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Abstract

This paper derives a closed formula for the number of spanning trees of a multi-complete/star related graphG = Kn −
Km(a1, a2, . . . , al;b1, b2, . . . , bm−l ), whereKm(a1, a2, . . . , al ;b1, b2, . . . , bm−l ) consists ofl complete graphs andm− l star
graphs such that theith complete graph hasai +1 nodes; thej th star graph hasbj +1 nodes, and further, the relatedm roots are
connected together to form a complete graph. The proposed results extend previous results to a larger graph class. In addition,
we provide a general maximization theorem for the multi-star graph. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

An undirected simple graphG consists of a set
V (G) of vertices and a setE(G) of edges. A complete
graphKn with n vertices has one edge between each
pair of distinct vertices. The complementG of a graph
G = (V ,E) on n vertices is defined to be then-
vertex graph containing exactly the edges ofKn which
are not inG. A multi-complete/star related (MCSR)
graph,

G=Kn −Km(a1, a2, . . . , al;b1, . . . , bm−l ),
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ganboon@csie.ntu.edu.tw (W.-M. Yan).
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is an n-vertex graph whose complement consists of
Km with l complete graphs andm − l star graphs
such that theith complete graph hasai + 1 nodes;
the j th star graph hasbj + 1 nodes. In addition, the
m roots (m− l roots come from them− l star graphs
andl roots come from thel complete graphs, any one
node in the complete graph being selected as the root)
are connected together to form a complete graph; the
remaining

k = n−m−
l∑
i=1

ai +
m−l∑
j=1

bj

vertices are isolated points. Fig. 1 illustrates the graph
K3(3;2,3).

Some special graphs considered in [1,2,4,5] are cov-
ered in the MCSR graph mentioned above. Specifi-
cally, when settingl = 0, i.e.,G = Kn − Km(b1, b2,
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Fig. 1.K3(3;2,3).

. . . , bm), the MCSR graph is the so-called multi-star
related (MSR) graph. A closed formula for counting
the number of spanning trees of an MSR graph was de-
rived in [3] for limitedm (in [6] for arbitrarym). How-
ever, the technique [3,6] used in deriving the closed
formulas for the number of spanning trees of an MSR
graph cannot be used to derive the closed formula
for the number of spanning trees of an MCSR graph
straightforwardly.

Employing some new linear algebraic manipula-
tions, this paper derives a closed formula for the num-
ber of spanning trees of an MCSR graph. The pro-
posed results cover the previous results in [1,2,4,5] and
extend the results in [3,6] to a larger graph class. In ad-
dition, we provide a general maximization theorem for
the multi-star graph.

2. Complement spanning tree matrix of an MCSR
graph

The complement spanning tree matrix (CSTM) [5]
C for a graphG is defined by

Cij =
{
n− d̄i , if i = j ,

eij , if i 6= j ,

whered̄i is the degree of vertexi in G andeij is one
if (i, j) is inE(G) and 0 otherwise.

From the result derived by Temperley [5], we have
the following result.

Lemma 1 [5]. For the MCSR graphG, the number of
spanning trees ofG, τ (G), is equal to|C|/n2, where
|C| represents the determinant of matrixC.

Fig. 2. LabelingK13−K3(3;2,3).

3. Labeling the MCSR graph

In this section, a method is presented for labeling
the MCSR graph. Given the MCSR graphG =Kn −
Km(a1, a2, . . . , al; b1, . . . , bm−l ), we label the nodes
in V (Kn)−V (Km(a1, a2, . . . , al; b1, . . . , bm−l)) first.
Next we label the roots of thel complete graphs. Then
we label the roots of them − l star graphs. Further,
we label the nodes in theith complete graph except
the root node fori = 1,2, . . . , l. Finally, we label the
nodes in thej th star graph except the root node for
j = 1,2, . . . ,m − l. Fig. 2 illustrates the labeling of
the complement ofK13−K3(3;2,3).

The CSTM of Fig. 2 is equal to

C =
(
nI2

D

)
,

where

D =



p1 1 1 1 1 1

1 p2 1 1 1

1 1 p3 1 1 1

1 α 1 1

1 1 α 1

1 1 1 α

1 β

1 β

1 β

1 β

1 β



.

Here,n = 13, m = 3, a1 = 3, b1 = 2, b2 = 3, α =
n − a1, β = n − 1, p1 = n − a1 − m + 1, p2 =
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n − b1 − m + 1, andp3 = n − b2 − m + 1. We can
represent the matrixD in the following block-matrix
form:

D =


P e1f

T
1 e2f

T
2 e3f

T
3

f 1e
T
1 A1

f 2e
T
2 B1

f 3e
T
3 B2

 ,

where

f i = (1,1, . . . ,1︸ ︷︷ ︸
xi

)T,

ei = (0, . . . ,0,1︸ ︷︷ ︸
i

,0, . . . ,0︸ ︷︷ ︸
xi−i

)T,

wherexi = ai for 16 i 6 l; xj = bj for 16 j 6m− l,

P =

 p1 1 1

1 p2 1

1 1 p3

 , A1=

 α 1 1

1 α 1

1 1 α

 ,
B1= βI2, B2= βI3.

4. The closed formula

For counting the number of spanning trees of an
MCSR graph as mentioned in Lemma 1, the next
theorem gives our closed formula which covers the
closed formula in [3,6] for counting the number of
spanning trees of an MSR graph. The linear algebraic
technique used in the proof is different from that used
in [6].

Theorem 1. The number of spanning trees of an
MCSR graphG = Kn − Km(a1, a2, . . . , al;b1, . . . ,

bm−l ) is equal to

τ (G)= nk−2
(

1+ a1

n− a1− 1

)(
1+ a2

n− a2− 1

)
· · ·

·
(

1+ al

n− al − 1

)
· (n− a1− 1)a1(n− a2− 1)a2 · · ·
· (n− al − 1)al (n− 1)b1+···+bm−l |Q|,

where |Q| = [1+ 1/(q1 − 1) + 1/(q2 − 1) + · · · +
1/(qm− 1)](q1− 1)(q2− 1) · · · (qm − 1) where

qi =



n− ai −m+ 1− ai

n− 1
for i = 1,2, . . . , l,

n− bi−l −m+ 1− bi−l
n− 1

for i = l + 1, l + 2, . . . ,m,

andk = n−m− a1− a2− · · ·− al − b1− · · ·− bm−l .

Proof. As mentioned in Section 3, the CSTM ofG
can be represented by

C =
(
nIk

D

)
,

where

D =



P e1f
T
1 · · · ejf T

l el+1f
T
l+1 · · · emf T

m

f 1e
T
1 A1

.

.

.
. . .

f le
T
l Al

f l+1e
T
l+1 B1

.

.

.
. . .

fme
T
m Bm−l



.

Here

P =


p1 1 · · · 1

1 p2
. . .

...

...
. . .

. . . 1

1 · · · 1 pm

 ,

Ai =


αi 1 · · · 1

1 αi
. . .

...

...
. . .

. . . 1

1 · · · 1 αi


ai×ai

, Bi = βIbi ,

whereαi = n − ai for 1 6 i 6 l, β = n − 1, pi =
n−ai−m+1 for 16 i 6 l, andpi = n−bi−l−m+1
for l < i 6m. From Lemma 1, the number of spanning
trees ofG is nk−2|D|.
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Let

E =


Im

c1f 1e
T
1

...

cmfme
T
m

 ,

wherec1, c2, . . . , cm are to be determined. Since

DE=



P + c1e1f
T
1f 1e

T
1 + · · · + cmemf T

mfme
T
m

f 1e
T
1 + c1A1f 1e

T
1

...

f le
T
l + clAlf leT

l

f l+1e
T
l+1+ cl+1B1f l+1e

T
l+1

...

fme
T
m + cmBm−lfmeT

m


,

we want to determinec1, c2, . . . , cm such that the
entries of DE are all zero except the first entry.
Therefore, we have that

Aif ie
T
i = (n− 1)f ie

T
i for i = 1,2, . . . , l,

Bi−jf ieT
i = (n− 1)f ie

T
i for i = l + 1, l + 2, . . . ,m.

After setting

ci =− 1

n− 1
for i = 1,2, . . . ,m,

we have

DE=


Q

0
...

0

 ,

where

Q= P + c1e1f
T
1f e

T
1 + · · · + cmemf T

mf e
T
m

=


q1 1 · · · 1

1 q2
. . .

...

...
. . .

. . . 1

1 · · · 1 qm



and

qi =


pi − ai

n− 1
for i = 1,2, . . . , l,

pi − bi−l
n− 1

for i = l + 1, l + 2, . . . ,m.

Further, we let

F =



Im

c1e1f
T
1 Ia1

...
. . .

clelf
T
1 Ial

clel+1f
T
l+1 Ib1

...
. . .

cmemf
T
m Ibm−l


,

then we have

DF=



Q e1f
T
1 · · · elf T

l el+1f
T
l+1 · · · emf T

m

A1
. . .

Al

B1
. . .

Bm−l


.

Since the matrixDF is a block upper triangular matrix,
consequently, it yields

det(D)= det(DF)= det(D)det(F )

= det(Q)det(A1) · · ·det(Al)

· det(B1) · · ·det(Bm−l ).

It is observed that the matrixQ has diagonal
elementsq1, q2, . . . , qm and has ones on the off-
diagonals. Following the eliminating technique in [6],
we borderQ by adding a new first row and column.
All the entries in the new row are ones, but the entries
in the new column which are not in the new row
are zeros. This row and column augmentation will
preserve the same determinant asQ.

Subtract the new row from each of the other rows.
The diagonal entries ofQ in the old row indexed
i are nowqi − 1. The first column consists of all
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−1’s except for the one in the first row. The first row
consists of all ones. Excepting the diagonal elements,
the remaining elements of the matrix are zero. Now
add to the first column 1/(qi − 1) times each of the
other columns to zero out the off-diagonal entries in
this column. The entry in the first row and column
becomes 1+1/(q1−1)+1/(q2−1)+ · · ·+1/(qm−
1). Thus, the matrixQ becomes upper triangular, so
we have

det(Q)=
[
1+ 1

q1− 1
+ 1

q2− 1
+ · · · + 1

qm − 1

]
· (q1− 1)(q2− 1) · · · (qm − 1).

By the same argument, the matrixAi has diagonal
elementsαi,αi, . . . , αi and has ones on the off-
diagonals. It can be verified that

det(Ai)=
(

1+ ai

αi − 1

)
(αi − 1)ai

=
(

1+ ai

n− ai − 1

)
(n− ai − 1)ai

for 16 i 6 l.
In addition, the matrixBj has diagonal elementsβ,β,
. . . , β and has zeros on the off-diagonals, so

det(Bj )= βbj = (n− 1)bj for 16 j 6m− l.
Consequently, the number of spanning trees ofG,

τ (G), is equal tonk−2|D|. Here|D| is equal to(
1+ a1

n− a1− 1

)(
1+ a2

n− a2− 1

)
· · ·

·
(

1+ al

n− al − 1

)
· (n− a1− 1)a1(n− a2− 1)a2 · · ·
· (n− al − 1)al (n− 1)b1+···+bm−l |Q|,

where |Q| = [1+ 1/(q1 − 1) + 1/(q2 − 1) + · · · +
1/(qm − 1)](q1− 1)(q2− 1) · · ·(qm − 1). Therefore,

τ (G)= nk−2
(

1+ a1

n− a1− 1

)(
1+ a2

n− a2− 1

)
· · ·

·
(

1+ al

n− al − 1

)
· (n− a1− 1)a1(n− a2− 1)a2 · · ·
· (n− al − 1)al (n− 1)b1+···+bm−l |Q|,

where |Q| = [1+ 1/(q1 − 1) + 1/(q2 − 1) + · · · +
1/(qm−1)](q1−1)(q2−1) · · · (qm−1). We complete
the proof. 2

5. Maximization theorem for a multi-star graph

In this section, a rather general maximization the-
orem is provided for the multi-star graphGn =Kn −
Km(b1, b2, . . . , bm). For the same graph, in [3], a max-
imization theorem was provided only form= 2,3, and
4, respectively.

From Theorem 1, considering the multi-star graph,
we have

Corollary 1. The number of spanning trees of an MSR
graphG=Kn −Km(b1, . . . , bm) is equal toτ (G)=
nk−2(n−1)b1+···+bm |Q|, where|Q| = [1+1/(q1−1)
+ 1/(q2 − 1) + · · · + 1/(qm − 1)](q1 − 1)(q2 − 1)
· · · (qm − 1) where

qi = n− bi −m+ 1− bi

n− 1
for i = 1,2, . . . ,m

andk = n−m− b1− · · · − bm.

Sinceqi = n − bi −m + 1− bi/(n− 1) andbi 6∑m
k=1 bk 6 n−m, we have

qi = n−m+ 1− nbi

n− 1

> n−m+ 1− n(n−m)
n− 1

= (n−m+ 1)n− (n−m+ 1)− n(n−m)
n− 1

= n− (n−m+ 1)

n− 1

= m− 1

n− 1
> 0.

We thus haveqi > 0. Fori 6= j , it yields to

qi + qj = 2(n−m+ 1)− n(bi + bj )
n− 1

> 2(n−m+ 1)− n(n−m)
n− 1

= (n−m+ 1)+ (n−m+ 1)− n(n−m)
n− 1

> (n−m+ 1).

Based on a reasonable assumption, there exists a
positivebi . That is, we haven − m >∑m

k=1bk > 0
and it implies thatqi + qj > 2.
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Let

fm(b1, b2, . . . , bm)

=
(

1+ 1

p1
+ 1

p2
+ · · · + 1

pm

)
(p1p2 · · ·pm),

where

pk = qk − 1= n−m− nbk

n− 1
>−1;

the nonnegative integersb1, b2, . . . , bm satisfy the
constraintb1 + b2 + · · · + bm = L, whereL is a
constant. Frompi + pj = qi − 1+ qj − 1> 0 for all
i 6= j , there is at most one negativeqk for 16 k 6m.
We now want to find the maximum of the function
fm(b1, b2, . . . , bm).

Suppose when(b1, b2, . . . , bm) = (b̂1, b̂2, . . . , b̂m),
we make functionfm(b1, b2, . . . , bm) maximal. Let

p̂k = n−m− nb̂k

n− 1
for k = 1,2, . . . ,m.

The maximization theorem for the multi-star graph
is proved by the technique of contradiction. Suppose
b̂i > b̂j + 1. We consider two cases. In case 1, if there
exists anl such thatp̂l < 0, then we havêbl > b̂i , i.e.,
b̂l > b̂j + 1. For allk 6= l, j , we thus havêpk > 0. In
case 2, for allk 6= i, j , we havep̂k > 0.

By the symmetric property offm(b1, b2, . . . , bm),
for case 1, we assumel = 1 andj = 2 for convenience
and for case 2, we assumei = 1 andj = 2. Hence we
haveb̂1 > b̂2 + 1 and for allk > 3, we havep̂k > 0.
The maximum offm(b1, b2, . . . , bm) is given by

fm(b̂1, b̂2, . . . , b̂m)= fm−2(b̂3, b̂4, . . . , b̂m)(p̂1p̂2)

+ (p̂1+ p̂2)(p̂3p̂4 · · · p̂m).
Since eachp̂k > 0 for k = 3,4, . . . ,m, we have
fm−2(p̂3, p̂4, . . . , p̂m) > 0.

Now let

p̂′1= n−m−
n(b1− 1)

n
and

p̂′2= n−m−
n(b2+ 1)

n
,

then we havêp′1+ p̂′2= p̂1+ p̂2 and

p̂′1p̂′2= 1
4

[
(p̂′1+ p̂′2)2− (p̂′1− p̂′2)2

]
> 1

4

[
(p̂1+ p̂2)

2− (p̂1− p̂2)
2]

= p̂1p̂2.

From the above inequality, we have

fm(b̂1− 1, b̂2+ 1, . . . , b̂m)

= fm−2(b̂3, b̂4, . . . , b̂m)(p̂
′
1p̂
′
2)

+ (p̂′1+ p̂′2)(p̂3p̂4 · · · p̂m)
> fm−2(b̂3, b̂4, . . . , b̂m)(p̂1p̂2)

+ (p̂1+ p̂2)(p̂3p̂4 · · · p̂m)
= fm(b̂1, b̂2, . . . , b̂m).

It is a contradiction. That is, the assumptionb̂1 >

b̂2 + 1 is false. On the contrary, we must haveb̂1 6
b̂2+ 1. Generally, considering all pair ofi andj and
from Corollary 1, we have the following maximization
theorem for the multi-star graph.

Theorem 2. The number of spanning trees of an MSR
graphG=Kn−Km(b1, . . . , bm) is maximal when the
difference betweenbi and bj for 16 i, j 6 m is at
most one.

6. Conclusion

Graphs are often used to model network problems.
For example, we often use star graphs (like MSR),
complete graphs, or hybrid graphs (like MCSR) to
model connection patterns in a network. Among these
graphs, finding a spanning tree with some specific
properties, such as minimum weight and minimum
label, is a well-known technique to solve the net-
work routing problem. Since the number of spanning
trees in a graph could reveal the complexity of the
corresponding combinatorial configuration, deriving a
closed form of the number of spanning trees is in-
deed a research problem. Since the CSTM form of
the MCSR graph is much more complicated than that
of the MSR graph, deriving the corresponding closed
form of the MCSR is much harder than that of the
MSR graph.

We have presented how to derive the closed form for
the number of spanning trees of an MCSR graphG=
Kn − Km(a1, a2, . . . , al;b1, . . . , bm−l ) for arbitrary
m. The main contribution of this paper is that the
derived closed formula extends that of the graph
class discussed in the previous results [3,6] of the
MSR graph to a larger MCSR graph class. Another
minor contribution of this paper is that a general
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maximization theorem is provided for the multi-star
graph.
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