-84, University of Michigan, Jan. 1984, and to
appear in Proc. 1983 European Logic Colloquium, Springer Lecture
Notes in Math.

[HP] P. Hitchcock and D. M. R. Park, Induction rules and termination
proofs, Proc. 1st Internat. Collog. on Automata, Languages, and Pro-
gramming, North-Holland, Amsterdam (1973), 225-251.

[HU] J. E. Hopcroft and J. D. Ullman, /ntroduction to automata theory,
languages and computation, Addison-Wesley, Reading, Mass., 1979,

[Im] N. Immerman, Relational queries computable in polynomial time,
Proc. 14th ACM Symposium on Theory of Computing, 1982, 147-15%.

[Kn] B. Knaster, Un theoreme sur les fonctions d ‘ensembles, Annales de la
Societe Polonaise de Mathematiques, 6 (1928), 133-134,

[Ko] D. Kozen, FKesults on the propositional u-calculus, Proc. 9th Internat.
Collog. on Automata, Languages, and Programming, 1982, 348-369.

[KS] M. Kaufmann and S. Shelah, On random models of finite power and

monadic logic, to appear in Discrete Mathematics.

[Li]
[Mo1]
[Mo2]

(Pa]

R-2

A. B. Livchak, The relational model for process control, Automatic
Documentation and Mathematical Linguistics 4(1983), 27-29 [Russian].

Y. Moschovakis, Elementary Induction on Abstract Structures, North-
Holland Publ. Co., Amsterdam, 1974.

Y. Moschovakis, On non-monotone inductive definability, Fund. Math.
B2 (1974), 39-B3.

D. M. R. Park, Fizpoint induction and proof of program semantics, in:
B. Meltzer and D. Michie, eds., Mach. Int. 5, Edinburgh Univ. Press,
1970, 59-78.

W. P. DeRoever, Recursive program schemes: Semantics and proof
theory, Ph.D. Thesis, Free University, Amsterdam (1974).

D. Scott and J. W. DeBakker, A theory of programs, Unpublished
manuscript, IBM, Vienna, 1969.

C. Spector, Inductively defined sets of natural numbers, in "Infinitis-
tic Methods", Proc. Symp. on Foundations of Math. (Warsaw, 1959),
Pergamon Press, Oxford, 1961, 97-102.

L. Stockmeyer, The complexity of decision problems in automata

theory and logic, MAC-TR-133, Project MAC, MIT, Cambridge, Mass.,
1974.

A. Tarski, A lattice-theoretical fixpoint theorem and ils applications,
Pacific J. Math. 5 (1955), 285-309.

M. Vardi, Complerity of relational query languages, Proc. 14th ACM
Symposium on Theory of Computing, 1982, 137-1486.

