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Abstract

We show that a shortest vector of a 2-dimensional integral lattice with respect to
the

�
∞-norm can be computed with a constant number of extended-gcd computa-

tions, one common-convergent computation and a constant number of arithmetic
operations. It follows that in two dimensions, a fast basis-reduction algorithm
can be solely based on Schönhage’s classical algorithm on the fast computation
of continued fractions and the reduction algorithm of Gauß.
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1 Introduction

Lattice basis-reduction is an important technique in computer science. Well known
applications are integer programming in fixed dimension [10], factorization of rational
polynomials [9] or the development of strongly polynomial algorithms in combinato-
rial optimization [3], among others.

Gauß [4] invented an algorithm that finds a “short” or reduced basis of a 2-di-
mensional integral lattice. Such a basis consists of two integral vectors b1 � b2 � Z2

that generate the lattice, with the additional property that the enclosed angle between
b1 and b2 is in the range 90 ��� 30 � . A shortest vector of a reduced basis is then a
shortest vector of the lattice. The algorithm mimics the euclidean algorithm by sub-
tracting integral multiples of the shorter vector from the larger vector thereby reducing
its length. This normalization step is analogous to the division with remainder in the
euclidean algorithm for integers.

The integer k in the repeat-loop of algorithm GAUSS is the nearest integer to the
number � bT

1 b2 �	� � bT
1 b1 � . Lagarias [7] showed that the Gaussian algorithm is polyno-

mial. His analysis can be used to show that GAUSS requires O � n2 � bit-operations for
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Algorithm. GAUSS � b1 � b2 �
repeat

arrange that b1 is the shorter vector of b1 and b2

find k � Z such that b2 � kb1 is of minimal euclidean length
b2
� � b2 � kb1 � (normalization step)

until k � 0
return � b1 � b2 �

inputs with n bits, even if one uses the naive quadratic algorithms for multiplication
and division with remainder [8, p. 682]. Rote [12] showed that the 2-dimensional
modm shortest vector problem can be reduced to the classical case.

We show in this paper that a shortest vector of a 2-dimensional integral lattice cor-
responds to a best approximation of a rational number, which is uniquely defined by the
lattice. This number can be obtained from the Hermite normal form of the lattice. The
best approximation of this number that represents a shortest vector w.r.t. the

�
∞-norm

can then be found with one common convergent computation and a constant number
of arithmetic operations. This implies that 2-dimensional lattice reduction can be re-
duced to a constant number of extended-gcd computations, one common-convergent
computation and a constant number of arithmetic operations. Hence it can be carried
out in time O � M � n � logn � if the classical algorithm of Schönhage [13] on the fast com-
putation of of continued fractions is used for the extended-gcd computations and the
common-convergent computation. Here M � n � denotes the time needed to multiply two
n-bit integers. To achieve this running time, two previous methods [14, 16] attacked
this problem directly.

2 Preliminaries

The letters Z � Q, and R denote the integers, rationals and reals respectively. The sym-
bol N � denotes the positive natural numbers whereas N0 denotes the natural numbers
including 0. In this paper, the running times of algorithms are always given in terms
of the binary encoding length n of the input data. The function M � n � denotes the time
needed to multiply two integers. All basic arithmetic operations +, -, *, / can
be done in time O � M � n �	� [1]. The

�
∞ � � 1, and

�
2-norm of a vector c � � c1 � c2 � T � R2

are the numbers � c � ∞ � max ��� c1 � � � c2 �
	 , � c � 1 ��� c1 �
��� c2 � , and � c � 2 � � c2
1 � c2

2 � 1 � 2,
respectively. One has � c � ∞ � � c � 2 ��� 2 � c � ∞.

A 2-dimensional or planar integral lattice Λ is a set of the form Λ � A � ��� Ax � x �
Z2 	 , where A � Z2 � 2 is a nonsingular integral matrix. The matrix A is called basis of
Λ. One has Λ � A � � Λ � B � for B � Z2 � 2 if and only if B � AU with some unimodular
matrix U � Z2 � 2, i.e., det � U � � � 1. Denote by a � i � � i � 1 � 2, the i-th column of A. The
basis A of Λ is called reduced if

2 � a � 1 � T a � 2 � � � a � 1 � T a � 1 � � a � 2 � T a � 2 ��� (1)

A shortest vector of Λ w.r.t. ����� is a nonzero member 0 �� v of Λ whose norm � v �
is minimal. Here ����� stands for the

�
∞ � � 1 or

�
2-norm. The first column of a reduced

basis of Λ is a shortest vector of Λ w.r.t. the
�

2-norm.
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2.1 The euclidean algorithm

The extended euclidean algorithm takes as input a pair of integers � a � b � and computes
d � gcd � a � b � and a pair of integers � x � y � with xa � yb � d (see, e.g., [2, p. 71]).

Algorithm. EXGCD � a � b �

M ��� 1 0
0 1 �

n � 0
while � b �� 0 � do

q ��� a � b �
M � M � q 1

1 0 �
� a � b � � � b � a � qb �
n � n � 1

return � d � a � x � � � 1 � nM2 � 2 � y � � � 1 � n � 1M1 � 2 �
Let M � k � � k � 0, denote the matrix M after the k � 1-st iteration of the while-loop in

EXGCD. The running time of the extended euclidean algorithm is quadratic (see, e.g.,
[2]).

2.2 Continued fractions

Continued fractions are a classic in mathematics, see, e.g., the books [11, 6]. A
very nice and short treatment can also be found in [5, p. 134-137]. Let a0 � � � � � at

be integers, all positive, except perhaps a0. The continued fraction � a0 � � � � � at 	 is in-
ductively defined as a0, if t � 0 and as a0 � 1 � � a1 � � � � � at 	 if t 
 0. The function
fk � x � ��� a0 � � � � � ak � 1 � x 	 � 0 � k � t is increasing for x 
 0 if k is even and decreasing
for x 
 0 if k is odd. Consider the two sequences gk and hk that are inductively defined
as � g � 1 g � 2

h � 1 h � 2 � � � 1 0
0 1 � � � gk gk � 1

hk hk � 1 � � � gk � 1 gk � 2
hk � 1 hk � 2 � � ak 1

1 0 � � k � 0 � (2)

Let βk � gk � hk , then one has � a0 � � � � � ak 	 � βk for 0 � k � t. Note that hk is increasing
in k.

The continued-fraction expansion of a number α � Q is inductively defined as
the sequence α if α � Z, and as � α � � a1 � � � � � at if α �� Z and where a1 � � � � � at is the
continued fraction expansion of 1 � � α � � α � � . If k is even, then ak is maximal with� a0 � � � � � ak 	 � α and if k is odd, then ak is maximal with α � � a0 � � � � � ak 	 . For 0 �
k � t, the number � a0 � � � � � ak 	 � βk is called the k-th convergent of α, and we have
β0 
 β2 
 � � � 
 βt � α 
 � � � 
 β3 
 β1. It is easy to see that the continued fraction
expansion of a rational number α � u � v �� 0 is the sequence of q’s which are computed
in the while-loop of the algorithm EXGCD on input � u � v � . Let R � k � denote the matrix

R � k � � � a0 1
1 0 � � � � � ak 1

1 0 � �
3



Then R � k � � M � k � , when EXGCD is run on � u � v � and u � v � α.
A fraction is a representation x � y � y 
 0 of a rational number, where x and y are

integers. The fraction is reduced if gcd � x � y � � 1. A fraction x � y is a good approxima-
tion to the number α � Q, if one has �α � x � y � � �α � x � � y � � for all other fractions x � � y �
with 0 
 y � � y. Each convergent βk � 0 � k � t, of α � Q is a good approximation to
α. A fraction x � y is a best approximation of the second kind to the number α � Q, if
one has � yα � x � 
 � y � α � x � � for all other fractions x � � y � with 0 
 y � � y, see [6, p. 28].
A best approximation of the second kind to α � Q is a convergent of α.

The common convergent of two rational numbers α1 � α2 � Q is the convergent� a0 � � � � � ak 	 of α1 and α2 that corresponds to the longest common prefix of the con-
tinued fraction expansions of α1 and α2. Thus k is maximal such that the k-th con-
vergent of α1 and the k-th convergent of α2 are equal. If α1 � α2, then this is the
common convergent of all rationals in the interval

�
α1 � α2 � . Schönhage [13] showed

how to compute the common convergent βk and the corresponding matrix R � k � of two
rationals α1 � α2 � Q in time O � M � n � log n � . Schönhage’s result yields an algorithm
that computes in time O � M � n � logn � the greatest common divisor, gcd � a � b � , of two
n-bit integers a and b as well as two n-bit integers x and y that represent it, i.e.,
gcd � a � b � � xa � yb.

3 The Hermite normal form

Before we establish the connection between best approximations and shortest vectors
of planar lattices we perform some preprocessing on the lattice basis A � Z2 � 2. Let A
be of the form A ��� a1 a2

a3 a4 � � Z2 � 2. First we compute integers x and y that represent the
greatest common divisor d of a3 and a4, i.e., d � xa3 � ya4. By multiplying the basis
A with the unimodular matrix � a4 � d x� a3 � d y � one obtains an upper triangular matrix

� a1 a2

a3 a4 � � a4 � d x

� a3 � d y � � � a b
0 c � � Z2 � 2 �

After some unimodular column operations, i.e., multiplying the first and second col-
umn with � 1 and adding integral multiples of the first column to the second column,
we can assure that c 
 0 and a 
 b � 0 holds. This is the Hermite normal form, or
HNF, of A (see, e.g., [15, p. 45]). The HNF of an integral lattice is unique and its com-
putation requires one extended-gcd computation and a constant number of arithmetic
operations. The computation of the HNF can be carried out in time O � M � n � logn � if
the extended-gcd is computed with the algorithm of Schönhage [13] on the fast com-
putation of continued fractions.

4 Best approximations and shortest vectors

Here we establish the connection between shortest vectors and best approximations.
Throughout this section, assume that the norm � � � is invariant under the replacement
of components by their absolute value. The

�
1 � � 2 and

�
∞-norms have this property.

Let Λ be given by its HNF � a b
0 c � � Z2 � 2, where c 
 0 and a 
 b � 0. Assume

that � a0 � is not a shortest vector of Λ. Then, if a shortest vector has a negative second
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component, it yields a shortest vector with a positive second component by multiplying
it with � 1. Thus, if � a0 � is not a shortest vector of Λ, there exists a shortest vector of
the form � � xa � yb

yc � , where x � N0 � y � N � .

Lemma 1. If neither � a0 � nor � bc � are shortest vectors of Λ, then there exists a shortest
vector � � xa � yb

yc � � x � N0 � y � N � of Λ such that the fraction x � y is a best approximation
of the second kind to the number b � a.

Proof. Let � � xa � yb
yc � � x � N0 � y � N � be a shortest vector of Λ with minimal

�
1-norm

among all shortest vectors and suppose that x � y is not a best approximation of the
second kind of b � a. Then there exists a fraction x � � y � �� x � y with 0 
 y � � y and
� by � � ax � � � � by � ax � . If y � 
 y or � by � � ax � � 
 � by � ax � , then � � xa � yb

yc � does not
have minimal

�
1-norm among the shortest vectors. So we have y � � y and � by � ax � � �

� by � ax � . Assume without loss of generality that x 
 x � holds. The numbers x and x �
have been chosen such that

� by � ax � � � by � ax � � � min
z � N0

� by � az �
holds. Thus we conclude that x � � x � 1 and that by � ax � a � 2.

If y 
 1, then since a 
 b � 0, one has � b � y � 1 � � ax � � � a � 2 � b � � a � 2, implying
that � � xa � yb

yc � does not have minimal
�

1-norm among the shortest vectors. Thus y � 1
and since a 
 b and b � ax � a � 2 one has x � 0 which implies that � � xa � yb

yc � � � bc � , a
contradiction.

Lemma 1 reveals that one can find a shortest vector with the classical extended
euclidean algorithm.

A naive method would work as follows. First compute the vectors � a � 0 � T and
� b � c � T . Then compute the convergents gk � hk of b � a with EXGCD � b � a � and the cor-
responding vectors � � gk a � hk b � hk c � T . The shortest of the so computed vectors is a
shortest vector of Λ. This algorithm would require a linear search through all conver-
gents of b � a. In the next section we show a substantial improvement.

5 Finding a shortest vector with respect to
�

∞

Let Λ be given by its HNF � a b
0 c � � Z2 � 2, where c 
 0 and a 
 b � 0. In this section, we

identify two candidate convergents of b � a to form a shortest vector and we apply the
result of Schönhage [13] on the fast computation of continued fractions to find them.
Throughout this section, we consider only shortest vectors w.r.t. the

�
∞-norm.

Consider the set of vectors� � � gk a � hk b
hk c � � k � 0 � � � � � t � � (3)

where βk � gk � hk � 0 � k � t are the convergents of b � a.

Proposition 2. The shortest vector in (3) w.r.t.
�

∞ is represented by the last convergent
of b � a that lies outside the interval

� � b � c �	� a � � b � c �	� a � or the first convergent of b � a
that lies inside

� � b � c �	� a � � b � c �	� a � .
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Proof. The absolute value of the first component of the vectors � � gk a � hk b
hk c � � k � 0 � � � � � t

is decreasing, since each convergent of b � a is a good approximation of b � a. The abso-
lute value of the second components is increasing for growing k. We have to determine
the first k, for which the absolute value of the second component of � � gk a � hk b

hk c � is larger
than the absolute value of the first component. Either this, or the previous k, is the k of
the shortest vector. But � � gk a � hk b � � hk c if and only if � b � a � gk � hk � � c � a.

In the next proposition we show that the common convergent of the interval
� � b �

c �	� a � � b � c �	� a � is a good starting point for the convergent of b � a which is “shortest”
in (3).

Proposition 3. Let βk � gk � hk be the common convergent of � b � c �	� a and � b � c �	� a.
Then the k-th, k � 1-st or the k � 2-nd convergent of b � a represents a shortest vector
in (3) w.r.t. the

�
∞-norm.

Proof. Assume that k is even, the proof is analogous for odd k. Then βk � � b � c �	� a.
If βk � � b � c �	� a, then � � gka � hkb

hkc � is a shortest vector in (3) since the absolute values
of the first and second components are equal. So assume that βk 
 � b � c �	� a.

Let β � i �k � 1 � g � i �k � 1 � h � i �k � 1 � i � 1 � 2 � 3 be the k � 1-st convergent of the numbers � b �
c �	� a � b � a and � b � c �	� a respectively. We show now that βk or β � 2 �k � 1 is the last con-
vergent of b � a which is not in

� � b � c �	� a � � b � c �	� a � . The claim follows then from
Proposition 2.

Suppose β � 2 �k � 1 is not in
� � b � c �	� a � � b � c �	� a � . Then one has � b � c �	� a � β � 1 �k � 1 
 b � a

and � b � c �	� a � β � 2 �k � 1 � β � 3 �k � 1. Let a1 
 a2 � N � be the numbers in N � with

h � 1 �k � 1 � hk � 1 � a1hk and h � 2 �k � 1 � hk � 1 � a2hk
�

Since the sequence β � x � � � gk � 1 � xgk �	� � hk � 1 � xhk � � x � N � is decreasing and since
a2 is maximal with b � a � β � a2 � and since � b � c �	� a � β � a1 � 
 b � a we see that β � a2 �
1 � � � � b � c �	� a � b � a � . Let h � 2 �k � 2 be the denominator of the k � 2-nd convergent of b � a.
One has

h � 2 �k � 2 � hk � hk � 1 � a2hk � hk � 1 � � a2 � 1 � hk
�

Since each convergent of b � a is a good approximation to b � a, the k � 2-nd convergent
of b � a has to lie in

� � b � c �	� a � � b � c �	� a � .
These observations show that the classical result of Schönhage [13] on the fast

computation of continued fractions can be used to compute a shortest vector of a lat-
tice.

Corollary 4. There exists an algorithm that computes in time O � M � n � logn � a basis B
of a 2-dimensional integral lattice Λ defined by A � Z2 � 2, with the property that the
first column of B is a shortest vector of Λ w.r.t. the

�
∞-norm.

Proof. First compute the HNF � a b
0 c � of A. Next compute the common convergent βk

of
� � b � c �	� a � � b � c �	� a � and the corresponding matrix R � k � . The next two convergents

of b � a can then be computed as follows. Perform two runs through the while-loop of
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EXGCD on input R � k � � 1 � ba � and store the matrix M � 2 � . The next two convergents βk � 1

and βk � 2 of b � a are then obtained from the matrix R � k � M � 2 � according to (2). Lemma 1
and Proposition 3 show that one of the vectors represented by βk � βk � 1 and βk � 2 or one
of the vectors � a � 0 � T and � b � c � T is shortest w.r.t.

�
∞.

If one has a shortest vector � � xa � yb
yc � , then one computes two integers u and v with

gcd � x � y � � 1 � uy � vx. The matrix � � x � uy v � is unimodular. Thus

� a b
0 c � � � x � u

y v �
is a basis of Λ whose first column vector consists of a shortest vector of Λ w.r.t. the�

∞-norm.
It is easy to see that the described method runs in time O � M � n � log n � if the algo-

rithm of Schönhage [13] is used for the common-convergent computation and extended-
gcd computations.

6 Finding a reduced basis

In this section, � � � denotes the
�

2-norm. Let B � Z2 � 2 be a basis of Λ whose first
column b � 1 � is a shortest vector of Λ w.r.t. the

�
∞-norm. Let c be a shortest vector w.r.t.

the
�

2-norm. It follows that � 2 � c � ��� b � 1 � � holds, and thus that the basis B is “almost
reduced”.

Lagarias [7, proof of Theorem 4.2] has shown that in this case the algorithm GAUSS

requires at most 3 runs through the repeat-loop to reduce B. We thus have the following
consequence.

Corollary 5. There exists an algorithm that reduces a 2-dimensional lattice basis
A � Z2 � 2, described by n-bit integers, in time O � M � n � logn � , where M � n � is the time
required for n-bit integer multiplication.

Acknowledgements

I am grateful to Günter Rote and Volker Priebe for many helpful remarks that greatly
improved the presentation of this material. Thanks also to Alexander Bockmayr and
Johannes Buchmann for interesting discussions on the subject.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Com-
puter Algorithms. Addison-Wesley, Reading, 1974.

[2] E. Bach and J. Shallit. Algorithmic number theory, volume 1: efficient algo-
rithms. MIT Press, 1996.

[3] A. Frank and É. Tardos. An application of simultaneous Diophantine approxi-
mation in combinatorial optimization. Combinatorica, 7:49–65, 1987.

[4] C. F. Gauß. Disquisitiones arithmeticae. Gerh. Fleischer Iun., 1801.

7



[5] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combi-
natorial Optimization, volume 2 of Algorithms and Combinatorics. Springer,
1988.

[6] A. Ya. Khintchine. Continued Fractions. Noordhoff, Groningen, 1963.

[7] J. C. Lagarias. Worst-case complexity bounds for algorithms in the theory of
integral quadratic forms. Journal of Algorithms, 1:142–186, 1980.

[8] A. K. Lenstra and H. W. Lenstra. Algorithms in number theory. In L. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume A, chap-
ter 12, pages 673–715. Elsevier, 1990.

[9] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational
coefficients. Math. Annalen, 261:515 – 534, 1982.

[10] H. W. Lenstra. Integer programming with a fixed number of variables. Mathe-
matics of Operations Research, 8(4):538 – 548, 1983.

[11] O. Perron. Die Lehre von den Kettenbrüchen. Teubner, 3-rd edition, 1954.

[12] G. Rote. Finding a shortest vector in a two-dimensional lattice modulo m. Theo-
retical Computer Science, 172(1–2):303–308, 1997.

[13] A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. (Speedy
computation of expansions of continued fractions). Acta Informatica, 1:139–
144, 1971.

[14] A. Schönhage. Fast reduction and composition of binary quadratic forms. In
International Symposium on Symbolic and Algebraic Computation, ISSAC 91,
pages 128–133. ACM Press, 1991.

[15] A. Schrijver. Theory of Linear and Integer Programming. John Wiley, 1986.

[16] C. K. Yap. Fast unimodular reduction: Planar integer lattices. In Proceedings
of the 33rd Annual Symposium on Foundations of Computer Science, pages 437–
446, Pittsburgh, 1992. IEEE Computer Society Press.

8


