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Abstract

On an atomic Read-Modify-Write (RMW) object one can read the complete old contentss of the object and simultaneously
update its contents as a functionδ(s) of the old contents in a single, indivisible, atomic operation.

It is known that these RMW objects do not have a wait-free implementation in the asynchronous PRAM model—in which
processors can only communicate with each other through atomic read-write registers. For the general case, in which operations
P over an object can return a functionφP (s) of the old contentss while simultaneously updating the object’s state toδP (s),
few results are known.

We give several characterizations, in terms ofφP (·) andδP (·), of such objects for which no wait-free implementation in the
asynchronous PRAM model exists. The resulting objects are remarkably similar to RMW objects. Indeed, we also exhibit two
objects satisfying weaker conditions whichdo have a such a wait-free implementation. Our results suggest that only objects as
strong as RMW objects do not have wait-free implementation in the asynchronous PRAM model. 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

A Read-Modify-Write (RMW) [6] object is a strong
synchronization primitive that allows one to atomi-
cally read and update the contents of a shared memory
object. Indeed, their synchronization properties are so
strong that it can be shown that these objects do not
have a wait-free implementation in the asynchronous
PRAM model [4,5].

On the other hand, shared memory objects whose
operations either return the current state of the object
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or update the state of the object, but not both in a single
operation,do admit wait-free implementation in the
asynchronous PRAM model. A prime example is the
atomic snapshot object [1].

In this paper we investigate this property for weaker
RMW objects, that lie between these two extremes.
For such objects, an operationP can change (part
of) the state—modeled by the state transition mapping
δP (·)—and return a function of the old contents (pos-
sibly masking information)—modeled by the output
mappingφP (·). Herlihy has shown [5] that, ifδP (·)
is any function unequal to the identity function, while
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φP (s) = s (i.e., equivalent to a full read), the object
does not have a wait-free implementation.

In this paper we extend Herlihy’s results by consid-
ering also objects with non-trivial output-mappings.
We give several characterizations of objects that do not
admit a wait-free implementation. Matching our im-
possibility results we exhibit two objects with slightly
weaker (non-trivial) RMW properties thatdo have a
wait-free implementation in the asynchronous PRAM
model. Our results suggest that only objects almost as
strong as true RMW objects do not have a wait-free
implementation in the asynchronous PRAM model.

The paper is structured as follows. First, in Section 2
we give a general definition of a shared memory
object whose operations can both update the state
and return a (meaningful) value, and present the
necessary concepts used throughout the paper. Then
Section 3 shows two objects that have a wait-free
implementation and also satisfy quite strong RMW-
like properties. Finally, in Sections 4 and 5 we derive
several characterizations of objects in terms ofφP (·)
andδP (·) that do not have a wait-free implementation
in the asynchronous PRAM model.

2. Definitions

We briefly introduce the necessary concepts and
notation in this section. For a more detailed description
we refer to [5].

All objectsX we consider will have deterministic
sequential specificationsS. This specifies the set of
possible statesS of the object, the initial state of the
object, and for each operation its effect on the state
and its (optional) response when executed atomically.
We write (s, r = O,s′) ∈ S if invoking O in states

changes the state of the object tos′ and returnsr as its
response.1 If an operationO does not return a value
then we user = ⊥.

Alternatively, the behaviour of an operationO ∈ O
can, in all generality, be expressed by two functions
δO(·)—the transformation mapping—andφO(·)—the
output mapping—such that for all statess, s′ ∈ S,
(s, r = O,s′) ∈ S if and only if s′ = δO(s) and r =
φO(s).

1 In general, operations may have parameters; here it is assumed
that for each operation and each of its possible parameters, we have
a separate entry inO.

Histories are finite sequences of operations. For
historiesH andH ′, H ·O denotes the history obtained
by appending operationO afterH , H ·H ′ denotes the
concatenation of historiesH andH ′, and〈H 〉 denotes
the state which results after applying the operations
in H—in order—on the initial state. Thus,〈H · O〉 =
δO(〈H 〉). We will usually omit the triangular brackets,
and writeδO(H). Let us use the notation�(H) for the
length ofH , andH [i] for the ith operation inH , for
1 � i � �(H). Also letH {i : j } beH with the ith and
j th operation interchanged, whileH [i ·· j ] is the sub-
history ofH starting withH [i] and ending withH [j ].
Next we define commuting or overwriting operations.

Definition 1. Let P andQ be operations of objectX .
P commutes withQ after historyH , P ∼H Q, if

〈H · P · Q〉 = 〈H · Q · P 〉 ∧
φP (H) = φP (H · Q) ∧
φQ(H · P) = φQ(H).

Q overwritesP after historyH , P �H Q, if

〈H · P · Q〉 = 〈H · Q〉 ∧ φQ(H · P) = φQ(H).

P commutes withQ, P ∼ Q, if for all historiesH ,
P ∼H Q. Similarly,Q overwritesP , P � Q, if for all
historiesH , P �H Q.

We take the following two definitions from Ander-
son and Moir [2] and Aspnes and Herlihy [3].

Definition 2. An objectX is statically resilientiff for
any two operationsP andQ in O at least one of the
following hold:P ∼ Q, P � Q or Q � P .

Definition 3. An objectX is dynamically resilientiff
for every historyH and any two operationsP and
Q in O at least one of the following hold:P ∼H Q,
P �H Q or Q �H P .

The second definition allows operations to have a
different ‘ordering’ depending on the history. Clearly,
a statically resilient object is also dynamically re-
silient.

Aspnes and Herlihy [3] showed that any dynami-
cally resilient object has an (unbounded) wait-free im-
plementation in the asynchronous PRAM model.
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Theorem 4 [3]. An object has a wait-free implemen-
tation using only atomic read/write registers if it is dy-
namically resilient.

Matching this, Anderson and Moir [2] showed that
this condition is necessary for a special class of objects
calledsnapshot objects. Next to operations that update
the state, these objects also implement aReadfunction
that returns the full state of the object. For such a
snapshot object to have a wait-free implementation, it
must satisfy Definition 3.

We extend their results to a wider class of objects,
that do not necessarily implement a full read operation.

3. Weak RMW objects with wait-free
implementation

Consider the following two requirements on two
operationsA,B ∈O for a certain objectX .

(∃H,H ′ :: φA(H) �= φA(H ′)
)
,

(∃H,H ′ :: φB(H · H ′) �= φB(H · A · H ′)
)
. (1)

This is in a sense the weakest possible specification
of an operationA such that it both updates the state
and returns a meaningful value. Indeed, the first part of
Eq. (1) demands that the value returned byA is not a
constant, while the second part states that the update of
the state byA should be observable through the value
returned by some other operationB, perhaps after a
certain delay modeled byH ′.

Objects satisfying this ‘weakest’ requirement do
sometimes admit a wait-free implementation. One
such object is presented in Fig. 1. The sequential
specification of the object is represented as a graph
where the nodes are all possible states of the object.
Edges represent state changes due to the execution of
an action. They are labeled by these actions and the
value returned by the action. Note that every action
is enabled in every state; blocking an action until
a precondition holds is not possible for a wait-free
object.

Theorem 5. ObjectX of Fig. 1 satisfies Eq.(1) and
has a wait-free implementation using only atomic
read/write registers.

Fig. 1. Statically resilient object with weak RMW properties.

Proof. It can be easily checked that this object satis-
fies Eq. (1), by observing that

φA(s1) �= φA(s3), and

φB(P ) �= φB(P · A).

Also,X is statically resilient:B � A, B � P , A � P ,
A � A, B ∼ B, andP ∼ P . The result follows by
applying Theorem 4. ✷

A slightly stronger set of requirements is the follow-
ing.
(∃H1,H

′
1 :: φA(H1 · H ′

1) �= φA(H1 · B · H ′
1)

)
,

(∃H2,H
′
2 :: φB(H2 · H ′

2) �= φB(H2 · A · H ′
2)

)
. (2)

Here, objectX is required to have two operations
A and B that both update the state and return a
meaningful value, with the additional constraint that
A observes (after a delayH ′

1) the state change effected
by B and vice versa.

In the next sections we will show that no statically
resilient objects satisfying Eq. (2) exist. Moreover,
objects satisfying Eq. (2) with the further restriction
thatH1 = H2 and bothH ′

1 andH ′
2 empty do not admit

a wait-free implementation. In fact, such objects are
not dynamically resilient.

However, without further restrictions such a dynam-
ically resilient object admitting a wait-free implemen-
tation can be constructed. Indeed, the dynamically re-
silient object presented in Fig. 2 satisfies the even
stronger set of requirements

φA(P ) �= φA(P · B),

φB(Q) �= φB(Q · A). (3)
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Fig. 2. Dynamically resilient object with stronger Scan-and-Update
properties.

Theorem 6. ObjectX of Fig. 2 satisfies Eq.(3) (and
Eq.(2)) and has a wait-free implementation using only
atomic read/write registers.

Proof. Eq. (3) is easily checked. Clearly Eq. (2)
immediately follows from (3). For each of the states
we will establish the ‘resilience’ order between any
pair of operations to show thatX is dynamically
resilient.

s1: A ∼s1 A, B ∼s1 B, P ∼s1 P, Q ∼s1 Q,

A ∼s1 B, A �s1 P, A �s1 Q,

B �s1 P, B �s1 Q, P ∼s1 Q.

s2: A ∼s2 A, B ∼s2 B, P ∼s2 P, Q ∼s2 Q,

A �s2 B, A ∼s2 P, A �s2 Q,

P �s2 B, B �s2 Q, P �s2 Q.

s3: A ∼s3 A, B ∼s3 B, P ∼s3 P, Q ∼s3 Q,

A ∼s3 B, A ∼s3 P, A �s3 Q,

B ∼s3 P, B �s3 Q, P ∼s3 Q.

s4 ands5: Symmetric tos2 ands3 respectively, withA
andB andP andQ interchanged.

Using Theorem 4 this completes the proof.✷

4. Impossibility results for dynamically resilient
objects

For dynamically resilient objects we have the fol-
lowing straightforward theorem and corollary, that

nevertheless give a strong categorization of those ob-
jects that do not have a wait-free implementation.
Moreover, in view of Theorem 6, these impossibility
results are tight.

The proof of this theorem is similar to Anderson and
Moir’s proof of the necessity of the dynamic resilience
condition [2].

Theorem 7. Consider an objectX . If for some oper-
ationsA and B in O, there exists a historyH such
that

φA(H) �= φA(H · B) and

φB(H) �= φB(H · A),

then objectX is not dynamically resilient and does
not have a wait-free implementation using only atomic
read/write registers.

Proof. The first part of theorem follows from the fact
that if φA(H) �= φA(H · B) andφB(H) �= φB(H · A),
then neitherA �H B norA ∼H B norB �H B.

The second part of the theorem is proven as follows.
Execute the operations inH sequentially, in order, in
the implementation ofX . This will yield a state (〈H 〉)
for the implementation ofX . Now X , in this state,
solves 1-resilient consensus between two processes 0
and 1 using the following protocol

0: if A applied toX returnsφA(H)

then decide 0
else decide 1

1: if B applied toX returnsφB(H)

then decide 1
else decide 0

Loui and Abu-Amara [7] showed that 1-resilient
consensus cannot be achieved using only read/write
registers. This completes our proof.✷

SubstitutingA for B in the above theorem, we arrive
at the following

Corollary 8. If for objectX there exists an operation
A ∈ O and a historyH such that

φA(H) �= φA(H · A),

thenX is not dynamically resilient and does not have a
wait-free implementation using only atomic read/write
registers.
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5. Impossibility results for statically resilient
objects

The condition of Eq. (2) was shown to be imple-
mentable by a dynamically resilient object in Theo-
rem 6. In this section we will show that a statically
resilient object cannot satisfy Eq. (2).

We first prove transitivity of the overwrites relation.

Lemma 9. If P �H Q, Q �H R andQ �H ·P R then
P �H R.

Proof. By Q �H ·P R, 〈H ·P ·R〉 = 〈H ·P ·Q ·R〉. By
P �H Q, 〈H · P · Q · R〉 = 〈H · Q · R〉. By Q �H R,
〈H · Q · R〉 = 〈H · R〉. We conclude〈H · P · R〉 =
〈H · R〉.

It remains to show thatφR(H · P) = φR(H). By
Q �H R we haveφR(H) = φR(H · Q). By P �H Q,
〈H · P · Q〉 = 〈H · Q〉 which givesφR(H) = φR(H ·
P · Q). By Q �H ·P R we haveφR(H · P · Q) =
φR(H · P). ✷
Corollary 10. If P � Q andQ � R thenP � R.

Proof. If P � Q andQ � R, then for allH , P �H

Q, Q �H R and Q �H ·P R. Hence for allH , by
Lemma 9,P �H R. ✷
Lemma 11. Suppose
(∃H,H ′ :: φQ(H · H ′) �= φQ(H · P · H ′)

)

for a statically resilientX . Then there exists a history
H ′′ such thatφQ(H ′′) �= φQ(H ′′ · P).

Proof. Pick a pairH,H ′ satisfying

φQ(H · H ′) �= φQ(H · P · H ′), (4)

such thatH ′ has minimal length, sayk. If k = 0 we
are done, so we assumek > 0.

Proposition 12. For all i with 1 � i < k we have
H ′[i] �� H ′[i + 1].

Proof. Suppose not. Then for somei we have〈H ·
H ′〉 = 〈H · H ′[1 ·· i − 1] · H ′[i + 1 ·· k]〉 and〈H · P ·
H ′〉 = 〈H · P · H ′[1 ·· i − 1] · H ′[i + 1 ·· k]〉. ThenH

andH ′[1 · · i − 1] · H ′[i + 1 · · k] (with lengthk − 1)
satisfy Eq. (4) contradicting the assumption thatH ′
had minimal length. ✷

Proposition 13. For all i with 1 � i � k we have
H ′[i] � P .

Proof. We prove that for allR ∈ H ′ we haveR �
P by induction over the prefixes ofH ′. Consider
H ′[1 · ·1]. If H ′[1] ∼ P , then 〈H · P · H ′〉 = 〈H ·
H ′[1] · P · H ′[2 · · k]〉 and henceH · H ′[1] and
H ′[2 ·· k] (with lengthk − 1) satisfy (4) contradicting
the assumption thatH ′ had minimal length. IfP �
H ′[1], then〈H · P · H ′〉 = 〈H · H ′〉 contradicting that
φQ(H · H ′) �= φQ(H · P · H ′). Hence by Definition 2,
H ′[1] � P .

Now suppose that for all minimalH ′ satisfying (4)
we haveH ′[i] � P . By Proposition 12 and Defini-
tion 2 eitherH ′[i + 1] � H ′[i] or H ′[i] ∼ H ′[i + 1].
In the first case by Corollary 10 we haveH ′[i + 1] �
P . In the second case,〈H · H ′〉 = 〈H · H ′{i : i + 1}〉
and〈H · P · H ′〉 = 〈H · P · H ′{i : i + 1}〉. Hence,H
and H ′{i : i + 1} satisfy (4),H ′{i : i + 1} has min-
imal lengthk too, andH ′[i + 1] = H ′{i : i + 1}[i].
Hence by the induction hypothesisH ′[i + 1] = H ′{i :
i + 1}[i] � P . ✷

Now consider〈H · H ′ · P 〉 and 〈H · P · H ′ · P 〉.
There are two cases.
(1) φQ(H · H ′ · P) = φQ(H · P · H ′ · P). Using

Eq. (4), eitherφQ(H · H ′) �= φQ(H · H ′ · P) or
φQ(H · P · H ′) �= φQ(H · P · H ′ · P).

(2) φQ(H · H ′ · P) �= φQ(H · P · H ′ · P). Then
by Proposition 13 we can eliminateH ′ and we
concludeφQ(H · P) �= φQ(H · P · P).

This concludes the proof of the lemma.✷
Now follow the main two impossibility results of

this section.

Theorem 14. A statically resilient objectX with
operationA ∈O such that
(∃H,H ′ :: φA(H · H ′) �= φA(H · A · H ′)

)

does not exist.

Proof. Using Lemma 11 there exists a historyH ′′
such thatφA(H ′′) �= φA(H ′′ · A). But then, by Defi-
nition 1, neitherA � A, nor A ∼ A. This contradicts
Definition 2. ✷
Theorem 15. A statically resilient objectX with
operationA,B ∈ O such that
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(1) (∃H,H ′ :: φA(H · H ′) �= φA(H · B · H ′)), and
(2) (∃H,H ′ :: φB(H · H ′) �= φB(H · A · H ′)),
does not exist.

Proof. Using Lemma 11 there exist historiesH and
H ′ such thatφA(H) �= φA(H · B) and φB(H ′) �=
φB(H ′ · A). But then, by Definition 1, neitherA �
B, nor A ∼ B, nor B � A. This contradicts Defini-
tion 2. ✷

6. Discussion

We have shown that there exist objectsX with a
wait-free implementation using only atomic read/write
registers, that satisfy the following weak RMW condi-
tion
(∃H1,H

′
1 :: φA(H1 · H ′

1) �= φA(H1 · B · H ′
1)

)
,

(∃H2,H
′
2 :: φB(H2 · H ′

2) �= φB(H2 · A · H ′
2)

)
. (5)

In other words,X has two operationsA andB that
both update the state and return a meaningful value,
with the additional constraint that in at least one
history H1, A observes (after a delayH ′

1) the state
change effected byB and vice versa (possibly in a
different historyH2). Indeed, the delaysH ′

1 andH ′
2

can be made as short as the empty history.
We show that such an object cannot be statically

resilient. If we make Eq. (5) stronger by requiring
that H1 must be equal toH2, and keepingH ′

1 =
H ′

2 = ε, then such an object is not even dynamically
resilient and, moreover, does not have a wait-free

implementation using atomic read/write registers any
more. Notice that RMW objects satisfy this stronger
version of Eq. (5).

It is so far an open question whether we can
implement an object using only read-write registers
satisfying Eq. (5) withH ′

1 = H ′
2 allowing for a finite

delayH ′
1 andH ′

2.
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