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1. Introduction

Given two sequencesA = a1a2 . . . am and B =
b1b2 . . . bn, m 6 n, over some alphabetΣ of size s
the longest common subsequence (LCS) problem is
to find a sequence of greatest possible length that can
be obtained from bothA andB by deleting zero or
more (not necessarily adjacent) symbols. Applications
for the LCS problem arise in many different areas
since the length,p, of a longest common subsequence
can be viewed as a simple measure of similarity
between two sequences. There is a wide range of
efficient algorithms, suiting different purposes, which
can compute the length of an LCS using only linear
space [7]. The space requirement of these algorithms
usually rises to O(mn) when a longest common
subsequence has to be constructed, and, as stated
in [2], it is not obvious in general that an LCS
algorithm can be adapted to run in linear space without
substantial alteration of its time complexity.

In this paper we show how to maintain the
O(min{pm,p(n − p)}) time complexity and linear
space of the algorithm introduced in [11] which seems
to have been widely accepted as very fast and flexi-
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ble. All linear space implementations, including ours,
rely on variations of a divide and conquer scheme first
introduced by Hirschberg [5]. The main difficulty in
keeping up the time complexity of an algorithm is to
find a suitable partition into two subproblems such
that the time to solve these is about half the time re-
quired for the original problem [2]. Although the as-
ymptotic time complexity could be shown to remain
unchanged for some algorithms, the application of the
divide and conquer scheme introduces some overhead,
which can be estimated theoretically for the worst-
case, and which varies for different methods suggested
so far. In its ideal form, i.e., when problems are evenly
split into subproblems, one can expect a doubling of
the original running time. But in order to split the prob-
lem evenly some methods have to calculate the length
of an LCS in a separate stage preceding the divide and
conquer scheme [3,8]. So their performance can be ex-
pected to be three times that of the original algorithm.
Recently, Goeman and Clausen [4] suggested a vari-
ation of the algorithm from [11] and developed a lin-
ear space implementation. Although they report exper-
iments indicating that their algorithm is fast in prac-
tice they had to add anm logm term with respect to
the asymptotic running time, and they obtain a worst-
case overhead factor of 5.25 since their algorithm is
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Table 1
Linear space algorithms computing an LCS.c gives the theoretical worst-case overhead

Year Author(s) Time c Paradigm

1975 Hirschberg [5] O(mn) 2 dyn. programming

1985 Apostolico, Guerra [1] O(m logm+ pm) [2, logm] contours

1986 Myers [9] O(n(n−p)) 2 shortest path

1987 Kumar, Rangan [8] O(n(m− p)) 3 contours

1990 Wu et al. [12] O(n(m− p)) 2 shortest path

1992 Apostolico et al. [3] O(n(m− p)) 3 contours

1992 Apostolico et al. [3] O(pm) 3 contours

1999 Goeman, Clausen [4] O(min{pm,m logm+ p(n− p)}) [5.25, logm] contours

1999 this paper O(min{pm,p(n− p)}) 2 contours

not guaranteed to split the LCS evenly. Therefore, de-
pending onp, the overhead varies between 5.25 and
logm. The details of their method are quite involved.
Table 1 gives a survey of linear space algorithms for
the LCS problem. Most algorithms also have to per-
form some additional bookkeeping which is difficult
to estimate theoretically. We omitted the times neces-
sary for some standard preprocessing, solving the so-
called string identification problem, since it does not
affect the time complexity of the divide and conquer
scheme for the main processing phase.

Our linear space implementation of the algorithm
from [11] also employs the divide and conquer scheme
and, like in most linear space implementations, it ex-
ploits the fact that the basic algorithm can equally well
be applied to the reversed input strings. We highlight
general structural facts concerning this symmetry and
use these facts to develop a general method which
(1) eliminates the need for a separate stage to compute

the length;
(2) splits an LCS evenly;
(3) supports a speed up of the computation in practice.
Using this method we are able to reduce the theoret-
ical overhead factor to 2 for a variety of algorithms
based on the same paradigm (contours) to compute an
LCS [6,3,11]. We will shortly review this paradigm
in Section 2. Before, such a factor was only known
to be achievable for the basic dynamic programming
algorithm [5], and for algorithms employing a differ-
ent paradigm [9,12]. For these latter algorithms it was
observed [10] that in practice finding a midpoint (and
thus the length) of an LCS by attacking the problem

from two sides was twice as efficient as the basic al-
gorithm, which means that the time overhead of the
divide and conquer scheme is negligible.

2. Computing contours

It is common to describe the LCS problem in the
following way. An ordered pair(i, j), 1 6 i 6 m,
16 j 6 n is called amatchif ai = bj . The setM of
all matches can be represented by amatching matrix
of sizem × n in which each match is identified by
a circle. Two matches(i, j) and (i ′, j ′) may be part
of the same common subsequence if and only ifi <

i ′ ∧ j < j ′ or i ′ < i ∧ j ′ < j . A sequence of matches
that is strictly increasing in both components is called
a chain. The LCS problem can now be viewed as
finding a longest chain.

For a match(i, j) we say that it is ofrank k if the
length of a longest chain ending at(i, j) is k. Thus,
M can be partitioned into classesC1,C2, . . . ,Cp ,
each class containing matches of the same rank. It
is well known that these classes exhibit a special
structure in the matching matrix. If sorted with respect
to the first component, matches belonging to the
same class shift from right to left, and they form so-
called contourswhen connected by lines as shown
in Fig. 1(a). Contours of different classes may never
cross or touch, and the contour of each class divides
the matrix into a top/left part and a bottom/right part.
Each contour can be completely specified bydominant
matches, i.e., those matches(i, j) in a class for which
there is no other match(i ′, j ′) in the same class with
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Fig. 1. Forward contours (a) and backward contours (b).

i ′ = i ∧ j ′ < j or i ′ < i ∧ j ′ = j . They are indicated
by bold circles in Fig. 1. Note that there will always
be an LCS consisting only of dominant matches. For
more background on this see, for example, [11].

One way to find a longest common subsequence is
to compute these classes (or contours) rank by rank
employing the mentioned structural properties. This
was first suggested by Hirschberg [6]. Efficiency was
later gained by concentrating on the computation of
dominant matches [3]. We note that the algorithm
from [11] can be easily modified to work in the
same style while maintaining its time bound. It is
this modified algorithm for which we describe a
linear space implementation. Details on how these
algorithms actually compute the contours are not
important to understand our approach. However, we
have to keep in mind that they will only determine the
dominant matches.

3. The new method

Note that the strategy sketched in the previous
section would equally well work to compute the length
of an LCS if applied from the back of the strings (i.e.,
to the reversed input strings). In this way we may
obtainbackward contoursas opposed to our standard
forward contours. The number of forward contours
and backward contours will be the same and for every
match there will be a unique forward contour and
a unique backward contour. We will denote the set

of matches withforward rank k by FCk and those
with backward rankk by BCk . Forward contours and
backward contours might look very different as can be
seen in Fig. 1. Nevertheless they are related in a special
way which forms the basis of our new approach.

Lemma 1. Let p be the length of an LCS between
strings A and B. Then for every match(i, j) the
following holds:

There is an LCS containing(i, j) if and only if(i, j)
lies on thekth forward contourandon the(p−k+1)st
backward contour for somek ∈ [1,p].

Proof. (⇒) If there is a forward chain of lengthk
ending at(i, j) and a backward chain of lengthp −
k + 1 ending at(i, j) we can glue them together to
obtain a CS of lengthp.
(⇐) Assume there is an LCS containing(i, j) as its

kth element. Then(i, j) has forward rank at leastk and
backward rank at leastp − k + 1 since matches of an
LCS form a chain of lengthp. Would its forward rank
or its backward rank be greater thank or p − k + 1,
respectively we could construct a CS of length> p.
But this would contradictp being the length of an
LCS. 2

Based on this lemma our idea to compute the length
and the midpoint of a longest common subsequence
is as follows. Start computing forward contours and
backward contours in an alternating fashion, i.e., use
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Fig. 2. Forward and backward contours overlayed.

the orderFC1,BC1,FC2,BC2, . . . . In this way more
and more matches will be covered, i.e., assigned
to a forward contour or to a backward contour.
Sooner or later there will also be matches covered
by both a forward contour and a backward contour.
In particular this means that forward contours and
backward contours will start to cross (see Fig. 2 for
an example). Observing the last contour which covers
matches not assigned to any previous contour we
will have found the length of an LCS, and any of
the matches covered by this last contour for the first
time may serve as a midpoint of an LCS (when the
length of an LCS is even, say 2k, our “midpoint” will
be the (k + 1)st match on an LCS). Then we can
apply the same algorithm recursively. We now prove
that this method is in fact correct and that it can be
implemented efficiently.

We define setsMi containing the matches which re-
main uncovered by contours computed up to certain
points in the computation:M0 :=M,M1 :=M0\FC1,
M2 := M1 \ BC1, and for i > 2 we setM2i−1 :=
M2(i−1) \ FCi andM2i := M2i−1 \ BCi . For exam-
ple, in Fig. 2(a)M4 = {(3,6), (5,5), (5,4)} while in
Fig. 2(b)M5= ∅. Obviously,M =M0⊃M1⊃M2⊃
M3⊃ · · ·. Let p̂ be the minimal index such thatMp̂ =
∅.

Lemma 2. The length of an LCS iŝp and each match
in Mp̂−1 is a possible midpoint of an LCS.

Proof. We only prove the case wherêp is odd. The
other case is analogous. Our situation is as follows.
SinceMp̂ is the first set equal to∅, the matches in
Mp̂−1 were covered byFCk , k = (p̂ + 1)/2, but not
by any contourFCl , BCl , l < k. So their forward rank
and their backward rank is at leastk which means that
a CS of length 2k−1= p̂ exists. We have to show that
there can be no longer CS. In order to prove this we
will argue that there can be no match whose forward
rank and backward rank adds up to more than 2k.

We claim that all matches inMp̂−1 are also onBCk .
Assume some match(i, j) ∈Mp̂−1 has backward rank
> k. This means that there has to be some match
(i ′, j ′) of backward rankk which succeeds a match
in BCk−1 and precedes(i, j) on a backward chain.
But such a match would not have been covered by any
FCl , l 6 k, or anyBCl , l < k. This, however, would
imply thatMp̂ 6= ∅. A contradiction. Also note that
all matches onFCk except those inMp̂−1 are covered
by someBCl, l < k, i.e.,Mp̂−1= FCk \BC∗k−1 where
BC∗t :=

⋃t
i=1 BCi (FC∗t is defined analogously). So no

match onFCk has backward rank> k.
This claim is the basis of an induction which,

using similar arguments, shows that for 16 l 6 k − 1
all matches inFCk−l \ BC∗k−1+l are onBCk+l and,
symmetrically, that all matches inBCk−l \ FC∗k−1+l
are onFCk+l . From this it follows that for 16 l 6 k−
1, BCk+l ⊆ FC∗k−l and thatFCk+l ⊆ BC∗k−l . But then
there is no match whose forward rank and backward
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rank sum up to more than(k+ l)+ (k− l)= 2k which
implies that no CS of length> 2k− 1= p̂ exists.

Since matches inMp̂−1 are on bothFCk andBCk
they are possible midpoints of an LCS by Lemma 1.2

We can not, however, keep track of these sets
explicitly in order to findp̂. This would be too costly.
We need a criterion to detect that all matches have
been covered which is solely based on the knowledge
of dominant matches (this is all the information we
can expect to obtain from our algorithm). Further, we
would like to identify at least one dominant match as
midpoint of an LCS. The basic idea is to check how the
two most recently computed contours interact. From
our alternating order of computation this will always
be contoursFCf and BCb with f − b 6 1. Let f̂
and b̂ be the minimal indices such that no dominant
match inBC

b̂
is to the bottom/right of any dominant

match inFC
f̂

(or, equivalently, no dominant match in
FC

f̂
is to the top/left of any dominant match match

in BC
b̂
). Intuitively, this is the first time that the two

contours do not cross anymore (they will, however,
touch each other at least once). The following lemma
shows that this is a suitable termination criterion for
our computation.

Lemma 3.
(1) The length of an LCS iŝb+ f̂ − 1.
(2) FC

f̂
and BĈ

b
share at least one match which is

dominant on FĈ
f

and/or BĈ
b
.

Proof. We only prove the casêb = f̂ , i.e., BC
b̂

is

the last computed contour (the caseb̂ + 1 = f̂ is
symmetric).

First we prove (2), i.e., we show that at least one
dominant match onBC

b̂
is on FC

f̂
. Since f̂ and b̂

are minimal we can conclude that there is a dominant
match(i, j) ∈ FC

f̂
which is to the top/left of some

dominant match onBC
b̂−1 and which is covered by

BC
b̂
. Consider the dominant match(i ′, j ′) ∈ BC

b̂

which shares at least on component with(i, j). We
claim that(i ′, j ′) ∈ FC

f̂
. From the shape of contours

we know that eitheri 6 i ′ ∧ j = j ′ or i ′ = i ∧ j 6 j ′.
So if (i ′, j ′) /∈ FC

f̂
it would have to be located to the

bottom/right of some dominant match onFC
f̂

. But
this contradictsf̂ andb̂ being minimal.

Now we prove that̂b+ f̂ − 1= p̂ (then (1) follows
from Lemma 2). Since no dominant match onBC

b̂
is

to the bottom/right of any dominant match onFC
f̂

we
can also conclude thatBC

b̂
⊆ FC∗

f̂
. But this means

that all matches will still be covered byFC∗
f̂

and
BC∗

b̂−1
and thereforêp 6 f̂ + b̂−1. On the other hand

FC
f̂

andBC
b̂

share at least one match (by (2)). This
match would not be covered byFC∗

f̂−1
andBC∗

b̂−1
and

sop̂ > f̂ + b̂− 2. 2
So all we must be able to do is to check whether

dominant matches of the most recent contour are to
the top/left, to the bottom/right or on the contour com-
puted just before the most recent contour. With respect
to the time complexity it is important to perform these
tests in time proportional to the number of dominant
matches of the contours involved. Assuming that dom-
inant matches of both contours are available as sorted
lists (e.g., from bottom/left to top/right) and noting the
special shape of contours it is not difficult to see that
a single appropriate scan of the lists is sufficient. The
discussion above finally gives

Theorem 4. A longest common subsequence can be
constructed inO(ns +min{pm,p(n− p)}) time and
linear space.

Proof. Time and space O(ns) is needed for a stan-
dard preprocessing stage solving the so-called string
identification problem. This supports certain queries
during the main processing stage. Note, however, that
we have to solve this problem only once before start-
ing the divide and conquer scheme. So the crucial
part is the analysis of this scheme for the main al-
gorithm. Since we only need to retain information on
the most recent forward contour and on the most re-
cent backward contour space requirement is clearly
bounded by O(n). Computing the forward contours
takes time O(min{12pm, 1

2p(n−p)}) as does the com-
putation of the backward contours. The number of
dominant matches on each contour is bounded by
O(min{m,(n− p)}). So checking for termination ac-
cording to Lemma 3 is within our time bound. The to-
tal time to compute the length and the midpoint of an
LCS therefore remains O(ns +min{pm,p(n− p)}).

We split the problem at some match(m′, n′) on
contourd1

2pe which is the midpoint of the LCS to be
constructed. Then we recursively determine an LCS
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of lengthp1 = d1
2pe − 1, for the lengthm′ − 1 and

lengthn′ − 1 prefixes ofA andB, respectively, and
an LCS of lengthp2 = b1

2pc, for the lengthm − m′
and lengthn − n′ suffixes ofA andB, respectively.
Sop1+ p2 = p − 1 andp1,p2 6 1

2p. The recursion
is stopped whenever we discover a subproblem having
an LCS of length zero or when the length of the shorter
string of the subproblem equals the length of an LCS.
In the later case all characters of the shorter string must
be part of the LCS. Note that we will always know the
length of an LCS which has to be found for a certain
subproblem.

The actual number of steps performed by the
original algorithm is upper bounded by 2· min{pm,
p(n − p)}. In calculating the timeT1 to find the
midpoints of the two subproblems on the first level of
the recursion we have to consider both bounds in turn.
First we have

T16 2 · p1(m
′ − 1)+ 2 · p2(m−m′)

6 p(m′ − 1+m−m′)
6 pm.

In the other case there is a subtlety sincen=max{m,n}
is assumed in the time bound of the basic algorithm.
But after splitting at(m′, n′) it does not necessarily
hold that

max{m′ − 1, n′ − 1} +max{m−m′, n− n′}
6max{m,n}.

However, we note that the time bound of the basic
algorithm can be reduced top(n− p)+ p(m− p) 6
2 · p(n− p) whenp is known. Then we have

T16 p1(m
′ − 1− p1)+ p1(n

′ − 1− p1)

+ p2(m−m′ − p2)+ p2(n− n′ − p2)

6 p
2
(m′ − 1− p1+m−m′ −p2)

+ p
2
(n′ − 1− p1+ n− n′ − p2)

= p
2

(
m− 1− (p1+ p2)

)
+ p

2

(
n− 1− (p1+ p2)

)
= p

2
(m− p)+ p

2
(n− p).

So T1 6 min{pm,p(n − p)}. Continuing the recur-
sion, the total time to compute an LCS will be bounded
by

2 ·
logm∑
i=0

(
1

2

)i
min

{
pm,p(n−p)}

6 4 min
{
pm,p(n− p)}

giving a worst-case overhead factor of 2.2
Apart from eliminating the need for an extra stage

to compute the length of an LCS the alternating com-
putation of forward contours and backward contours
supports an additional speedup of the implementa-
tion. Observing the crossing of the two most recently
computed contours, sayFCf andBCb, we can iden-
tify parts of the next contour which need not be
computed at all. In general there will be matches
on (i, j) ∈ FCf which have been covered by some
BCl , l 6 b (a symmetric observation holds forBCb).
Thus the sum of the forward rank and backward rank
of (i, j) will be at mostf + b. Any match (i ′, j ′)
on FCf+1 which originates from(i, j) (i.e., i < i ′ ∧
j < j ′) will be covered by someBCl′, l′ < l. This
means that the sum of the forward rank and back-
ward rank of (i ′, j ′) will not exceedb + f . But
our goal is to identify some match maximizing this
sum. The valueb + f may only be exceeded by
matches onFCf+1 which have been uncovered so
far or which have been covered byBCb. Fig. 3 il-
lustrates this situation. Thus we have the following
fact.

Lemma 5. It is sufficient to compute only those
matches on FCf+1 which originate from(dominant)
matches(i, j) ∈ FCf \ BC∗b.

A similar statement holds for the computation of
BCb+1. An easy way to apply this observation in
practice is to find the two “outer” matches inFCf \
BC∗b, i.e., the leftmost and the rightmost one (in
Fig. 3 this would be matchesa andb). We then only
determine that part ofFCf+1 which originates from
matches onFCf located between these two outer
matches. Note that finding (one of) the outer matches
is also necessary to check for termination. This is
easily done by scanning the sorted lists of dominant
matches of the involved contours. In practice we can
expect those parts of the contours that really have to be
computed to get smaller and smaller as we approach
the middle of an LCS.
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Fig. 3. Cutting of contours.

4. Conclusion

We presented a new simple method to obtain fast
linear space implementations for some LCS algo-
rithms. In particular we showed that an LCS can be
constructed in O(ns +min{pm,p(n − p)}) time and
linear space.
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