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proceeding to search at greater distances. Choice of search direction is made non- 
deterministically. Analysis of expected response time is simplified by assuming that 
the search direction is chosen probabilistically, that messages require constant time, 
that the network is a tree with all leaves at the same distance from the root, and 
that requests and resources occur only at leaves. It is shown that the response time 
is approximated by the number of messages of one type that are sent during the 
execution of the algorithm, and that this number of messages is a nondecreasing 
function of the interarrival time for requests. Therefore, the worst case occurs when 
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requests come in so far apart that they are processed sequentially. The expected 
time for the sequential case of the algorithm is analyzed by standard techniques. 
This time is shown to be bounded by a constant, independent of the size of the 
network. It follows that the expected response time for the algorithm is bounded in 
the same way. © 1986 Academic Press, Inc. 

1. INTRODUCTION 

We consider the problem of allocating a number of identical resources to 
requests arriving at the sites of a distributed network. We assume that the 
network is configured as a tree. The nodes of the tree are processors and 
the edges are communication lines connecting the processors. Processes at 
a node may communicate only over the tree edges, with processes at other 
nodes. Resource allocation is managed by a collection of communicating 
resource allocation processes, one at each node. We will henceforth refer 
only to the node, identifying it with both the processor and the resource 
allocation process at the node. 

From time to time, a request arrives at a node (potentially any node of 
the network) from the outside world. One of the resources should even- 
tually be granted to the request, subject to the following conditions: 

1. No resource is granted more than once. (Once granted, a resource 
is not returned. Thus, there is no legitimate reason to grant it more than 
o n c e .  ) 

2. At most one resource is granted to each request. 

3. A node grants resources only to those requests which arrive at 
that node. 

4. If the number of requests is no greater than the number of resour- 
ces, then each request eventually receives a resource. 

5. If the number of resources is no greater than the number of 
requests, then each resource is eventually granted to a request. 

For convenience in describing allocation of specific resources to specific 
requests, we assume that each resource and request has a unique identifier. 

The execution model for this distributed network is event-based. Two 
types of events may occur at a node: (1) a request may arrive from the out- 
side world, and (2) a message may arrive from a neighbor in the tree. Each 
event triggers an indivisible step at the node. This step may include chang- 
ing state, sending messages to other nodes, and granting resources to 
requests. (We ignore the time involved in this local processing when we 
measure the response time, considering only the communication time.) We 
assume that the communication lines are reliable, that is, each message is 
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delivered exactly once. However, we do not make any assumptions about 
he order of message arrivals. 

There are many interesting approaches to solving this resource allocation 
problem. In a centralized approach, all resources are controlled by a single 
central node. When a request arrives at a possibly different node, a "buyer" 
is commissioned, who travels, via messages, to the central node to obtain a 
resource. The buyer then carries the resource back to the node where the 
request originated, so that the resource can be granted to the requesI at 
that location. 

An alternative approach is to decentralize control of the resources, giving 
each node of the network control of some of them. In this approach, the 
buyers must search for the resources. An important choice to be made in 
designing an efficient search strategy is the choice between sending only 
one buyer to search for resources for  each request and sending several 
buyers in parallel to search different parts of the tree. The former search 
strategy, which we call the sequential search strategy, avoids a number of 
problems arising from the parallel strategy, such as what to do about other 
buyers when one of them has found a resource. The next choice, if the 
sequential search strategy is used, is the choice of direction to search the 
tree. A good choice would involve guessing which nodes are most likely to 
have free resources when the buyer arrives at them. 

Other strategies involve combining a decentralized search strategy with a 
dynamic resource redistribution strategy, letting resources search for 
requests (rather than vice versa), or giving nodes control of fractions of 
resources rather than whole resources. 

One complexity measure which is useful for evaluating different strategies 
is the expected response time. This is a measure upon which any of the 
design choices could have a major impact. For example, the response time 
when using a centralized strategy must depend strongly on the network 
size. However, the decentralized strategies have the potential of depending 
on this size to a lesser extent. 

In the first half of this paper, we present an algorithm for solving this 
resource allocation problem. Our algorithm is a decentralized solution in 
which each node controls some whole number of resources. A sequential 
search strategy is used, in which the direction to be searched is chosen non- 
deterministically. Certain neighborhoods of the node at which a request 
originates are exhausted before the search proceeds to more distant 
neighborhoods. 

In order to gain some insight into the expected response time for our 
algorithm, we simulated its behavior, in some special cases. The nondeter- 
ministic choice of search direction was resolved by using a probabilistic 
choice, where the probabilities for the different directions depended on the 
initial placement of resources in those directions. We assumed an exponen- 
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tial distribution for time of arrival of requests, a uniform distribution for 
arrival location, and a normal probability distribution for message delivery 
time. We also assumed that all leaves of the network tree were at the same 
distance from the root, and that requests and resources occurred only at 
leaves. We first noted that expected response time was extremely good, 
with an upper bound that seemed to be independent of the size of the 
network. This was in marked contrast to a centralized algorithm. Next, we 
made a surprising observation: the expected response time appeared to be 
a nondecreasing function of the expected interarrival time for requests. If 
true, this observation would imply that the worst case for the algorithm 
was actually the case where requests come in so far apart that they are 
processed one at a time. This observation contradicted our preliminary 
intuitions about the algorithm: we had thought that the worst cases would 
arise when there was greatest competition among requests searching for 
resources. 

Using these observations as hints, we were able to carry out a substantial 
amount of analysis of the algorithm's behavior, and this analysis comprises 
the second half of this paper. Namely, we prove an upper bound on the 
expected response time for a special case in which, among other restric- 
tions, all leaves of the network tree are at the same distance from the root, 
and requests and resources occur only at leaves. First, we show that the 
response time can be bounded in terms of the number of messages of one 
type that are sent during the execution of the algorithm. Then we show 
that this number of messages is a nondecreasing function of the interarrival 
time for requests. Therefore, the worst case occurs when requests come in 
so far apart that they are processed sequentially. We analyze the expected 
time for the sequential case, showing it to be bounded by a constant, 
independent of the size of the network. It follows that the expected 
response time for the algorithm is also bounded by a constant. 

Although the expected response time for our algorithm is very good, we 
do not claim that it is optimal. In fact, there are some simple changes that 
one would expect to yield improvements. Unfortunately, with these 
changes, the algorithm can no longer be analyzed using the same techni- 
ques; thus, we are not really certain that they are improvements at all. 

There are several contributions in this paper. First, we think that the 
algorithm itself is interesting. Second, we have identified an interesting 
criterion for the performance of a distributed algorithm: that the perfor- 
mance be independent of the size of the network. Satisfying this criterion 
seems to require an appropriate, decentralized style of programming. 
Third, the analysis is decomposed in an interesting way: a sequential ver- 
sion is analyzed using traditional methods, and the performance of the con- 
current algorithm is shown to be bounded in terms of the sequential 
algorithm. It is likely that this kind of decomposition will prove to be 
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useful for analysis of other distributed algorithms. For instance, a similar 
decomposition was used in the proof of correctness of a systolic stack 
(Guibas, and Liang, 1982). 

The contents of the rest of the paper are as follows. Section 2 contains 
the algorithm, and Section 3 contains arguments for its correctness. Sec- 
tions 4-6 contain the analysis of the algorithm. Section 4 proves the 
monotonicity result, which implies that the sequential case of the algorithm 
is worst. Section 5 analyzes the sequential case. Section 6 pulls together the 
results of Sections 4 and 5, thus giving a general upper bound. Finally, Sec- 
tion 7 describes some remaining questions. 

2. THE ALGORITHM 

In this section, we present our algorithm. We begin with an informal 
decription, followed by a more formal presentation. 

2.1. Informal Description 

We assume that the network is a rooted tree. Our algorithm is a decen- 
tralized algorithm with a sequential searching strategy. Requests send 
buyers to search for resources. When a buyer finds a resource, it "captures" 
it. Each captured resource travels back to the origin of this buyer (or 
possibly some other buyer, if there is interference between the processing of 
concurrent requests), so that the grant can occur where the request 
originated. 

When a request or buyer arrives at any node, any free resource at the 
node is captured. If there are no free resources there, a buyer is sent to a 
neighboring node, determined as follows. Each node keeps track of the 
latest estimate it knows, for the number of resources remaining in each of 
its subtrees. Each node sends a message informing its parent of each new 
request which has originated within the child's subtree. The estimate which 
a node keeps for the number of resources remaining in a subtree, is 
calculated from the initial placement of resources in that subtree, the num- 
ber of requests which are known to have originated within that subtree, 
and the number of buyers which the node has already sent into that sub- 
tree. In order to decide on the direction in which to send a buyer, a node 
uses the following rules. First, it never sends a buyer out of its subtree if it 
estimates that its subtree still contains a resource. Second, it only sends a 
buyer downward to a child if it estimates that the child's subtree contains a 
resource. Third, if there is a choice of child to which to send the buyer, the 
node makes a nondeterministic choice. (Later, we will constrain this 
decision to a probabilistic choice using a particular random choice 
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function. This constraint will be important for the complexity analysis, but 
is not needed for the correctness of the algorithm.) 

It is easy to see that any subtree which a node considers to contain no 
resources, actually contains no resources. Thus, no buyer is ever sent out of 
a subtree actually containing a resource. On the other hand, the perceived 
information about he availability of a resource in a child's subtree can be 
an overestimate, in case of interference among concurrent requests. 

EXAMPLE. Suppose that request A enters at the node shown below, and 
its buyer travels upward until it reaches an ancestor that perceives the 
availability of a resource in one of its subtrees. Then the buyer travels 
downward toward that resource. Shortly before A's buyer reaches the 
resource, another request B arrives at the node shown. Suppose B's buyer 
reaches the resource and captures it before A's buyer does. When (or 
before) A's buyer finally arrives at the resource's location, it will encounter 
the information that the resource is no longer there. Then A's buyer will be 
sent upward, backtracking in its search for a resource (see Fig. !). 

Although such interference can cause backtracking, the buyer will even- 
tually find a resource if one exists. This is because no buyer ever leaves a 
subtree actually containing a resource. Several optimizations are incor- 
porated into the algorithm, as follows: 

1. Buyers, unlike requests, need not be uniquely identified. Instead, 
each node keeps track of the number of buyers received and sent and the 
net flow of buyers over each of its incident edges. Captured resources then 
travel in such a way as to negate net flow of buyers, and a buyer will even- 
tually leave a subtree which does not contain a resource. 

2. Buyers can travel "discontinuously." Assume node v sends a buyer 
to a child node w, thinking that there is an available resource in w's sub- 
tree. Assume that, soon thereafter, v receives a message from w, informing v 
of an arrival of a new request in w's subtree, and implying that v's previous 
supposition of an available resource was false. Then v knows that w will 

FIGURE 1 
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eventually send some buyer back up to v, at which time v should send the 
buyer in another direction. Since v knows this will eventually occur, v need 
not actually wait for the buyer to arrive from w; it can create a new buyer 
and send it in anticipation of the later return of the first buyer. Since the 
first buyer will not find any free resources in the subtree, this extra 
parallelism does no harm. In fact, with this optimization, it is no longer 
necessary for w to return the buyer at all, since v must ignore it when it 
returns to it in any case. 

3. If each node knows how many resources were initially placed in 
each of its children's subtrees, then it is not even necessary for explicit 
buyers to be sent upward at all! All that is necessary is for nodes to send 
"ARRIVAL" messages upward to their parents, informing them of the 
arrival of new requests in their subtree. The parent is able to deduce the 
number of resources which the child would like to have sent down (i.e., the 
number of buyers emanating from the child's subtree), from the initial 
number of resources in the subtree, the number of arrivals in the subtree, 
and the number of buyers already sent down into the subtree. We will say 
more in a moment about how this deduction is made. 

If information about newly-arrived requests (in the form of "ARRIVAL" 
messages) only flows upward in the tree, there is no way that a child can 
deduce that its parent would like it to send a resource upward. Thus, it is 
still necessary to send explicit buyers downward. Let us designate these 
explicit downward buyer messages as "BUYER" messages. Thus, the 
algorithm only uses two kinds of messages to search for resources: 
"ARRIVAL" messages flow upward to inform parents about new requests, 
and "BUYER" messages flow downward to inform a child that its parent 
would like the child to send up a resource. 

The precise deduction which a parent can make about the number of 
buyers emanating from a child's subtree is as follows: 

Let a be the number of "ARRIVAL" messages which have been received 
by the parent from the child. Let b be the number of "BUYER" messages 
which have been sent by the parent to the child. Let p be the number of 
resources initially placed in the child's subtree. Then the number of buyers 
perceived as emanating from a child's subtree is max(a+b-p, 0). This 
number is called the estimate of "virtual buyers" emanating from the sub- 
tree. 

That is, if the total number of "ARRIVAL" and "BUYER" messages 
indicated above is no greater than the initial placement, no buyers are per- 
ceived as emanating from the subtree. On the other hand, if this total is 
greater, then the excess is perceived to be the number of buyers. 

Analogously, the child node deduces an estimate of the number of "vir- 
tual buyers" it has sent out of its subtree, as follows. Let a be the number 
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of "ARRIVAL" messages which the child has sent to its parent. Let b be 
the number of "BUYER" messages which have been received by the child 
from its parent. Let p be the number of resources initially placed in the 
child's subtree. Then the number of buyers the child perceives that it has 
sent out of its subtree (also called the estimate of "virtual buyers" sent out 
of the subtree)=max(a+b-p, 0). Because of message delays, the child 
and the parent may differ on their estimates of the number of virtual 
buyers. 

In order to make the actual grants to specific requests, it seems necessary 
that each specific identified resource "travel" to a point of request origin, in 
order to get properly paired with a request. This travel requires a third 
kind of message to be sent around, namely, a specific "captured resource." 
The algorithm which sends resources around is particularly simple-resour- 
ces are just sent in such a way as to negate the net flow of buyers. This part 
of the algorithm executes concurrently with, but has no effect on, the 
searching part. 

2.2 Formal Description 

In this subsection, we present a program implementing the algorithm 
described above. A sketch of a correctness proof is presented in the next 
section. Primarily, the proof consists of showing the correctness of the 
invariant assertions made at various points in the program. The reader 
may wish to examine the proof while reading the program. 

We assume that the network is described by a rooted tree T. For unifor- 
mity, let the root of T have an outgoing upward edge. (Messages sent 
along this edge will never be received by anyone.) We can then write a 
single program for all the nodes of T, including the root. 

Let V denote the set of vertices of T. Let RESOURCES(v) denote the 
resources placed at vertex v, f o r  each v~ V, and let PLACE(v)= 
I RESOURCES(v)1 for all v. Let REQUESTS(v) denote the requests arriv- 
ing at v. We assume that all the sets RESOURCES(v) and REQUESTS(v) 
are finite. Let PARENT(v), CHILDREN(v), DESCENDANTS(v), and 
NEIGHBORS(v) denote the designated vertices and sets of vertices, for 
vertex v. 

The kinds of messages used are "ARRIVAL," "BUYER," and messages 
corresponding to specific captured resources. 

PROGRAM FOR NODE v, v ~ /,I. In the program for node v, we use 
RESOURCES as a shorthand for RESOURCES(v), and similarly for the 
other notation above. 

It is convenient to think of the state of v as consisting of "independent 
variables" and "dependent variables." The independent variables are just 
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the usual kind of variables, which can be read and assigned. The dependent 
variables are virtual variables whose values are defined in terms of the 
independent variables. These values can be read, but not modified. We can 
think of the reading of a dependent variable as shorthand for a read of 
several independent variables, together with a calculation of the function 
giving the dependency. 

INDEPENDENT VARIABLES. REQUESTS, for the set of requests that 
originated at v, 

ACTIVE, for the set of requests that originated at v, which are still 
unsatisfied, 

FREE, for the set of resources in RESOURCES that have not yet 
been "captured" by requests, 

GRANT, for a single captured resource on its way back to a request, 

ARRIVALS(w), w~NEIGHBORS,  for the number of "ARRIVAL" 
messages received from each of v's children, and sent to v's parent, respec- 
tively: 

BUYERS(w), w ENEIGHBORS,  for the number of "BUYER" 
messages sent to v's children and received from v's parent, respectively, 

NETGRANTS(w),  w~NEIGHBORS ,  for the net flow of captured 
resources out of v to each of its neighbors, 

NEXT, a temporary variable which can hold a vertex. 

INITIALIZATION OF INDEPENDENT VARIABLES. REQUESTS = AC- 
TIVE = ~ ,  FREE = RESOURCES, and all other variables are 0. 

DEPENDENT VARIABLES AND THEIR DEPENDENCIES. CAPTURED,  for 
the set of resources in RESOURCES which have been captured; 

Dependency 'CAPTURED = RESOURCES - FREE. 

SATISFIED, for the set of requests in REQUESTS which have been 
satisfied, 

Dependency:SATISFIED = REQUESTS - ACTIVE. 

NETBUYERS(w), w ~ NEIGHBORS,  for the net flow of buyers and 
virtual buyers into v from each neighbor (Recall the definition of "virtual 
buyers" from the last subsection.), 

Dependency: If w = PARENT then NETBUYERS(w) = 
min(PLACE(DESCENDANTS)  - ARRIVALS(w), BUYERS(w)). 
If w ~ C H I L D R E N ,  then NETBUYERS(w)=  - r a i n ( P L A C E  
(DESCENDANTS(w))  - ARRIVALS(w),BUYERS(w)). 
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These two equations can be understood as follows. Consider, for exam- 
ple, the first equation, for w=PARENT.  If PLACE(DESCEN- 
DANTS)-ARRIVALS(w)<BUYERS(w),  it means that the placement 
originally given for v's subtree is not adequate for handling the requests 
(arrivals) which have originated in v's subtree, together with the "BUYER" 
messages sent down from w. Therefore, all the resources in v's subtree are 
allocated to requests, either within or outside of v's subtree. Whether the 
net flow of buyers should be regarded as into or outward from v's subtree 
then depends solely on the sign of PLACE(DESCEN- 
DANTS)-ARRIVALS(w),  without regard t o  the number of "BUYER" 
messages received from w. That is, if PLACE(DESCEN- 
DANTS) <~ ARRIVALS(w), then the sign is negative and the net flow of 
buyers is outward from v's subtree, while otherwise it is inward; in either 
case, its magnitude is equal to IPLACE(DESCENDANTS)-  
ARRIVALS(w)J. On the other hand, if PLACE(DESCENDANTS)-  
ARRIVALS(w)/> BUYERS(w), then the placement originally given for v's 
subtree is adequate for handling both the requests which have originated in 
v's subtree, together with the "BUYER" messages sent down from w. 
Therefore, the net flow of buyers is inward, and its amount is just equal to 
BUYERS(w), without regard to the other two values. The second equation 
is similar, with appropriate changes of sign. 

Another way to understand the equations is as follows. Again, consider 
the first equation, for w=PARENT.  Then NETBUYERS(w)= 
BUYERS(w)-  VIRTBUYERS(w), where the latter quantity is the number 
of virtual buyers which v estimates it has sent to its parent. Using the 
expression which was derived in the preceding subsection for the number of 
virtual buyers, we see that NETBUYERS(w)=BUYERS(w)-  
max(ARRIVALS(w) + BUYERS(w)-  PLACE(DESCENDANTS),0). This 
is equal to rain(PLACE(DESCENDANTS) - ARRIVALS(w), 
BUYERS(w)), as needed. Again, the other calculation is similar. 

The remaining dependent variables are: 

NETBUYERS, for the total of all the NETBUYERS(w), 

Dependency:NETBUYERS = ~ NETBUYERS(w). 
w E N E I G H B O R S  

NETFLOW, for the net flow of buyers into v, 

Dependency:NETFLOW = ]REQUESTSI + NETBUYERS. 

NETGRANTS, for the net flow of grants out of v, 

Dependency:NETGRANTS = ~ NETGRANTS(w). 
w E N E I G H B O R S  
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anything more. However, if v thinks that the new request can be serviced in 
its subtree, then it has some further work to do, in the second portion of 
the algorithm. 
The second portion of the algorithm manages the disposition of any excess 
flow of requests into the node. We must first check that the number of 
excess requests after the initial processing of a single message can only be 0 
or 1. That is, we must verify that ICAPTUREDJ~<NETFLOW~< 
I CAPTURED] + 1 between Parts 1 and 2 of the code. 

A quick check of the cases shows that the only way this could fail to be 
true is if M = "ARRIVAL" from a child s, and the result of processing M 
causes NETBUYERS(s)  to remain unchanged, while NET- 
BUYERS(PARENT) decreases. In this case, we can deduce some 
relationships among the values of v's local variables at the beginning of the 
node step. 

For every t ~ CHILDREN,  it must be the case just before execution of 
Part 1 that 

- -NETBUYERS( t )  = m i n ( P L A C E ( D E S C E N D A N T S ( t ) ) - A R R I -  
VALS(t),BUYERS(t)),  

so that 

- -NETBUYERS( t )  ~< PLACE(DESCENDANTS(t ) )  - ARRIVALS(t). 

That is, 

NETBUYERS(t)  ~> ARRIVALS(t) - PLACE(DESCENDANTS(t) ) .  

Since NETBUYERS(s)  remains unchanged, then it must be the case that 

- -NETBUYERS(s )  :# PLACE(DESCENDANTS(s) )  - ARRI- 
VALS(s). 

(If they were equal, then P L A C E ( D E S C E N D A N T S ) ( s ) ) - A R R I -  
VALS(s) = ra in(PLACE(DESCENDANTS(s))  - ARRIVALS(s), 
BUYERS(s)), and an increase to ARRIVALS(s) would cause a change to 
the minimum, thereby changing NETBUYERS(s).)  

Therefore, NETBUYERS(s)  :/: ARRIVALS(s) - PLACE(DESCEN- 
DANTS(s)),  and so 

NETBUYERS(s)  > ARRIVALS(s) - PLACE(DESCENDANTS(s)) .  

Since NETBUYERS(PARENT)  decreases, it means that NET- 
BUYERS(PARENT) = P L A C E ( D E S C E N D A N T S )  - ARRIVALS 
(PARENT). 

Now consider N E T F L O W =  IREQUESTSJ +NETBUYERS.  The right 
side is equal to 
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I REQUESTSI + NETBUYERS(PARENT) + NETBUYERS(s)  

+ ~ NETBUYERS(w). 
t ~ CHILDREN,  t # s 

By previous results, this is, in turn, strictly greater than 

JREQUESTS] + PLACE(DESCENDANTS)  - ARRIVALS 
(PARENT) + ARRIVALS(s) - PLACE(DESCENDANTS(s))  + 
~2t ~ CHILDREN., * ,ARRIVALS(t) - PLACE(DESCENDANTS(t) ) .  

By the ARRIVAL invariant, this is equal to 

PLACE(DESCENDANTS)  - PLACE(DESCENDANTS(s) )  - 
~2t ~ CHILDREN, * ~ PLACE(DESCENDANTS (t)) = PLACE@). 

Thus, N E T F L O W >  PLACE(v). However, the original invariant says 
that N E T F L O W  = I CAPTURED[ ,  and ICAPTUREDI is never permitted 
to be greater than PLACE(v), a contradiction. 

We have thus shown that [CAPTURED[ ~<N ETF LO W ~ t CAP- 
TUREDI + 1 at the point where that claim is made. Thus, there is at most 
one excess request that requires disposition. In the case where there is an 
excess request, node v must service that request in its subtree. There are 
two possibilities: either v can service the request locally, or it cannot. If 
FREE # ~ ,  then a free resource is captured to service the excess request. If 
not, then a "BUYER" message must be sent down into some subtree. We 
must show that, in the event FREE = ~ ,  it is possible to send such a 
"BUYER" message. That is, we must check that S # ~ at the place where 
that claim is made. 

Assume not. We will make some deductions about the values of the 
variables at the point where that claim is made. At that point, we know 
that FREE = ~ ,  so that PLACE(v) = [CAPTUREDI.  We also know that 

NETBUYERS(PARENT)  ~< PLACE(DESCENDANTS)  - 
ARRIVALS(PARENT), 

by definition of NETBUYERS. Then 

N E T F L O W  = IREQUESTSI + NETBUYERS(PARENT)  + 
Y~s~CmLDRENNETBUYERS(s) ~ [REQUESTSI + PLACE 
(DESCENDANTS) - ARRIVALS(PARENT) + Y~s~CnrLORZN 
NETBUYERS(s).  

Because S = j~, it follows that 

P L A C E ( D E S C E N D A N T S ( s ) )  - ARRIVALS(s) ~ BUYERS(s) for 
each s s CHILDREN.  

Therefore, 

NETBUYERS(s) = - ( P L A C E ( D E S C E N D A N T S ( s ) )  - ARRIVALS(s)). 
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Thus, the right-hand side of the next-to-last inequality is equal to 

]REQUESTS] + PLACE(DESCENDANTS)  - ARRIVALS(PARENT) 
- Zs ~ CHILOREN (PLACE(DESCENDANTS(s))  - ARRIVALS(s)). 

This expression is, in turn, equal to 

PLACE(DESCENDANTS)  - 52s ~ CmLDREN PLACE(DESCENDANTS(s) )  
= PLACE(v) -- ]CAPTURED [. 

Thus, NETFLOW<~ ]CAPTURED I, a contradiction. Thus, we have 
shown that it is always possible to service an excess request. 

Next, we must show that N E T F L O W  = [CAPTUREDI between Parts 2 
and 3 of the code. This means that after servicing any excess request, there 
is no remaining request to be serviced. Previous to Part 2, 
{ CAPTURED I <~ N E T F L O W  <~ ]CAPTURED I + 1. If N E T F L O W  was 
equal to I CAPTUREDI + 1, then the body of the conditional was 
executed. If the first case of the conditional held (i.e. the case for 
F R E E ¢ ~ ) ,  then ]CAPTURED] is increased by 1, so the invariant is 
restored. Otherwise, a "BUYER" message was sent to a child, s, for 
which PLACE(DESCENDANTS(s) )  - ARRIVALS(s) > BUYERS(s). This 
caused NETBUYERS(s)  to increase by 1, thereby increasing the value of 
N E T F L O W  and restoring the invariant. 

The third portion of the algorithm manages the travel of captured 
resources back to requests. First, note that there can be only one captured 
resource assigned to GRANT at any node in a single step, since the two 
assignments to GRANT cannot both be executed during a single step. If 
the message is a captured resource, then no progress is done until the 
clause contains the second grant. Otherwise, this clause is skipped. We 
must argue that such a neighbor exists in this case. 

Assume not. Then NETBUYERS(s)~<NETGRANTS(s)  for all 
s c NEIGHBORS.  Now, N E T F L O W  = I CAPTURED I, so that 

J CAPTURED] = ] REQUESTS I + NETBUYERS 

~< I REQUESTS t + NETGRANTS 

= ] REQUESTS I + I CAPTURED] - ] SATISFIED I - 1 

= I ACTIVE I + I CAPTURED I - 1. 

Therefore, 1 ~< ]ACTIVE I, a contradiction. 

Thus, we have checked that the key assertions hold and the code can be 
executed at all points. We have claimed (and tried to argue) that the 
algorithm follows the strategy of the preceding section, in setting up a flow 
of buyers from requests to resources. Eventually, the values of all the NET- 
BUYERS(w) variables will stabilize, and the values taken on by 
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corresponding NETBUYERS(w) variables at either end of a single edge 
will be negations of each other. (We use the fact that there are only finitely 
many requests here. Eventually, no further requests will arrive, so no 
additional "ARRIVAL" messages will be sent. There is a bound on how 
many "BUYER" messages will be sent downward along any edge. 
Therefore, there are only finitely many total "ARRIVAL" and "BUYER" 
messages which get sent, so that eventually, they will all be delivered.) 
Similarly, all the REQUESTS variables will eventually stabilize. 

Finally, we must consider the travel of captured resources to request 
origins. Define a new variable, MESSAGES(w), at node v, where 
w~NEIGHBORS(v).  Its value is defined to be the number of captured 
resource messages which have been sent from w to v but have not yet 
arrived, (Of course, neither v nor w actually "knows" the value of this 
variable.) For any time, t, after the NETBUYERS(w) and REQUEST 
values have stabilized, any node v, and any w eNEIGHBORS(v),  let 
A(v ,w , t )  be the value of NETBUYERS(w) -NETGRANTS(w)+  
MESSAGES(w) at v at time t. Note that A(v, w, t ) = - A ( w ,  v, t) in all 
cases. Let SUM(t) denote )-',v,~ ]A(v, w, t)l. We claim that any event which 
involves the receipt of a captured resource message does not change 
SUM(t), while any event which involves the sending of a captured resource 
message decreases SUM(t). Therefore, captured resource messages will not 
be sent forever: they will eventually subside, at which time they must have 
found a matching request. 

First, consider an event involving the receipt of a captured resource, by 
v, from w. The only term in the sum which is affected is A(v, w, t). The 
receipt of the messages causes v's values of MESSAGES(w) and 
NETGRANTS(w) both to decrease by 1, so that A(v, w, t) is unchanged. 
Therefore, SUM(t) is unchanged. Second, consider an event involving the 
sending of a captured resource, by v, to w. The only terms in the sum which 
are affected are A(v, w, t) and A(w, v, t). At time t just prior to the sending 
event, it must be that v's value of NETBUYERS(w) - 
NETGRANTS(w)>0,  which implies that A(v, w, t )>0 .  The result of 
sending the message is to increase NETGRANTS(w), which means that 
A(v, w, t) gets decreased by 1. Therefore, [A(v, w, t)l gets decreased by 1. 
Thus, also, IA(w, v, t)l gets decreased by 1, so that SUM(t) gets decreased 
by2.  II 

4. MONOTONICITY ANALYSIS 

The rest of the paper is devoted to an analysis of the time requirements 
of the algorithm. Specifically, we measure the sum of the times between 
requests and their corresponding grants. For the purpose of carrying out 
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the analysis, certain restrictions will be made. These restrictions will be 
introduced as needed. 

We begin with some basic definitions. Next, we introduce two restric- 
tions which are needed throughout the analysis. Then we define and 
categorize the complexity measures of interest. We then prove a basic com- 
binatorial result, and use it to prove the monotonicity of the number of 
"BUYER" messages as a function of interarrival time. Finally, we show 
that the expected running time of the algorithm is bounded by the expected 
time for the sequential case of the algorithm. 

4.1. Definitions 

Let N denote the set of natural numbers, including 0. Let R + denote the 
set of nonnegative reals. If f is a numerical function with domain V, then 
exend f to subsets of V by f ( W )  = Z w  wf(V). 

Let T be a rooted tree. We write vertices> and leavesr to denote the 
indicated sets of vertices of T. Let rootT denote the root. If v e vertices> we 
write descr(v) for the set of vertices of T which are descendants of v 
(including v itself), parentr(v) for v's parent in T, childrenr(v) for v's 
children, and neighborsr(v) for childrenT(v)~ (parent~-(v)}. 

If v is a vertex of T, let height~(v) denote the maximum distance from v 
to a leaf in its subtree. If e is an edge in T, then define heightr(e) to be the 
same as heightr(v), where v is e's upper endpoint. Let heighty denote 
height r(root r). 

A placement for T is a function p: vertices r --* N, representing the number 
of resources at each vertex. We write total(p) for p(verticesT), the total 
number of resources in the entire tree. We say that p is nonnull provided 
total(p) > 0. 

A weighted tree T is an undirected, rooted tree with an associated 
probability density function, ~v, on the leaves of T, such that q~r(v)> 0 for 
all leaves v. (This assumption is made for technical reasons, so that we can 
normalize probability functions without danger of dividing by 0.) If T is a 
weighted tree, v~internal r, and S is a nonempty subset of childrenr(V ), 
then let random r.s denote the probability function which returns s E S with 
probability ¢pr(descr(s))/~or(descv(S)). Thus, randomy.s returns s with 
probability proportional to the sum of the probability function values for 
the descendants of s. 

4.2. Initial Restrictions 

For the remainder of Section 4, we assume that the following two restric- 
tions hold. 

RESTRICTION 1. T is a weighted tree, and the nondeterministic choice 
step in Part (2) of the algorithm uses a call to randomr, s. 

643/68/1-3-5 



64 LYNCH ET AL. 

RESTRICTION 2. Delivery time for messages is always exactly 1. 

Restriction 1 describes a particular method of choosing among alter- 
native search directions. This method does not use all the information 
available during execution, but only the "static" probability distribution 
information available at the beginning of execution. One might expect a 
more adaptive choice method to work better; however, we do not know 
how to analyze such strategies. 

Restriction 2 has the effect of restricting the executions under con- 
sideration; for example, all messages between any two nodes are 
pipelined--they arrive in the order in which they are sent. While we would 
like to understand the behavior of the algorithm in the presence of variable 
message delivery times, such analysis appears to be more difficult. 

4.3. Cost Measures and Preliminary Results 

A request pattern r is a finite sequence of elements of ve r t i ces rxR + 
whose second components are monotone nondecreasing. A request pattern 
represents the sequence of requests that occur, their locations and times. If 
r is a request sequence, then length(r) denotes its length. 

A choice sequence c for v ~ internalr  is an infinite sequence of elements of 
children r( v ), with infinitely many occurrences of each child. If ~g = {c~} is a 
collection of choice sequences, one for each v e internal r, then cg can be 
used in place of probabilistic choices in an execution of the algorithm, as 
follows. Each internal node, v, makes choices among its children by choos- 
ing the first unused element of c, satisfying the inequality 
PLACE(descT(s) )>ARRIVALS(s)+BUYERS(s) .  That is, v chooses a 
child, s, for which v thinks there are still remaining resources in s's subtree. 

Let p be a placement for T. Let r be a request pattern, and c~ = {c~ } a 
collection of choice sequences, one for each v ~ internalr.  Then costT.p(r, cg) 
is defined to be the total time from requests to corresponding grants, if 
requests arrive according to r and cg is used in place of probabilistic 
choices. (With suitable conventions for handling events which happen at 
the same time, the execution, and hence the cost, is uniquely defined for 
fixed r and Z.) 

The cost measure defined above can be broken up into two pieces, as 
follows. Let searchcostT.p(r, off) be the total of the times from requests to 
corresponding captures of resources, if r and cg are used as above. Let 
returncostr, p(r, ~g) be the total of the times from captures to corresponding 
grants of resources. 

Now we incorporate a probabilistie construction of cg into the cost 
measure. If r is a request pattern, let costr.p(r) denote the expected value of 
costr.p(r, Cg), where c6 is constructed using q~T. (That is, for each 
ve in terna l r ,  the sequence cv is constructed by successive choices from 



PROBABILISTIC ANALYSIS NETWORK 65 

among childrenr(v), choosing s with probability q~r(descr(S))/ 
q~r(descr(S)), where S=childrenr(V). Among the sequences thereby 
generated are some for which it is not the case that each child occurs 
infinitely often. However, these sequences form a set of measure O, so that 
we can ignore them in calculating the expected cost measure.) We claim 
that costr, p(r) is exactly the expected total time from requests to grants, 
provided the algorithm is run in the normal way, using probabilistic 
choices. That is, the two strategies of constructing choice sequences 
independently of the algorithm and carrying out the probabilistic choices 
on-line give identical results. 

Let f denote an arbitrary probability density function whose domain 
consists of positive reals. Extend the domain of the function costr, p to the 
set of such functions by defining costr, p(f) to be the expected value of 
costr, p(r), where r is of length total(p), with its successive locations chosen 
independently using the distribution ~0r, and its successive interarrival 
times chosen using f That is, at the time the algorithm begins, and at the 
time of each request, the probability that the next arrival occurs exactly t 
units later is f(t). We will be primarily interested in this cost, costr.p(f). 

We define searchcostr, p(r), searchcostT, p(f), etc., analogously to our 
earlier definitions. 

The following claim is true for all domains for which the definitions are 
valid. 

LEMMA 2. cOStT, p = searchcostT, p + returncostT, p. 

Proof Straightforward. | 

Next, we will relate the given cost measures to ~the total numbers of 
various kinds of messages sent during the execution of the algorithm. Note 
that during the execution of an algorithm, the estimates of "BUYER" and 
virtual buyer messages sent along an edge can be different at the two ends 
of the edge. However, after the entire execution of the algorithm is com- 
pleted, the discrepancy disappears, so that the following definitions are 
unambiguous. Let bnumT, p(r, cg) denote the total number of "BUYER" 
messages sent on all edges during the execution of the algorithm on r using 
cg. Let vbnumT, p(r, cg) denote the total number of virtual buyer messages 
sent on all edges during the execution of the algorithm on r using cg. Let 
gnumT, p(r, cg) denote the total number of captured resource messages sent 
on all edges during the execution of the algorithm on r using cg. As before, 
define bnumr, p(r ), bnumr, p(f), etc. 

Because of the fact that message delivery time is assumed to be exactly 1, 
there are some relationships between the measures describing time costs 
and the measures describing numbers of messages. The following lemma 
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describes a set of relationships among the various measures. Note that all 
the statements are true over all possible domains of definition. 

LEMMA 3. 

(b) 
(c) 
(d) 

Proof 

(a) searchcostr, p ~< bnumT, p + vbnumv.p. 

returncost r,p = gnum T, p. 

gnum T, p ~< bnum T, p + vbnum w,p. 

cost T,p ~< 2[bnumv, p + vbnum T,p]. 

(a) This inequality is true because buyers continue to make 
progress up and down the edges of the tree; all time used by the algorithm 
is occupied by the transmission of appropriate buyer and virtual buyer 
messages. The reason that we have an inequality rather than an equation 
here is that buyers are permitted to travel "discontinuously," as described 
in Section 3. 

(b) This equation is true because captured resources travel con- 
tinuously via captured resource messages. 

(c) We must show that each captured resource message always 
moves in such a way as to "negate" a buyer or virtual buyer message. This 
is a bit tricky to argue, because of the discrepancies between estimates at 
opposite ends of an edge. A captured resource only moves over an edge if 
the net flow of buyers into the node on that edge, as estimated at the near 
endpoint, is positive. By moving over that edge, the captured resource 
negates an incoming buyer or virtual buyer along that edge, as estimated at 
the near endpoint. Because of the assumption that all messages take exactly 
time 1, by the time the captured resource reaches the far endpoint, the 
negated buyer or virtual buyer is also counted in the estimate of outgoing 
buyers and virtual buyers at the opposite endpoint. The arrival of the cap- 
tured resource at the far endpoint can thus be regarded as negating an out- 
going buyer or virtual buyer at the far endpoint as well. 

(d) Straightforward by Lemma 2 and (a)-(c). | 

Now, we introduce an additional restriction, to remain in force for the 
remainder of Section 4. 

RESTRICTION 3. T has all leaves at the same distance from the root, and r 
and p are nonzero only at leaves. 

As usual, the following lemma is intended to hold for all valid domains 
of definition. 

LEMMA 4. bnumr, p = vbnumr, p. 
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Proof We sketch the argument for fixed r and cg. For a particular edge 
e, let ae denote the number  of request arrivals below e, be denote the num- 
ber of "BUYER" messages sent downward along e, and Pe denote the num- 
ber of resources placed below e, in the execution for r and cg. Since 
all resources get matched to requests, we must have ae+be>~pe, so 
that the number of virtual buyers sent over edge e is exactly 

max(ae + be -Pc, O) = ae + be -Pc.  
Now consider all the edges at any particular height h in the tree. Since all 

resources and requests are at the leaves, and the branches are all of equal 
length, it is clear that 

ae = total(p)  = ~ Pc" 
heightT(e) ~ h heightT(e) ~ h 

Therefore, 

b e =  2 ( a e - t - b e - P e ) "  
heightT(e) = h heightT(e ) -- h 

That  is, the numbers of buyers and virtual buyers sent over edges of 
height h are equal. Since this is true for all h, the result follows. | 

THEOREM 5. c o s t r ,  p ~ < 4 ( b n u m r , p )  

Proof Immediate from Lemma 3 and Restriction 3. | 

Thus, in order to obtain an upper bound on costr, p(f) ,  it suffices to 
prove a bound for bnumr,  p(f).  

4.4. A Combinatorial Result 

This subsection contains a key combinatorial result which will be used in 
the subsequent analysis. We model the behavior of the algorithm at a single 
node v. The children of v are modelled as a set of bins for resources. (Here, 
we do not concern ourselves about  the tree structure beyond the children.) 
Let c be a choice sequence for v. Each bin s is initialized to contain a num- 
ber p(s) of resources. 

The arrival of messages at v is described by a script S. A script is a finite 
sequence of symbols, each of which is either a bin number s or an "X." A 
bin number  represents the arrival of an "ARRIVAL" message from the 
specified child. The symbol X represents the arrival of a "BUYER" message 
from v's parent, 

The processing of script S on c and p, is as follows. The elements of S are 
processed sequentially. If S(i) is: 
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s £ b i n s .  then 
i f  bin s i s  n0nempty, 
t~en subtract 1 from the number of resources in s 
else if some bin is nonempty then 

[SELECT the first unused element of  c describing a nonempty bin, t; 
s u b t r a c t  1 from the number of r e s o u r c e s  in t ]  

X, then 
i f  some bin is nonempty then 

[SELECT the f i r s t  unused element of c describing a nonempty bin, t;  
subtract ! from the number of resources in t ]  

Define SELECT(S, c, p, i) to be the number of times bin i is SELECTed 
during the course of processing S on c and p. (Note that a bin is only said 
to be SELECTed when the choice sequence is used to choose it, and not 
when it is explicitly chosen by the script.) Define choice(S, c,p, j )  to be 
equal to k provided that when S(j)  is processed on c and p, the kth 
element of c is used to select a bin. (If no element of c is used, then 
choice( S, c. p, j )  is undefined.) It follows that SELECT(S, c, p, i )= 
}{j: e(choice(S, c, p , j )  ) = i} l, 

For any script S, let binsequence(S) denote the subsequence of S con- 
sisting of bin numbers. Script S is said to dominate script S' provided that: 
(a) T =  T', where T=binsequence(S) and T'=binsequence(S'),  (b) the 
total number of X's in S is at least as great as the total number of X's in S', 
and (e) for each i, the number of X's in S preceding T(i) is at least as great 
as the number of X's in S' preceding T'(i). The main result of this section is 
that, if S dominates S', then SELECT(S, c, p, i) >~ SELECT(S', c, p, i) for 
all c, p, and i. 

We say that an interchange of two consecutive elements of a script S is 
legal provided that the first element of the pair is an X. We say that a script 
S' is reachable from a script S if S can be transformed to S' by a series of 
legal interchanges. Note that S dominates all scripts S' reachable from S; 
moreover, if S dominates S', then S' can be augmented with some suffix of 
X's, to a script which is reachable from S. 

LEMMA 6. For any scripts S and S' such that S' is reachable from S, and 
for any choice sequence c, placement function p and bin i, 

SELECT(S, c, p, i) >~ SELECT(S', c, p, i). 

Proof We prove this lemma by showing that if S' is reachable from S 
by a single legal interchange, then the inequality holds. The lemma follows 
by induction on the number of legal interchanges. 

Fix S, c, and p. Assume that S' is obtained from S by interchanging 
S(j) = X with S(j  + 1 ). If S(j  + 1 ) = X, then S = S', so the result is obvious. 
So assume S(j  + 1 )= s e bins. There are three cases. 
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Case 1. Bin s is empty after processing S ( 1 ) ' " S ( j - 1 )  on c and p. 
Then choices using c are made for both S and S' at both steps j and 
j +  1. Thus, choice(S, c,p, j )= choice(S', c,p,j) and choice(S, c ,p , j+ 1)=  
choice(S', c,p , j+ 1). The number of resources remaining in each bin after 
step j + 1 is the same for S and S', and therefore processing continues iden- 
tically for S and S' after that point. Thus, SELECT(S,c ,p , i )= 
SELECT(S' ,  c, p, i). 

Case2. Bin s contains more than one resource after processing 
S ( 1 ) . . . S ( j -  1) on c andp,  or else c(choice(S, c,p,j)) is not bin s. (That is, 
the bin selected by the choice made at step j is not bin s.) Then the effect of 
the pair of steps j and j +  1 is the same for both S and S': a resource is 
removed from bin s and a resource is removed from bin c(choice(S, c, p,j)). 
(When processing S, the choice from c occurs first, while when processing 
S', the explicit removal from s occurs first, but the net effect is the same.) 
Subsequent processing of the two scripts will be identical, and once again, 
SELECT(S, c, p, i) = SELECT(S' ,  c, p, i). 

Case 3. Bin s contains exactly one resource after processing 
S(1) . . .  S ( j - 1 ) ,  and c(choice(S, c,p,j))=s. (That is, the bin selected by 
the choice made at step j is s.) In this case, the processing of S uses choices 
from c at both steps j and j + 1, because the choice of s at step j removes 
the last resource from bin s, and so a choice must also be made at step 
j + 1. The processing of S' does not need a choice at step j, although it is 
forced to choose by the X at step j + 1. Thus, in both cases, step j removes 
the last resource from bin s, while step j + 1 makes a choice using c. Then 
choice(S, c ,p , j+ 1)=choice(S ' ,  c ,p , j+ 1); that is, the same entry in c is 
used at step j + 1 in both cases. The combined effect of steps j and j + 1 on 
the bins is the same for the two scripts. Subsequent processing is again 
identical, so SELECT(S, c, p, i) = SELECT(S' ,  c, p, i) for bin i ~ s, and 
SELECT(S, c, p, s) = SELECT(S',  c, p, s) + 1 > SELECT(S',  c, p, s). | 

We can now state the main result of this section. 

COROLLARY 7. For any scripts S and S' such that S dominates S', and 
for any choice sequence c, placement function p and bin i, 

SELECT(S, c, p, i) ~> SELECT(S' ,  c, p, i). 

Proof Let T be an augmentation of S' by a suffix of X's, such that T is 
reachable from S. Then Lemma 6 implies that SELECT(S, c,p, i)>~ 
SELECT(T, c,p, i). But the latter term is obviously at least as great as 
SELECT(S' ,  c,p, i). | 
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4.5. Expansions 

In this subsection, we show that the number of "BUYER" messages sent 
is a monotone nondecreasing function of the interarrival time of the arrival 
distribution. We do this by comparing particular pairs of executions. 

For n~N,  let In]  denote {1,.. . ,n). If a ~ R  and r=(vi ,  ti)i~tk], is a 
request pattern, then ar, the expansion of r by a, is the request pattern 
(vi, at~)~[k]. That is, ar represents the request pattern in which the suc- 
cessive requests occur at the same locations as in r, but in which the times 
are expanded by the constant factor a. 

We will compare executions for request pattern r and request pattern ar, 
using the same choice sequence. We require a technical restriction, just to 
avoid the complications of having to consider multiple events occurring at 
the same node at the same time, in either execution. A request pattern r is 
said to be a-isolated provided that no two requests occur in r at the same 
time, and provided that the following holds: If tl and t2 are two times at 
which requests arrive in r, where tl ¢ tz, and if k is an integer, then the 
following are true: (a) tl - t2 ¢ 2k, and (b) tl - t2 ~ (2/a) k. 

The next lemma is crucial to our analysis. Its truth was first observed 
empirically, and then proved analytically. It says that the number of 
"BUYER" messages sent during an execution cannot increase if the request 
pattern is expanded by a constant which is greater than or equal to 1. 

LEMMA 8. I f  a>~l, and r is a-isolated, then bnumr.p(r, Cg)~< 
bnum r,p(ar, c~). 

Proof Fix T, p, and cg. Let bsent(r,e, t) denote the number of 
"BUYER" messages sent along edge e, in the execution for r (using T, p, 
and oK), up to and including time t. Let brec(r, v, t) denote the number of 
"BUYER" messages received by vertex v, in the execution for r, up to and 
including time t. Let arec(r, e, t) denote the number of "ARRIVAL" 
messages received along edge e, in the execution for r, up to and including 
time t. We will show the following: 

Claim. bsent(r, e, t + heightr(e)) ~< bsent(ar, e, at + heightr(e)) for all r, 
e, and t. 

This is a stronger claim than required for the lemma, since it shows an 
inequality not only for the total number of "BUYER" messages, but for the 
number along each edge, up to corresponding time. 

FACT 1. arec(r, e, t + he ight r (e) )=  arec(ar, e, at + heightr(e)). 

This is so because the number of requests arriving in request sequence r 
by time t is the same as the number arriving in request sequence ar by time 
at, and messages just flow up the tree at a steady rate. 
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The rest of the proof proceeds by induction on heightr(e), starting with 
height r(e ) = height:r, and working downward towards the leaves: 

Base:he igh t  r(e) = height r. 

In this case, e's upper endpoint is root r. The actions of r o o t r  are com- 
pletely determined by the "ARRIVAL" messages it receives, which are the 
same at corresponding times in the two executions, by Fact 1. The claim 
follows. 

Induct ive  step. heightr(e) < heightr. Let v be the upper endpoint of edge 
e, and the lower endpoint of edge e'. 

FACT 2. brec(r, v, t + heightr(v)) ~< brec(ar, v, at  + heightr(v)). 

This is so because brec(r, v, t + height r(v)) -- bsent(r, e', t + 
h e i g h t r ( v ) - I )  because all messages take exactly time 1, = bsent(r,e ' ,  
t - 2 + h e i g h t r ( e ' ) ) ,  <~bsent(ar ,  e ' , a ( t - 2 ) + h e i g h t r ( e ' ) )  by inductive 
hypothesis, = bsent(ar, e', a ( t -  2) + 1 + height r(v)), = brec(ar, v, a ( t -  2) + 
2 + height r(V)) ~< brec(ar, v, at + heightr(v)), since a(t  - 2) + 2 ~< at. 

Now let us consider the situation from v's viewpoint. Node v is compar- 
ing two executions, the first for r and the second for ar. All v sees is its 
incoming "ARRIVAL" and "BUYER" messages, and v uses the same 
choice sequence in both cases. At corresponding times in the two 
executions (i.e., t + heightr(v) in the first execution vs at + heightr(v) in the 
second execution), the same number of "ARRIVAL" messages have been 
received along each edge (by Fact 1), and an inequality holds for the num- 
ber of "BUYER" messages which have been received (by FACT 2). We will 
show the needed inequality for the number of "BUYER" messages sent by 
v along each edge, up to corresponding times. 

Fix any time t. We compare the first execution up to time t + heightr(v) 
with the second execution up to time a t +  heightr(v ). We claim that this 
situation is modelled by the combinatorial problem presented in the 
preceding subsection. First, we represent v's inputs in each of the two 
executions by a script, i.e., a sequence of X's and "bins" the latter of which 
are identified with children of v. An J( models the arrival of a "BUYER, " 
while s ~ bins model the receipt of an "ARRIVAL" message from s. (The 
fact that r is a-isolated means that no two of v's inputs occur at the same 
time in the same execution, so a unique sequence can be obtained in each 
case.) Let S and S' be the scripts for the first and second executions, 
respectively (up to the indicated times). The claims in the preceding 
paragraph imply that S' dominates S. 

We claim that the processing described for the combinatorial problem 
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models the processing carried out at v during execution of the algorithm. In 
particular, a SELECT of a bin s, if it occurs, models the sending of a 
"BUYER" message to s and associated reduction of v's estimate of the 
number of resources remaining in s's subtree. With the given correspon- 
dence between the combinatorial problem and the executions, the con- 
clusion of Corollary 7 translates immediately into the claim. I 

LEMMA 9. I f  a>~ 1, and r is a-isolated, then bnumr, p(r)<~ bnumT.p(ar). 

Proof By Lemma 8, taking expectations, i 

Define bnumr, p(a,f) to be the expected value of bnumr, p(ar), where r is 
chosen according to ~Pr and f The next theorem states that the expected 
number of "BUYER" messages is a monotone nondecreasing function of 
the interarrival time of the request distribution. 

THEOREM 10. (a) I f  a>~ 1, then bnumr, p(f)<..bnumr, p(a,f). 

(b) IfO<a<~b, then bnumr.p(a,f)<~ bnumr, p(b,f). 

Proof (a) If a request sequence is chosen according to ~0r and f, then 
with probability 1, it will be a-isolated. The result then follows from 
Lemma 9, by taking expectations over r. 

(b) Let g be the probability density function defined by g(at)=f(t) .  
Since b/a>~l, we can apply Part (a) to b/a and g, obtaining 
bnumr, p(g) ~< bnumT, p(b/a, g). But bnumT, p(g) = bnumr, p(a,f) and 
bnumT, p(b/a, g) = bnumr, p(b,f), yielding the result. II 

4.6. Summary of  Monotonicity Analysis 

In this section, we have made the following restrictions, repeated here for 
convenience. 

RESTRICTION 1. T is a weighted tree, and the nondeterministic choice 
step in Part (2) of the algorithm uses a call to randomr, s. 

RESTRICTION 2. Delivery time for messages is always exactly 1. 

RESTRICTION 3. T has all leaves at the same distance from the root, and r 
and p are nonzero only at leaves. 

The major results we have proved in this section are that the expected 
response time is closely approximated by the expected number of 
"BUYER" messages (Theorem 5) and that the expected number of 
"BUYER" messages is a monotonic function of the interarrival time 
(Theorem 10). We can combine these two results, obtaining the following: 
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THEOREM l 1. costT.p(f) ~< 41im a ~ oobnumT, p(a,f). 

Proof. Consider what happens to the value of bnumT.p(a,f) as a 
increases. This value is monotonically nondecreasing, by Theorem 10. Also, 
it is bounded above, because no execution causes more "BUYER" 
messages to be sent on any edge than the number of resources initially 
placed below that edge. Therefore, the limit exists. The result follows 
immediately from Theorems 5 and 10. | 

That  is, the expected cost of the algorithm for any probability function f 
is bounded in terms of the limiting case of the algorithm, as the interarrival 
time approaches infinity. But note that as the interarrival time approaches 
infinity, the algorithm gravitates towards a purely sequential 
algori thm--one in which each request gets satisfied before the next one 
arrives. This kind of sequential algorithm is amenable to analysis of a more 
traditional kind, the subject of the next section of this paper. It seems quite 
surprising that the sequential case is the worst case. Our initial expectation 
was that cases where considerable interference between requests occurs 
would be the worst case. The monotonicity theorem indicates that that is 
not so. Of course, we have made a few assumptions in this section, most 
significantly the equal lengths of branches. It is quite likely that the sequen- 
tial case will not be the worst case for an algorithm using more general tree 
topologies. The analysis in this more general case so far seems quite intrac- 
table, however. 

5. SEQUENTIAL ANALYSIS 

In this section, we analyze the sequential case of the algorithm. In the 
next section, we combine the results into an upper bound for the entire 
algorithm. Once again, we allow arbitrary weighted trees T, and allow r 
and p to be nonzero anywhere. 

5.1. A Simplified Problem and Algorithm 

The sequential case of the algorithm offers considerable simplification 
over the concurrent cases. There is no interference at all, since each request 
arrives after previous requests have been satisfied. This means that all the 
estimates of remaining resources are completely accurate. In fact, the result 
is equivalent to that of an algorithm in which all information is known 
globally. 

The behavior of the algorithm in the sequential case can be modelled by 
repeated calls to the following sequential program, FIND. The program 
takes a weighted tree, a nonnull placement, and a vertex (the vertex at 
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which a request occurs) as input, and returns a vertex (the vertex at which 
the resource to be granted is located). 

FIND(T,p,v) 

Case 
p(v) > 0 : return v 
p(descl(v)) = 0 : return FIND(T,p,parentT(v)) 
p(v) = 0 and p(deSCT(V)) > O: 

IS := {w C chJldrenT(v): p(de~cr[w)) > O} 
return FIND(T,p, randomLs)] 

endcese 

Thus, a request is satisfied, as before, in the smallest containing subtree 
which contains a resource; where there is a choice, the probability function 
is used. 

LEMMA 12. I f  p is nonnull and v~verticesr, then FIND(T,p,  v) even- 
tually halts and returns a vertex, v, with p(v) > O. 

Proof Straightforward. | 

We next want to prove a lemma which will be useful in the later analysis. 
The content of the lemma is as follows. Let random r denote the probability 
function which returns s~leavesr  with probability q)T(s). Assume T is a 
weighted tree and p is a placement which is nonzero only at leaves. Con- 
sider the following two experiments: 

(1) Call FIND(T,p,  rootr), and 

(2) Call FIND(T,p,  randomr). 

We claim that the "results" of these two experiments are the same. That 
is, for each w e vertices> the probability that experiment (1) returns w is 
exactly the same as the probability that experiment (2) returns w. It will 
follow from the next lemma that this is so. 

Some notation is helpful here. The result of FIND on a particular set of 
arguments can be expressed as a probability distribution of vertices. Let 
c~r,p, denote the probability distribution of results for FIND(T, p, v). That 
is, FIND(T, p, v) returns w with probability eT, p.v(w). 

LEMMA 13. Let T be a weighted tree, p a nonnull placement for T. 
Assume that p is nonzero only at leaves. Then the following are true: 

(a) I f  v~internalT, then ~T,p,v~--~w~ehildrenT(v) [[~pr(descr(W)) / 
~or(descr(v)) ] o~r,p, ~3. 

(b) I f  v e verticesr, then ~r,p,~ = Y'.w~de=~v)E[q~r(w)/ 
(p r(descr(v))] 0~r. p, ,,]. 
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Proof In the proof, we assume T and p are fixed and write a~ in place 
of c~r,p, v, etc. 

(a) We consider cases. 

Case 1.p(descr(v))=0. Then since the algorithm immediately calls 
FIND on parentr(v), we see that c~ = 0CparentT(v) ,  Similarly, for all children w 
of v, we have e w = %  . . . .  tr(v)" Since ~ w e c h i l d r e n r ( v ) [ ( P T ( d e S C T ( W ) ) /  

q~r(descr(v))3 = 1, the result follows. 

Case 2. p(descr(v)) > 0. Since we are assuming that v Einternalr, we 
know that p(v)=0.  Let S =  {wechildrenv(v):p(descv(w)) >O}. Then 
S ¢ ~ .  The third case in the algorithm holds, and we have that 
~ = 2 ~  s [ [ qo(descr(w) )/q ) r(descr(S))] c%]. Now, 

[[qor(deSCT(W))/(pr(descr(v)) ] c%,] 
w ~ childrenT(v) 

= ~ [[~or(deSCT(W))/~oT(descT(v))] C~w] 
w ~ S  

+ ~ [[qor(descr(w))/q°r(descr(v))] ~ ] .  
ws  childrenT(v) S 

By the remark above, this sum is equal to 

~ [~o v(desc r(S))/q) r(desc r(v)) ] 

+ Y, [[~ov(descr(w))/q)r(deSCT(V))] ew]. 
w E children/-(v) -- S 

If w~chi ldrenv(v)-S ,  we know that p(descv(w))=O, so that 
~w = ~ p a r e n t r ( w ) =  O~v' S o  the sum above is equal to 

~ [ q~ v( desc v( S ) ) / ~o r( desc r( v ) ) l 

+ c% Y' [q0 r(desc r(w))/q) r(desc v(v))l, 
w~childrenr(v)  S 

= e, [ ~o T( desc r(S))/q) T( desc r(V)) ] 

+ ~[(¢p r (descr(v)) -  q) r(descv(S)))/q)r(descv(v))], 

(b) We proceed by induction on the height of v: 

Base: v ~ leavesr., 
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Then the only w in descr(v) is v itself, so the sum on the right is 
just[~or(v)/~pr(v)] c~o, = c%, as needed. 

Inductive step. v ~ internal r. Then 

7v = ~ [[~or(descr(w))/~or(descr(v))] aw] by part (a), 
w c e h i l d r e n T ( v )  

= ~ [[(Pr(descv(w))/cPr(deser(v))] 
w ~ e h i l d r e n T ( v )  

x ~ [[¢pr(s)/~ov(descr(w))] ~ ] ] ,  by inductive hypothesis, 
s E descT(W) 

= ~, ~ [[q)r(s)/q)r(descr(v))] es], 
w e c h i l d r e n T ( v )  s ~ descz{  w) 

= ~ [[~Or(S)/q)r(descr(v))] ~,], 
s a descT(v)  

as needed. | 

Part (b) of this lemma, with v = root r ,  proves equivalence of the two 
experiments described prior to the lemma. 

We can restrict attention to "request sequences" in place of request pat- 
terns, in the sequential case of the algorithm. Assume that T is a weighted 
tree, and p is a placement for T. A request sequence r is a sequence of 
elements of verticesr, representing a sequence of request arrival locations. 
Similarly, a resource sequence r is a sequence of elements of vertices r, 
representing a sequence of resource locations. In either case, let length(r) 
denote the number of elements in a sequence. A resource sequence, s, is 
compatible with a placement p provided that [s- l (v)[  ~p(v)  for each 
v e verticesr. (That is, the resource sequence grants at most the number of 
resources placed at each vertex.) If r is a request sequence and p is a 
placement with total(p)~> length(r), then a matching of r and p is a pair 
m=(r , s ) ,  where s is a resource sequence compatible with p and 
length(r)=length(s).  A matching describes the successive locations of 
resources which are used to satisfy a sequence of requests. 

Next, we define a probabilistic program which takes as inputs a request 
sequence r and a placement p with total(p),-->length(r), and returns a 
matching of r and p. The procedure simply uses FIND repeatedly. 

MATCH(T,p,r) 

For i = ] to  l e n g t h ( r )  do 
I s ( i )  := F I N D ( T , p , r ( i ) )  
p ( s ( i ) )  := p ( s ( i ) )  - t ]  
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THEOREM 14. Let r be a request sequence, p a placement with 
total(p) ~>length(r). Then MATCH(T, p, r) will eventually halt and return a 
matching of  r and p. 

Proof  Straightforward. | 

This algorithm is designed to behave exactly as the sequential case of our 
general algorithm. 

5.2. Cost Measures 

Let distr(u, v) denote the tree distance between u and v. If m -=- (r, s) is a 
matching, then seqcostr.p(m)=Zidistr(r(i) ,s(i)) .  Thus, the "sequential 
cost" is just the sum of the tree distances between successive requests and 
their corresponding resources. 

If r is a request sequence with length(r)~<total(p), then define 
seqcostr,p(r) to be the expected value of seqcostr, p(m), where m is construc- 
ted using MATCH(T,p,  r). Let seqcostr, p denote the expected value of 
seqcostr.p(r), where r is of length total(p), with its successive locations 
chosen independently according to ~0r. In the remainder of this section, we 
analyze seqcostr, p. 

5.3. A Useful Recurrence 

In this subsection, we present a solution to a system of recurrence 
equations. This solution will be useful in later subsections. Let c e R  +. 
Define Go: N x  R + ~ R + by the equations: 

G,(0, t) = 0 and 

G,.(k, t )= max { G c ( k -  1, tl) + Go(k -  1, t2): tl + t2 ~ t} + &af t ,  for k~> 1. 

LEMMA 15. For all k >~O, the following are true: 

(a) The function mapping t to G,(k, t) is concave downward and 
monotone nondecreasing. 

(b) Ifk>~ 1 then Gc(k, t ) = 2 G c ( k -  1, t /2)+ckaftt .  

Proof We proceed by induction on k. The base, k---0, is trivial. For 
the inductive step, let k~>l. If t l+t2~<t ,  then G c ( k - l ,  t l )+ 
G o ( k -  1, t2) <<, 2 G c ( k -  1, (t~ + t2)/2), since the inductive hypothesis states 
that the function mapping t to G c ( k - 1 ,  t) is concave. This is in 
turn ~< 2Go(k -  1, t/2), by monotonicity. Therefore, Gc(k, t) = 
2 G o ( k - l ,  t /2)+ck~t t ,  showing (b). Since each term is concave and 
monotone, the sum is also, showing (a). | 

THEOREM 16. Go(k, t ) ~ < ( 3 w f 2 + 4 ) c ~  7. 
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i 

Proof By Lemma15, Gc(k, t)=O if k = 0 ,  a n d = 2 G c ( k - l , t / 2 ) +  
c k ~ t  if k ~> 1. Expanding this recurrence, we see that 

Gc(k , t )=c  I ~ 2 i ( k - i )  t ~ ]  forallk>~0, 
i ~  O, . . . ,k- -  1 

i =  O, ..,, k - -  1 

Let x = 1/./-2, n = 2 k. Then 

i =  0, ..., k - -  1 

= (c~'}~/~/x/~) [(1 + kx  k + 1  _ _  (k --}- 1) Xk)/(1 -- X)2], 

= (c,,/'t%fn)/(,~-2(1- 1/x/2) 2 [1 ql-kxk+l--(k  -~- 1 ) x k ] ,  

= ( c x ~ x ~ ) ( 3 x ~  + 4)[1 + k x  ~'*~ - ( k +  1) x~], 

= ( cx~x~) (3  ~ + 4)I-1 + (kx - k - 1) xk], 

~< ( c x ~ x ~ ) ( 3 x ~  +4)  s i n c e k x - k -  1 <0,  

= ( c ~ ) ( 3 x / 2  + 4). | 

5.4. Recursive Analysis 

Now, we require Restriction 3 and a new assumption, Restriction4. 
These are to remain in force for the remainder of Section 5. 

RESTRICTION 3. T has all leaves at the same distance from the root, and r 
and p are nonzero only at leaves. 

RESTRICTION 4. T is a complete binary tree. 

If T is a weighted tree, then a weighted subtree T' of T consists of a sub- 
tree of T together with a probability function ~oT, given by 
~oT,(v) = ~or(v)/~oT(verticesr,). That is, the weights of the subtrees are just 
normalized restrictions of the weights of T. If T is a weighted binary tree, 
let leftT and rightr denote the designated weighted subtrees of T. 

If T has height at least 1, then let T1 and T2 denote leftT and rightr, 
respectively. Let Pl and P2 denote Pl T1 and Pl 7'2, respectively. If r is a 
request sequence, let overflow T,p(r) denote I I r - l (vertices r~ )[ - 
p(verticesr,)[, the difference between the number of requests that arrive in 
the left subtree and the number of resources placed there. Let overfloWT, p 
denote the expected value of overfloWT, p(r), where r is a sequence of length 
total(p) chosen using (Pr. 
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The following is a key lemma which provides a recursive breakdown for 
the sequential cost. It says that the expected cost of matching breaks down 
into costs of matching within the two subtrees, plus a charge for the 
requests that overflow into the opposite subtree. 

LEMMA 17. Assume heightT~> 1. Then seqcostr, p ~< seqcostrl.pl + 
seqcost r2, p2 + 2height roverflow r,p. 

Proof For any particular request sequence r, there is some particular 
number, overflowr.p(r), of requests that do not get satisfied within their 
own subtree, but rather overflow into the opposite subtree to find a 
resource. To be specific, assume that it is the left subtree from which any 
excess requests overflow. Let r I be the subsequence of r consisting of 
requests arriving in T1, truncated to length p(T1). Let r 2 be the sub- 
sequence of r consisting of requests arriving in T> Recall that seqcostr, p is 
the expectation of the search cost for enough requests to exhaust all resour- 
ces present. 

Before the time at which the left subtree overflows, the algorithm 
MATCH(T,  p, r) runs exactly like MATCH(T1, p~, q)  within the left sub- 
tree. Requests originating within T 1 become matched to exactly the same 
resources in both executions. 

We now consider the right subtree. Requests which originate within the 
right subtree are handled in the algorithm MATCH(T,  p, r) exactly as they 
are in the algorithm for T2 and P2. However, there are also overflow 
requests from the left subtree, which enter T~ at its root rather than at its 
leaves. By Lemma 13, whenever such a request arrives, its probability of 
being matched to any particular resource is exactly the same as if the 
request had entered at a random leaf of 7"2. All the requests remain 
independent, and these additional requests are just enough to exhaust the 
resources in T2. 

Now assume that the request sequences r are chosen at random 
according to ~o r. They result in subsequences rl and r 2 which are chosen at 
random according to q~r~ and q~r2, respectively. 

We claim that seqcostT, p, the expected cost taken over all r, is bounded 
by 

seqcostrl,p~, the expected cost taken over random sequences in 
the left subtree + seqcostr2,p2, the expected cost taken over ran- 
dom sequences in the right subtree +2  heightT overfloWr,p. 

The third term allows for the expected overflow of requests, and assigns 
them the maximum cost, 2 height> 

Consider the first term. (The second term is analogous.) The first term 
allows for the expected cost incurred by an execution of MATCH on a ran- 

643/68/1-3-6 
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dom sequence of requests within TI. In case T 1 has its resources exhausted 
by requests originating within that subtree, this term measures exactly the 
expected cost for the matching of the first requests in T1 to all the resources 
in T~. This term ignores the cost incurred by any excess requests 
originating within T1 which do not get matched within T~. However, that 
is not a problem, since those costs are counted by the third term. 

In case T1 does not have its resources exhausted by requests originating 
within T j, this term is actually greater than needed to measure the expec- 
ted cost of matching all requests originating in T~; in fact, it is enough to 
measure this cost of matching these requests, interspersed with enough 
other random requests (arriving at the leaves of T~) to use up all the 
resources in T~. We have already argued that these requests behave as if 
they were interspersed with other random requests, because requests arriv- 
ing at the root match in the same way as if they arrived at random leaves. 
In this case, the first term does not account for the cost of matching those 
requests which enter T~ at its root. However, that is not a problem since 
that cost is covered by the third term. | 

5.5. d-Fairness 

We need to make another restriction on the algorithm, for the purpose 
of analysis. In particular, it is reasonable that the behavior of the algorithm 
should be best when the resources are distributed in the tree in some 
relationship with the probability distribution governing arrival of requests. 
(The paper by Fischer, Griffeth, Guibas, and Lynch, 1981, considers 
optimal placements of resources in a tree network.) 

For de  R +, we say that a placement, p, is d-fair provided that the 
following is true. Let u, vEverticesT, where uedescr(v). Let 
q91 = ¢pr(descv(v)) and q~2 = q~v(descr(u)). Then I p ( d e s c T ( u ) ) -  

(q)2/~ol)p(deSCr(V))l <~dx/(~o2/~o~)p(descr(V)). That is, for each subtree, 
the number of resources placed in each of its subtrees is approximately 
proportional to the probability of arrivals in that subtree, and the dif- 
ference is proportional to the "standard deviation." For any T, if t and d 
are sufficiently large, then techniques in (Fischer, Griffeth, Guibas, and 
Lynch, 1981) can be used to produce d-fair placements of t resources in T. 

From now on in Section 5, we assume the following: 

RESTRICTION 5. p is d-fair (for some arbitrary but f ixed d). 

The next lemma says that restrictions of d-fair placements are also d-fair. 

LEMMA 18. Let p be a d-fair placement for T. Let T' be any subtree of  T, 
and p' = p I vertices r,, the restriction of  p to vertices r,- Then p' is d-fair for 
7" 
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Proof Let u, v~verticesr,,  with u~descr,(v). Let q91=~or(descr(v)) , 
(P2 = q~r(descr(u)), (P'I = (pr,(descr,(v)), and (p~ = q~r,(descr(u)). Then q/l = 
qh/q~r(verticesr) and q~=q~2/~0r(verticesr,), by definition. Therefore, 
~0'(2)/~p'(1) = qo2/q~l. 

Note that p ' (descr(u))=p(descr(u)) ,  and p'(descr,(v))=p(descr(v)).  
Thus, 

[ p'(descr,(u)) - (~ol/(P'l) p'(descr,(v))l 

= [ p(descr(u)) - (~o2/qol) p(descr(v))[, 

<~ d~/(q~2/q~l) p(descr(v)) since p is d-fair, 

= dx/(cp'2/~o'l)p'(descr,(v)) as needed. | 

The final lemma of this subsection bounds the expected overflow for d- 
fair placements. 

LEMMA 19. overfloWr.p ~< (6 + d) x/~r(verticesr~ ) total(p). 

Proof rlr-l(verticesr,)[ - p(verticesr,)l ~< [[r l(verticesrl)] - 
q~r(verticesT~)total(p)l + I~Pr(verticesr,) t o t a l ( p ) l -  p(verticesrl)]. 

The expected value of the first of these quantities, taken over r, is 
bounded by 6~/q~r(verticesr~)total(p), using Lemma 3.1.5 of (Fischer, 
Griffeth, Guibas, and Lynch, 1981). 

The second quantity is bounded by dx/~0r(verticesv~ ) total(p), since p is 
d-fair. | 

5.6. Sequential Analysis 

Let sizer denote the number of vertices in T. We now give the main 
result of Section 5, that seqcostr.p is O(~/sizertotal(p)).  This says, for 
example, that if total(p) is proportional to sizer, then the total cost is 
proportional to total(p). This implies that the average cost per request is 
just a constant, independent of the size of the network. 

In order to prove this theorem, we require the followng restrictions, 
repeated here for convenience. 

RESTRICTION 3. T has all leaves at the same distance from the root, and r 
and p are nonzero only at leaves. 

RESTRICTION 4. T is a complete binary tree. 

THEOREM 20. seqcostr, p is O,~/sizertotal(p)). (More specifically, 
seqcost r, p ~< (3,,f2 + 4)((6 + d) ,,f2) ~/2h'ightvtotal(p).) 
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Proof  By Theorem 16, it suffices to show that seqcostr, p <~ 
Gc(heightr, total(p)), where c = (6 + d )  x/~. We proceed by induction on 
height T. 

Base: height r--- 0 

Then T has a single vertex, and seqcostv,p = 0. The inequality is immediate. 

Inductive step. heightr>~ 1. Then 

seqcost r,p 

~< seqcost ri,p~ + seqcost r:,p2 + 2 height r overfloWr, p, 

by Lemma 17, 

~< seqcost T~,pi + seqcost r2,p2 + 2height V(6 + d)x/tp r(vertices T ~ ) total(p) 

by Lemma 19. 

A similar inequality holds for T 2 in place of T1 within the square root. 
Since at least one of q~r(verticesr0, ~0r(verticesT2) is no more than ½, it 
follows that 

seqcost T,p ~< seqcost r,.p~ + seqcost r2.p2 + 2 height r(6 + d) x/( 1/2 ) total(p), 

= seqcost rl.p, + seqcost r2,p2 + (6 + d) x/2 height r ~ .  

By Lemma 18, we can apply the inductive hypothesis, which implies that 
the right-hand side of this inequality is at most equal to 

Gc(heightT- 1, total(p1))+ Gc(heightT- 1, total(p2) ) 

+ (6 + d) x/~ height r 

The definition of Gc implies that this latter expression is at most equal to 
Gc(heightr, total(p)), as needed. | 

6. THE FINAL ANALYSIS 

In this section, we combine the monotonicity analysis and the sequential 
analysis, to obtain an upper bound for the expected cost for the algorithm. 

6.1. Relationship Between the Costs 

Now we require the following restrictions. 

RESTRICTION 1. T is a weighted tree, and the nondeterministic choice 
step in Part (2) of  the algorithm uses a call to randomr, s. 
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RESTRICTION 2. Delivery time for messages is always exactly 1. 

With these restrictions, there is a close relationship between the costs of 
our general algorithm and the cost of the sequential algorithm MATCH. 

LEMMA 21. seqcostr,p = l ima .  ~(bnumT.,p(a,f) + vbnumr, p(a,f)). 

Proof There is an absolute upper bound on the time for our algorithm 
to satisfy a single request, in the absence of concurrent requests. Thus, as a 
increases, the probability that there are any concurrent requests 
approaches 0. 

Therefore, the limiting case of the general algorithm behaves like 
MATCH. There is no backtracking, so the total search time just reduces to 
the sum of the distances from requests to the resources which satisfy them. 
This sum is just the total number of buyer and virtual buyer messages. [ 

Now let us add one more restriction: 

RESTRICTION 3. T has all leaves at the same distance from the root, and r 
and p are nonzero only at leaves. 

With this added restriction, we can prove a variant of the preceding 
lemma. 

LEMMA 22. seqcostr, p = 2lima_ ~(bnumr, p(a,f)). 

Proof By Lemmas21 and 4. | 

This immediately implies the following bound on the cost of the general 
algorithm. 

LEMMA 23. costT,p(f)~<2seqcostT.p. 

Proof By Theorem 11 and Lemma 22. | 

6.2. The Main Theorem 

Now we are ready to present the main result, the upper bound for the 
expected cost for the general algorithm. In order to apply the results of 
both the monotonicity analysis and the sequential analysis, we must 
assume the restrictions made for both cases. More specifically, we assume 
all of Restrictions 1-5: 

RESTRICTION 1. T is a weighted tree, and the nondeterministic choice step 
in Part (2) of the algorithm uses a call to randomv, s. 

RESTRICTION 2. Delivery time for messages is always exactly 1. 



84 LYNCH ET AL. 

RESTRICTION 3. T has all leaves at the same distance from the root, and r 
and p are nonzero only at leaves. 

RESTRICTION 4. T & a complete binary tree. 

RESTRICTION 5. p is d-fair (for some arbitrary but f ixed d). 

THEOREM 24. Let f be a probability function. Then costT,p(f) is 

O(x/size rtotal(p)). (more specifically, costr, p( f)  <~ 2(3 v/2 + 4) 
((6 + d)xf2 ) x/2heignt~total(p).) 

Proof. By Lemma 23 and Theorem 20. | 

In particular, provided that total(p) is proportional to sizer, the expec- 
ted average time taken by this algorithm to satisfy a single request is con- 
stant, independent of the size of the network. 

Remark. It is possible to prove a variant of Theorem 24, for the case in 
which the placement p is chosen at random using ~0r (just as the request 
locations are chosen), rather than being d-fair. We sketch the ideas briefly. 

First, we must extend the cost definitions to include expectations taken 
over placements of a partictdar length. Thus, we define costT, t ( f)  to be the 
expected value of costT,p(f) for p with total ( p ) =  t. Analogous definitions 
are made for seqcostr,, and overflowT, t. Lemma23 then implies that 
costT.,(f)<<.2seqcostr.t. It is also easy to see that overflowr, t-~< 
dx/~pr(verticesv~ ) t, for some constant d. 

Next, we prove a consequence of Lemrna 17 which says that seqcostr. , ~< 
Exp(t~,t2)witht~ + ,z =, (seqcostr~,t~ + seqcost T2,t2) + 2 height r overflowT.t. (Here, 
the expectation is taken over pairs which are obtained by using q~r to 
assign resources to T 1 or T2.) This obviously implies that seqcostv, t~< 
max~,~,,2)w~th,1 + ,2 = ~ (seqcost T,.,~ + seqcost ~,,2) + 2 height r overflow ~.~. 

Now we prove a variant of Theorem 20 which says that seqcostT, t is 
O ( ~ .  More specifically, we show that seqcostr, t~<Gc(heightr, t), 
where c = dx/~. This is easily done by induction as before, using the new 
lemmas just described. Combining these results, we see that costT, t ( f)  is 
o ). 

7. REMAINING QUESTIONS 

There are several directions for remaining research. First, we would like 
to extend the analysis of the general algorithm. We would like to loosen 
our restrictions on tree shape, message delivery time, and locations for 
resources and requests. If we do this, is it possible to carry out an analysis 



PROBABILISTIC ANALYSIS NETWORK 85 

similar to the one in this paper? In particular, can the concurrent cases of 
the algorithm still be bounded in some way in terms of the sequential case? 

We would also like to extend the analysis of the sequential algorithm 
MATCH. Here, we would like to loosen restrictions on tree shape and on 
locations for resources and requests. There are some apparent 
improvements in the algorithm, for example, adjusting the probabilities for 
the choice among children in response to knowledge of the number of 
resources remaining in each subtree. While this seems like an improvement, 
the resulting algorithm seems harder to analyze (since the recursive decom- 
position does not appear to work). Can any simple modifications be shown 
to be improvements? 

We would like to compare the performance of this algorithm to that of 
alternative algorithms which solve the same problem. We have already 
observed that this algorithm performs much better than the centralized 
algorithm, which locates all resources at the root. How does it compare to 
algorithms which allow requests to search for resources in parallel rather 
than sequentially? What about algorithms which rebalance resources? Are 
there other interesting ideas for algorithms for this problem? 

Finally, the general analysis strategy is quite attractive. Proving a 
monotonicity result which bounds the concurrent cases of an algorithm 
interms of the sequential case, and then analyzing the sequential case by 
traditional techniques, appears quite tractable. The use of this strategy for 
our algorithm appears to depend on many special properties of the 
algorithm and on restrictions on the execution. Is the strategy more 
generally useful? For what type of algorithms can it be used? 
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