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Abstract

One of the main reasons for using parallel evolutionary algorithms (PEAs) is to obtain efficient algorithms with an execution
time much lower than that of their sequential counterparts in order, e.g., to tackle more complex problems. This naturally leads
to measuring the speedup of the PEA. PEAs have sometimes been reported to provide super-linear performances for different
problems, parameterizations, and machines. Super-linear speedup means that using “m” processors leads to an algorithm that
runs more than “m” times faster than the sequential version. However, reporting super-linear speedup is controversial, especially
for the “traditional” research community, since some non-orthodox practices could be thought of being the cause for this result.
Therefore, we begin by offering a taxonomy for speedup, in order to clarify what is being measured. Also, we analyze the sources
for such a scenario in this paper. Finally, we study an assorted set of results. Our conclusion is that super-linear performance is
possible for PEAs, theoretically and in practice, both in homogeneous and in heterogeneous parallel machines. 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Evolutionary algorithms (EAs) are techniques for
optimization and learning [6]. They are quite a large
set of algorithmic families representing bio-inspired
systems with a behavior drawn from Nature. In EAs,
evolution is the basic force driving a population of
tentative solutions towards problem regions where the
optimal solutions are located. Since in this paper we
will focus on parallel EAs (PEAs) in which many
computers are used to speed up the search, let us begin
with the description of a PEA. In Algorithm 1 we
provide the pseudo-code.
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node i: t := 0;
initialize & evaluate [P(t)];
while not stop_condition do

P ′(t) := variation [P(t)];
evaluate [P ′(t)];
P ′′(t) := select [P ′(t)];
P ′′′(t) := communication[∆i,P

′′(t)]
t := t + 1;

end while

Algorithm 1. Parallel Evolutionary Algorithm.

A populationP(0) of data structures (usually strings
or trees of symbols) is initiallygeneratedat random
and evaluated to assess their individual quality as
problem solutions (fitnessvalues). A PEA repeats a
loop in which the present populationP(t) undergoes a
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variation phase by the application of some operators.
Some popular operators are mate selection, crossing
random slices between two individuals, and mutation
of their contents (random changes). Then, a replace-
ment step is performed in order to build up the new
populationP(t + 1) from the old oneP(t).

In a PEA, there are many nodes, each one perform-
ing this loop in parallel, with an additional phase of
communication of theith node with its neighboring
set of nodes∆i , in which individuals or statistics are
exchanged. Depending on the size of the population in
each node, the number of nodes, and the frequency of
the interactions, it is usual to distinguish between two
types of PEAs: distributed (dEA) and cellular (cEA)
PEA models [1,11]. A dEA has a small number of
nodes, many tens of individuals in each node, and per-
forms sporadic communications [20]. On the contrary,
a cEA has a large number of nodes, usually a sin-
gle individual in every node, and performs a tight and
frequent communication with neighboring nodes [18].
Many hybrids also exist (see, e.g., [1]).

These two kinds ofstructuredEAs have a differ-
ent behavior than that of single-population (panmic-
tic) ones, because they use decentralized reproduction.
Both dEAs and cEAs directly suggest parallel exe-
cution in MIMD and SIMD computers, respectively.
Usually, panmictic EAs are implemented as sequen-
tial algorithms, although they can also be executed in
parallel, e.g., to perform evaluations in parallel [1].

Since measuring the performance of any PEA is im-
portant, some performance measures, such asspeedup,
have been borrowed from traditional algorithms. How-
ever, the definition of speedup has suffered some dis-
tortion when used in the EA field. Therefore, our first
goal is to define speedup in the context of PEAs. It
is also interesting to notice that many authors have
reported super-linear speedups for different PEAs [2,
7,15]. Consequently, we would like to know whether
super-linear speedup is a fact or only a consequence of
a non-orthodox measure definition.

This paper is organized as follows. The next section
revisits speedup and some related performance mea-
sures. In Section 3 we propose a new taxonomy of
speedup measures. Section 4 studies whether super-
linear speedup is possible in PEAs. Section 5 contains
several brief PEA performance studies. Finally, some
concluding remarks are outlined in Section 6.

2. Speedup and related performance measures

We denote byTm the execution time for an algo-
rithm usingm processors. The PEA-adapted definition
of speedup should then compute the ratio between the
meanexecution time on a uni-processorE[T1] and the
meanexecution time onm processorsE[Tm] because
of its non-deterministic nature:

sm = E[T1]
E[Tm] . (1)

With this definition we can distinguish amongst
sub-linearspeedup (sm < m), linear speedup (sm =
m), and super-linear speedup (sm > m). A related
measure calledefficiency, used to normalize the speed-
up value to a certain percentage (100% efficiency
means linear speedup) is given by:

em = sm

m
× 100%. (2)

Finally, Karp and Flatt [13] have devised an interest-
ing metric for measuring the performance of any par-
allel algorithm that can help us to identify much more
subtle effects than using speedup alone. They call it
theserial fractionof the algorithm (fm):

fm = 1/sm − 1/m

1− 1/m
. (3)

As far as we know, this is the first attempt to use
the serial fraction to analyze PEAs (see also [3]).
Ideally, the serial fraction should stay constant for an
algorithm. If a speedup value is small (e.g., efficiency
around 87%), we can still say that the result is good
if fm remains constant for different values ofm, since
the loss of efficiency is due to the limited parallelism
of the program. On the other side, smoothly increasing
fm is a warning that the granularity of the parallel
tasks is too fine. A third scenario is possible in
which a significant reduction infm occurs, indicating
something akin to super-linear speedup. If super-linear
speedup occurs, thenfm would take a negative value.

To justify why somebody should be interested in
using the serial fraction measure to indicate super-
linear values, first we must say that, since they are
expressed by negative quantities offm, it is easy
to notice for a reader. Second, using serial fraction
allows us to link our results with other existing
similar values for deterministic algorithms like the
ones explained in [13,14] and in many interesting
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references of the CALMA project documents [21].
Finally, as mentioned above, withfm we can identify
more subtle effects (trends) in the parallel program
than when only using speedup.

3. A taxonomy of speedup measures for EC

A well-accepted way of measuring numerical per-
formance is to check the number of evaluations of the
objective function needed to locate the optimum. We
call this thenumeric effortof the algorithm. On the
other hand, parallel performances can be measured in
several ways, usually requiring computing the time
needed to locate a solution. Since our focus is on
speedup, we start by giving a taxonomy of speedup
measures (see Table 1).

Type I (strong speedup) is provided to emphasize
the fact that speedup must compare the PEA run time
with the best-so-far sequential algorithm, whether of
evolutionary nature or not. Because of the difficulty
of finding the current most efficient algorithm for
tackling the problem at hand, most designers of
parallel algorithms (including PEAs) have not used
strong speedup. Instead, they use aweakmeasure in
which they compare the parallel algorithm with their
own sequential version of their algorithm (type II
in Table 1). Also, it could be possible to have a
second (weak) comparison against the best known
EA solution, but this would be as difficult to achieve
in practice as comparing it against the best-so-far
known algorithm. Here, we use the words “sequential”
and “parallel” to stand for uni- and multi-processor
executions, respectively.

We could run the algorithms with an a priori
stopping criterion based, e.g., in a maximum number
of evaluations, but this practice allows the researcher
to get any desired and arbitrary speedup value by

Table 1
Taxonomy of speedup measures

I. Strong speedup

II. Weak speedup

A. Speedup with solution-stop

1. Versus panmixia

2. Orthodox

B. Speedup with predefined effort

deciding upon the number of steps of the PEA.
So we consider this measure (type II.B) undesirable
for studying speedup. It might be useful for other
purposes, e.g., to compare the final error of the best
solution given by the sequential EA against the one
given by the parallel algorithm. But, for measuring
speedup, we think that the same targetsolution quality
should be defined for both the sequential and the
parallel EA, and only then we will be allowed to
compare their run times (type II.A).

In fact, we could even decide to compare the PEA
on m processors against a panmictic—single—node
(type II.A.1). But if so, we should be comparing two
clearly different algorithms. Consequently, it seems
more appropriate to define a measure in which the
same PEA is run on 1 andm processors (type II.A.2),
and then to compute their average time ratio. Of
course, it is assumed that the code executed in 1 andm

processors is the same, and that no additional code is
artificially or unnecessarily executed in sequential that
could inflate its execution time.

In summary, speedup must be clarified in the PEA
field, specially relating the base sequential algorithm
for comparisons. First, we must useaverageand not
absolute times, due to the non-deterministic PEA be-
havior. Second, the uni and multi-processorimplemen-
tationsshould beexactly the same, thus avoiding the
use of a panmictic EA in the uni-processor case ver-
sus a decentralized one in the multi-processor case (as
pointed out in [16]). Third, for a meaningful speedup,
we must run the PEA until asolutionfor the problem
is found, as strongly claimed by some authors [3,8,
12]. With these requirements, speedup will provide a
useful value indicating the advantage of adding more
processors; otherwise, it could be misleading.

4. Is it really possible to have super-linear
speedup in PEAs?

A number of authors have analyzed PEAs by
considering different criteria, and many of them came
out with a super-linear speedup result when using a
parallel machine. See super-linear performances with
parallel genetic algorithms (PGAs) in [2,3,7,15] and
with parallel genetic programming (PGP) in [5].

Speedup has been studied in traditional parallel al-
gorithms for many years, especially for homogeneous
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workstation clusters and multi-computers. However,
we also consider here an open research line consisting
of studying the speedup for heterogeneous computers.
In this last case, it seems more appropriate that per-
formance figures use wall clock time rather than CPU
time, since there is an obvious problem with defining
a reference point against which the results should be
compared [21]. The reference point should be the exe-
cution time on the fastest single processor [10]. Using
this measure, we can at least assume that a speedup
greater than unity implies that the parallel system is
faster than the uni-processor. In [10], Donaldson et al.
have shown that there is no theoretical upper limit for
the speedup in heterogeneous systems, which can ex-
plain a super-linear value in this case.

On the other hand, based on our own experience
with PGAs, we can expect to get super-linear speedups
sometimes. But which are the sources behind the
super-linear speedup in PEAs? We propose a classi-
fication into implementation, numerical, andphysical
sources:

#1. Implementation source. The algorithm being
run on one processor is “inefficient” in some way.
For example, if the sequential algorithm uses linear
lists of data, the parallel one is faster because it
manages shorter lists and merges the results. Super-
linear speedup would not occur in this last case
if the sequential algorithm were to use a binary
data tree, for example, [21]. On the other hand,
the complexity of the operators (selection, crossover)
reduces dramatically when the population is split and
the resulting chunks are dealt with in parallel. If the
sequential algorithm is panmictic, then the parallel one
most probably will exhibit a super-linear performance
since its parallel decentralized execution has two
additional advantages: sources #2 and #3 (discussed
later). In the case of heterogeneous computers, using
different compilers (e.g., different Java interpreters)
can also be a source for super-linear speedup.

#2. Numerical source. Since the search space is
usually very large, the sequential program may have
to search a large portion before finding the required
solution. On the other hand, the parallel version may
find the solution more quickly due to the change
in the order in which the space is searched. This
holds for PEAs as well as for other algorithms such

as Branch-and-Bound [14]. In fact, heuristics have
a non-zero probability of finding a solution afterT

seconds, for anyT > 0. By running an algorithm
on several processors instead of just one we increase
the probability of finding a solution. This has been
proven by Shonkwiler [17], where we can even find a
numerical model for characterizing the speedup value
in PEAs: sm = m · am−1 (super-linear speedup when
a > 1).

#3. Physical source. When moving from a sequential
to a parallel machine, it is often the case that one
gets more than an increase in CPU power. Other
resources, such as memory, caché, etc. may also
increase linearly with the number of processors. The
parallel algorithm may be able to achieve super-
linear speedup by taking advantage of these additional
resources. In heterogeneous clusters the resources are
different from each other, with unpredictable results.

We therefore conclude that super-linear speedup is
possible in PEAs, as well as for other algorithms,
theoretically and as a result in empirical tests, both
for homogeneous [3,21] and heterogeneous [4,10]
computing networks. For certain PGA applications it
could be even common.

5. Examples of super-linear performance with
parallel GAs

In order to offer a complete view of the super-
linear speedup scenarios we now turn to give various
examples of what is meant by super-linear speedup.
The PEA we are using is a distributed GA in which
every island performs a steady-state GA [19]. Each
one of the 8 steady-state islands hasµ = 64 individ-
uals and creates one individual(µ + 1)-EA in every
step. This is done by applying the selection (fitness
proportional for homogeneous, and binary tournament
for heterogeneous), two point crossover (Pc = 1.0 and
Pc = 0.85 for homo/hetero cases), bit-flip mutation
(always Pm = 1/string_length), and replacement of
the worst only if the new one is better than it [2]. The
islands are located in a unidirectional ring, each send-
ing one copy of a random string every(32·popsize)/8
evaluations. The target island incorporates it into its
population if it is better than its presently worst string.



E. Alba / Information Processing Letters 82 (2002) 7–13 11

Fig. 1. Speedup for SPH16-32 (left) and SSS128 (right) in a homogeneous cluster.

The reception of incoming strings is asynchronous for
efficiency [2,13].

We show an assorted (and brief) set of results for
homogeneous as well as for heterogeneous machines
to offer a non-biased and wide spectrum of possible
scenarios. Let us begin with the homogeneous case.
In the left graph of Fig. 1, we show the results on
the problem of maximizing the square sum of 16
variables, each one encoded in 32 bits (SPH16-32).
The dashed line represents linear speedup. We can see
that the unfair comparison against a panmictic steady-
state GA(weak1 ≡ type II.A.1) can yield huge values
of super-linear speedup, since the distributed GA is
parallel and needs a lower number of evaluations (not
shown here due to space constraints). The line labeled
weak2 (type II.A.2) proves that super-linear orthodox
speedup occurs with moderate figures.

But, althoughweak2 seems appropriate, this does
not always mean to be predictable. In the right graph
of Fig. 1, we plot the result of measuring ortho-
dox speedup (weak2) on a combinatorial problem
known as the subset sum problem with 128 inte-
gers (SSS128) [2]. Although there are irregular de-
pendencies (jumps) due to the influences of the map-
ping islands-to-processors, it is clear in these tests that
super-linear performance can be achieved (e.g., with 4
processors).

As to the heterogeneous case, Table 2 shows the
results obtained with the problem of maximizing the
number of ones in a 512 bit string. We use 4 Pentiums

Table 2
Speedup for ONEMAX in homogeneous and heterogeneous sys-
tems

Computers m Time Speedup Serial
(#processors) (s) fraction

NT-cluster 1 309.9

NT-cluster 8 38.5 8.051 −0.001

LINUX 1 116.2

Heterogeneous 8 21.3 5.435 0.067

III NT at 550 MHz, one IRIX R10000 at 250 MHz,
one LINUX Pentium III at 550 MHz, and two Digital
AlphaServer processors at 300 MHz (in the given
order) to hold the ring of sub-algorithms. They all are
linked by a Fast Ethernet LAN (100 Mbps).

First, notice in Table 2 that comparing the homo-
geneous configuration of 1 versus 8 NT workstations
yields a slightly super-linear speedup (8.051). On the
other hand, since the LINUX machine was the fastest
uni-processor we use it for the speedup in the het-
erogeneous case [10]. To our surprise, the heteroge-
neous configuration scored a smaller absolute average
time (21.3 s) than the NT homogeneous case (38.5 s).
While the heterogeneous speedup is small (5.435), it
is a good value since the serial fraction is very small
(0.067). We have just begun to test heterogeneous
cases and have no super-linear results until now, al-
though they are possible in theory [10].
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Table 3
Speedup for P-PEAKS in a heterogeneous system

Computers m Time Speedup Serial
(#processors) (s) fraction

NT-cluster 1 2425.4

NT-cluster 8 300.0 8.083 −0.001

Heterogeneous 8 316.8 7.655 0.006

Table 3 shows results obtained with a multimodal
problem generator [9] we call P-PEAKS from which
we have constructed a highly epistatic instance (512
bits and 512 peaks). This time, the NT-cluster of Pen-
tium III with NT scored the overall best results, both in
uni and multi-processor homogeneous configuration,
again with a slightly super-linear speedup (negative se-
rial fraction). The heterogeneous configuration again
is good with a near-linear speedup (7.655) and a very
small serial fraction that ensures us to have made a
good parallelization of the algorithm.

With respect to heterogeneity, the lesson is twofold.
First, super-linear speedup is theoretically possible in
a heterogeneous computing system, although it might
be hard to get such a result in practice. Second, we
can take advantage from merging existing machines
with new ones instead of buying a whole set of new
workstations (good news!).

6. Concluding remarks

In this work we have discussed the speedup of
parallel evolutionary algorithms. We have proposed
a taxonomy of speedup measures and have identified
the sources for a super-linear performance scenario. In
addition, we have shown that super-linear speedup is
possible, both in theory and practice, for homogeneous
as well as heterogeneous computational resources.
Finally, we have provided concrete results in order to
show different aspects of the speedup of PEAs.

We have been experiencing super-linear speedups
for many configurations and problems. Although super-
linear speedup is always controversial, it is a fact. Our
future work will address other parallel machines, algo-
rithms, and problems to better characterize speedup in
PEAs.
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