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1. Introduction ble. All linear space implementations, including ours,
rely on variations of a divide and conquer scheme first
Given two sequenced = aiaz...a,; and B = introduced by Hirschberg [5]. The main difficulty in
biby...b,, m < n, over some alphabeX of sizes keeping up the time complexity of an algorithm is to

the longest common subsequence (LCS) problem isfind a suitable partition into two subproblems such
to find a sequence of greatest possible length that canthat the time to solve these is about half the time re-
be obtained from bottd and B by deleting zero or  quired for the original problem [2]. Although the as-
more (not necessarily adjacent) symbols. Applications ymptotic time complexity could be shown to remain
for the LCS problem arise in many different areas unchanged for some algorithms, the application of the
since the lengthp, of a longest common subsequence divide and conquer scheme introduces some overhead,
can be viewed as a simple measure of similarity which can be estimated theoretically for the worst-
between two sequences. There is a wide range of case, and which varies for different methods suggested
efficient algorithms, suiting different purposes, which  so far. In its ideal form, i.e., when problems are evenly
can compute the length of an LCS using only linear split into subproblems, one can expect a doubling of
space [7]. The space requirement of these algorithmsthe original running time. But in order to split the prob-
usually rises to ©un) when a longest common  |em evenly some methods have to calculate the length
subsequence has to be constructed, and, as state@dfan LCS in a separate stage preceding the divide and
in [2], it is not obvious in general that an LCS conquerscheme [3,8]. So their performance can be ex-
algorithm can be adapted to runin linear space without pected to be three times that of the original algorithm.
substantial alteration of its time complexity. Recently, Goeman and Clausen [4] suggested a vari-

In this paper we show how to maintain the ation of the algorithm from [11] and developed a lin-
O(min{pm, p(n — p)}) time complexity and linear  gar space implementation. Although they report exper-
space of the algorithm introduced in [11] which seems jents indicating that their algorithm is fast in prac-
to have been widely accepted as very fast and flexi- 4jce they had to add am logm term with respect to

the asymptotic running time, and they obtain a worst-
E-mail addressrick@cs.uni-bonn.de (C. Rick). case overhead factor of 5.25 since their algorithm is

0020-0190/00/$ — see front mattér 2000 Elsevier Science B.V. All rights reserved.
PIl: S0020-0190(00)00114-9



276 C. Rick / Information Processing Letters 75 (2000) 275-281

-Il_-iibe]j\rlspace algorithms computing an L&Sjives the theoretical worst-case overhead

Year  Author(s) Time c Paradigm

1975  Hirschberg [5] Qnn) 2 dyn. programming
1985 Apostolico, Guerra [1] @:logm + pm) [2,logm] contours

1986 Myers [9] Qn(n — p)) 2 shortest path
1987  Kumar, Rangan [8] @(m — p)) 3 contours

1990 Wuetal. [12] O (m — p)) 2 shortest path
1992  Apostolico et al. [3] Qi(m — p)) 3 contours

1992  Apostolico et al. [3] Qm) 3 contours

1999 Goeman, Clausen [4] (@in{pm,mlogm + p(n — p)}) [5.25logm] contours
1999 this paper Onin{pm, p(n — p)}) 2 contours

not guaranteed to split the LCS evenly. Therefore, de- from two sides was twice as efficient as the basic al-
pending onp, the overhead varies between 5.25 and gorithm, which means that the time overhead of the
logm. The details of their method are quite involved. divide and conquer scheme is negligible.
Table 1 gives a survey of linear space algorithms for
the LCS problem. Most algorithms also have to per-
form some additional bookkeeping which is difficult
to estimate theoretically. We omitted the times neces- It is common to describe the LCS problem in the
sary for some standard preprocessing, solving the so-following way. An ordered pair(, j), 1 <i < m,
called string identification problem, since it does not 1< j < n is called amatchif a; = b;. The setM of
affect the time complexity of the divide and conquer all matches can be represented bgatching matrix
scheme for the main processing phase. of sizem x n in which each match is identified by
Our linear space implementation of the algorithm a circle. Two matchesi, j) and (i’, ;) may be part
from [11] also employs the divide and conquer scheme of the same common subsequence if and only«f
and, like in most linear space implementations, it ex- i’ A j < j ori’ <i A j' < j. A sequence of matches
ploits the fact that the basic algorithm can equally well that is strictly increasing in both components is called
be applied to the reversed input strings. We highlight a chain The LCS problem can now be viewed as
general structural facts concerning this symmetry and finding a longest chain.

2. Computing contours

use these facts to develop a general method which For a match(i, j) we say that it is ofank « if the
(1) eliminates the need for a separate stage to computelength of a longest chain ending &t j) is k. Thus,
the length; M can be partitioned into classés;, Co, ..., Cp,
(2) splits an LCS evenly; each class containing matches of the same rank. It

(3) supports a speed up of the computation in practice. is well known that these classes exhibit a special
Using this method we are able to reduce the theoret- structure in the matching matrix. If sorted with respect
ical overhead factor to 2 for a variety of algorithms to the first component, matches belonging to the
based on the same paradigm (contours) to compute ansame class shift from right to left, and they form so-
LCS [6,3,11]. We will shortly review this paradigm called contourswhen connected by lines as shown
in Section 2. Before, such a factor was only known in Fig. 1(a). Contours of different classes may never
to be achievable for the basic dynamic programming cross or touch, and the contour of each class divides
algorithm [5], and for algorithms employing a differ- the matrix into a top/left part and a bottom/right part.
ent paradigm [9,12]. For these latter algorithms it was Each contour can be completely specifiedloyninant
observed [10] that in practice finding a midpoint (and matchesi.e., those matcheg, j) in a class for which
thus the length) of an LCS by attacking the problem there is no other matcfi’, j’) in the same class with
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(@ (b)

Fig. 1. Forward contours (a) and backward contours (b).

i"=inj <jori’<inj =j. They are indicated of matches withforward rank k by FC; and those

by bold circles in Fig. 1. Note that there will always with backward rankk by BC;.. Forward contours and

be an LCS consisting only of dominant matches. For backward contours might look very different as can be

more background on this see, for example, [11]. seenin Fig. 1. Nevertheless they are related in a special
One way to find a longest common subsequence is way which forms the basis of our new approach.

to compute these classes (or contours) rank by rank

employing the mentioned structural properties. This Lemma 1. Let p be the length of an LCS between

was first suggested by Hirschberg [6]. Efficiency was strings A and B. Then for every matchi, j) the

later gained by concentrating on the computation of following holds

dominant matches [3]. We note that the algorithm  There is an LCS containing, ;) if and only if(i, /)

from [11] can be easily modified to work in the Jies on thekth forward contoumndon the(p —k +1)st

same style while maintaining its time bound. It is backward contour for somee [1, p].

this modified algorithm for which we describe a

linear space implementation. Details on how these pygof. (=) If there is a forward chain of length

algorithms actually compute the contours are not ending at(i, j) and a backward chain of lengfh—

important to understand our approach. However, we ; 4 1 ending at(i, j) we can glue them together to

have to keep in mind that they will only determine the gptain a CS of lengtip.

dominant matches. (<) Assume there is an LCS containifig j) as its

kth element. Thel, j) has forward rank at leaktand

backward rank at leagt — k + 1 since matches of an

LCS form a chain of lengtly. Would its forward rank
Note that the strategy sketched in the previous or its backward rank be greater tharor p — k + 1,

section would equally well work to compute the length  respectively we could construct a CS of lengttp.

of an LCS if applied from the back of the strings (i.e., But this would contradictp being the length of an

to the reversed input strings). In this way we may LCS. O

obtainbackward contoursis opposed to our standard

forward contours The number of forward contours Based on this lemma our idea to compute the length

and backward contours will be the same and for every and the midpoint of a longest common subsequence

match there will be a unique forward contour and is as follows. Start computing forward contours and

a unique backward contour. We will denote the set backward contours in an alternating fashion, i.e., use

3. The new method
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Fig. 2. Forward and backward contours overlayed.

the orderFCq, BCy, FC2, BCy, .... In this way more Proof. We only prove the case whejgis odd. The
and more matches will be covered, i.e., assigned other case is analogous. Our situation is as follows.
to a forward contour or to a backward contour. SinceM; is the first set equal t@, the matches in
Sooner or later there will also be matches covered M;_; were covered byrCy, k = (p + 1)/2, but not

by both a forward contour and a backward contour. by any contouFC,;, BG;, I < k. So their forward rank

In particular this means that forward contours and and their backward rank is at ledsthich means that
backward contours will start to cross (see Fig. 2 for a CS of length 2— 1 = p exists. We have to show that
an example). Observing the last contour which covers there can be no longer CS. In order to prove this we
matches not assigned to any previous contour we il argue that there can be no match whose forward
will have found the length of an LCS, and any of rank and backward rank adds up to more thian 2

the matches covered by this last contour for the first  \we claim that all matches it 51 are also orBCy.
time may serve as a midpoint of an LCS (when the Assume some mataf, j) e M4 has backward rank
length of an LCS is even, say: 2our “midpoint” will > k. This means that there has to be some match
be the (k + 1)st match on an LCS). Then we can ;) of backward rankk which succeeds a match
apply the same algorithm recursively. We now prove i, gc,_; and precedesi, j) on a backward chain.
that this method is in fact correct and that it can be gt sych a match would not have been covered by any

implemented efficiently. _ FC;, | <k, or anyBC;, I < k. This, however, would
We define setd/; containing the matches which re- imply that M; + . A contradiction. Also note that

ma_lin u_ncovered by cpntours computed up to certain all matches ofFC; except those in/;_y are covered
points in the computatioo := M, My := Mo\ FCy, by someBG;, I <k, i.e.,M;_1 =FC; \ BC;_, where
M := My \ BCy, and fori > 2 we setMy;y := BC' :=|J!_, BG; (FC; is defined analogously). So no
Mai—1) \ FC; and My; := Mai—1 \ BG;. For exam- -, ONFC; has backward rank k.

ple, in Fig. 2()Ma = {(3,6), (5,5), (5, 4)} while in This claim is the basis of an induction which,

;I[gj(b)MLZ;&@b(Sta\g?rl]ﬁXnﬂadlE(ﬁizuﬁgﬁ chaﬁzz 2 using similar arguments, shows that fol <k — 1
N P all matches inFCj_; \ BCZ_HZ are onBC,; and,
symmetrically, that all matches iBC,—; \ FC;_,
are onFCy;. From this it follows that for X I <k —
Lemma 2. The length of an LCS ig and each match 1, BC,y; € FC}_, and that~C;,, € BC;_,. But then

in Mj_4 is a possible midpoint of an LCS. there is no match whose forward rank and backward
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rank sum up to more thai + /) 4+ (k — 1) = 2k which
implies that no CS of length 2k — 1= p exists.

Since matches in/;_; are on bothFC; andBCy
they are possible mldpomts ofan LCS by Lemma 1.
a

279

Now we prove thab + f — 1= p (then (1) follows
from Lemma 2). Since no dominant match BG; is
to the bottom/right of any dominant match B& ; we
can also conclude th&C; € FC%. But this means
that all matches will S'[I|| be cdilered bC* and
BC: . andtherefore < f+b 1.0Onthe oth}ér hand

We can not, however, keep track of these sets FCf_and BC; share at least one match (by (2)). This

explicitly in order to findp. This would be too costly.

match Would not be covered lF;C* andBCZ_1 and

We need a criterion to detect that all matches have sop > f +bh—2. O

been covered which is solely based on the knowledge

of dominant matches (this is all the information we
can expect to obtain from our algorithm). Further, we
would like to identify at least one dominant match as
midpointof an LCS. The basic idea is to check how the
two most recently computed contours interact. From
our alternating order of computation this will always
be contoursFC; and BC, with f — b < 1. Let f
andb be the minimal indices such that no dominant
match inBC; is to the bottom/right of any dominant
match inFC ; (or, equivalently, no dominant match in
FC ; is to the top/left of any dominant match match
in BC;). Intuitively, this is the first time that the two
contours do not cross anymore (they will, however,
touch each other at least once). The following lemma
shows that this is a suitable termination criterion for
our computation.

Lemma 3.

(1) The length of an LCS i+ f — 1.

(2) FC]; and BG; share at least one match which is
dominant on F(}A and/or BG,.

Proof. We only prove the casé = f i.e., BC; is

the last computed contour (the caber 1 = f is
symmetric).

First we prove (2), i.e., we show that at least one
dominant match orBC; is on FC ;. Since f and 5

So all we must be able to do is to check whether
dominant matches of the most recent contour are to
the top/left, to the bottom/right or on the contour com-
puted just before the most recent contour. With respect
to the time complexity it is important to perform these
tests in time proportional to the number of dominant
matches of the contours involved. Assuming that dom-
inant matches of both contours are available as sorted
lists (e.g., from bottom/left to top/right) and noting the
special shape of contours it is not difficult to see that
a single appropriate scan of the lists is sufficient. The
discussion above finally gives

Theorem 4. A longest common subsequence can be
constructed inO(ns + min{pm, p(n — p)}) time and
linear space.

Proof. Time and space @s) is needed for a stan-
dard preprocessing stage solving the so-called string
identification problem. This supports certain queries
during the main processing stage. Note, however, that
we have to solve this problem only once before start-
ing the divide and conquer scheme. So the crucial
part is the analysis of this scheme for the main al-
gorithm. Since we only need to retain information on
the most recent forward contour and on the most re-
cent backward contour space requirement is clearly
bounded by @). Computing the forward contours

are minimal we can conclude that there is a dominant takes time (Drn|n{2pm, 2p(n — p)}) as does the com-

match (i, j) € FCf which is to the top/left of some
dominant match of8C; , and which is covered by
BC;. Consider the dominant matcti’, ;') € BC;
which shares at least on component with;). We
claim that(i’, j/) € FC . From the shape of contours
we know that either <i'Aj=j ori’=inj<j.
Soif (i’, j) ¢ FC; it would have to be located to the
bottom/right of some dominant match cﬁCf But
this contradictsf andb being minimal. ‘

putation of the backward contours. The number of
dominant matches on each contour is bounded by
O(min{m, (n — p)}). So checking for termination ac-
cording to Lemma 3 is within our time bound. The to-
tal time to compute the length and the midpoint of an
LCS therefore remains @s + min{pm, p(n — p)}).

We split the problem at some match’, n’) on
contour(  p] which is the midpoint of the LCS to be
constructed. Then we recursively determine an LCS
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of length p1 = [§p] — 1, for the lengthn’ — 1 and
lengthn’ — 1 prefixes ofA and B, respectively, and
an LCS of lengthpz = 3 p], for the lengthvn — m’
and lengthn — n’ suffixes of A and B, respectively.
S0 p1+ p2 = p — 1 andps, p2 < 3 p. The recursion

C. Rick / Information Processing Letters 75 (2000) 275-281

logm

1\' .
2. 2(:)(5) mln{pm,p(n—p)}

<4min{pm, p(n — p)}

is stopped whenever we discover a subproblem having 9VVind @ worst-case overhead factor of 21

an LCS of length zero or when the length of the shorter
string of the subproblem equals the length of an LCS.

Apart from eliminating the need for an extra stage

In the later case all characters of the shorter string must {0 compute the length of an LCS the alternating com-

be part of the LCS. Note that we will always know the
length of an LCS which has to be found for a certain
subproblem.

The actual number of steps performed by the
original algorithm is upper bounded by- Znin{ pm,
p(n — p)}. In calculating the timeTy to find the
midpoints of the two subproblems on the first level of

the recursion we have to consider both bounds in turn.

First we have

T1<2 pr(m' —1)+2- po(m —m')
<pm' —14+m—m')
< pm.

In the other case there is a subtlety since max{m, n}

is assumed in the time bound of the basic algorithm.

But after splitting at(m’, n’) it does not necessarily
hold that

max{m’ —1,n" — 1} +maxim —m’,n —n'}
<max{m, n}.

However, we note that the time bound of the basic
algorithm can be reduced {(n — p) + p(m — p) <
2- p(n — p) whenp is known. Then we have

T1 < pi(m’ —1— p1) + p1(n’ —1— p1)
+ pa(m —m' — p2) + pa(n —n’ — p2)
< S —1=pi+m—m'—py)

+§(n/—1—171+n—n/—172)

=§(m—1—(p1+172))
+g(n—1—(Pl+P2))
_pP. P _

—2(m P)+2(n p).

So 71 < min{pm, p(n — p)}. Continuing the recur-
sion, the total time to compute an LCS will be bounded

by

putation of forward contours and backward contours
supports an additional speedup of the implementa-
tion. Observing the crossing of the two most recently
computed contours, s&Cy andBC;, we can iden-
tify parts of the next contour which need not be
computed at all. In general there will be matches
on (i, j) € FCy which have been covered by some
BC;, | < b (a symmetric observation holds f&C,).
Thus the sum of the forward rank and backward rank
of (i, j) will be at mostf + b. Any match (i’, j/)

on FCy1 which originates from(, j) (i.e.,i <i’ A

J < j") will be covered by som&Cy, I’ <[. This
means that the sum of the forward rank and back-
ward rank of (i’, j/) will not exceedb + f. But
our goal is to identify some match maximizing this
sum. The valueb + f may only be exceeded by
matches onFC,.1 which have been uncovered so
far or which have been covered BC,. Fig. 3 il-
lustrates this situation. Thus we have the following
fact.

Lemma 5. It is sufficient to compute only those
matches on FE1 which originate from(dominanj
matcheg(i, j) e FC; \ BC;.

A similar statement holds for the computation of
BCy+1. An easy way to apply this observation in
practice is to find the two “outer” matches FC \

BC;, i.e., the leftmost and the rightmost one (in
Fig. 3 this would be matchesandb). We then only
determine that part ofC .1 which originates from
matches onFC; located between these two outer
matches. Note that finding (one of) the outer matches
is also necessary to check for termination. This is
easily done by scanning the sorted lists of dominant
matches of the involved contours. In practice we can
expectthose parts of the contours that really have to be
computed to get smaller and smaller as we approach
the middle of an LCS.
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Fig. 3. Cutting of contours.

4. Conclusion Prague Stringology Club Workshop’99, Report DC-99-05, De-
partment of Computer Science and Engineering, Czech Tech-

We presented a new simple method to obtain fast  nical University, 1999, pp. 40-60. _ _
linear space implementations for some LCS algo- [5] D. Hirschberg, A linear space algorithm for computing maxi-
rithms. In particular we showed that an LCS can be mal common subsequences, Comm. ACM 18 (1975) 341-343.

. . . [6] D. Hirschberg, Algorithms for the longest common subse-
constructed in @:s + min{pm, p(n — p)}) time and quence problem, J. ACM 24 (1977) 664—675.

linear space. [7] D. Hirschberg, Serial computations of Levenshtein distances,
in: A. Apostolico, Z. Galil (Eds.), Pattern Matching Algo-
rithms, Oxford University Press, 1997, pp. 123-141.
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