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Abstract

On studying the scalability of optical networks, one problem arising is to color the
vertices of the n-cube with as few colors as possible such that any two vertices whose
Hamming distance is at most k are colored differently. Determining the exact value
of xz(n), the minimum number of colors needed, is a difficult problem. In this paper,
we improve the lower and upper bounds of y;(n) and indicate the connection of this

coloring problem to linear codes.
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1 Introduction

An n-cube (or n dimensional hypercube) is a graph whose vertices are vectors of the n
dimensional vector space over the field {0, 1}. There is an edge between two vertices of the
n-cube whenever their Hamming distance is exactly 1, where the Hamming distance of two
vectors is the number of coordinates they differ. Given n and k, our problem is to find
Xi(n), the minimum number of colors needed to color the vertices of an n-cube so that any
two vertices of (Hamming) distance at most k& have different colors.

Wan [1] proved that

n+1<ys(n) < 9[logs(n+1)] (1)

and conjectured that ys(n) = 2[1082(n+1)]

Kim et al. [2] showed that
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where (7)) = S (7)

The upper bounds in (1) and (2) are fairly tight. In (1), the upper and lower bounds
coincide when n+ 1 is an exact power of 2, while if n is an exact power of 2 upper and lower
bounds of (2) meet. However, upper bounds in (3) and (4) are not tight. In fact, when
k =2 and k = 3 they are different from those of (1) and (2). A natural approach to get an
upper bound of x;(n) is to find a coloring of the n-cube with as few colors as possible. We
shall use this idea and properties of linear codes (to be introduced in the next section) to
give tighter bounds for general k& which imply (1) when k£ = 2 and (2) when k = 3. In fact,

the upper bounds in (1) and (2) are straight application of the Hamming code [3].



All existing lower bounds can be improved slightly by applying existing results on the
main coding theory problem [3].

The remaining of the paper is organized as follows. Section 2 introduces concepts and
results from coding theory needed for the rest of the paper. Section 3 discusses our results

and section 4 gives general discussions about the problem.

2 Preliminaries

The following concepts and results can be found in many standard texts on coding theory
such as [3].

Let A={0,1,...q— 1} where ¢ > 2 is an integer, and A" be the set of all n-dimensional
vectors (or strings of length n) over A. Any non-empty subset C of A" is called a g-ary
block code. Our main concern is when A = {0, 1}, in which case C is called a binary code.
From now on, the term codes refers to binary codes unless specified otherwise. Each element
of C is called a codeword. Let M = |C| then C is called an (n, M)-code. The Hamming
distance between any two codewords ¢ = cicy...c, and d = dydy ... d, are defined to be
d(e,d) = |{i : ¢ # d;i}|. For ¢ € C, the weight of ¢ denoted by w(c) is the number of
I’s in ¢. The minimum distance d(C) of a code C is the least Hamming distance between
two different codewords in C. If C C A", |C| = M, and d(C) = d then C is called an
(n, M, d)-code.

One of the most important problem in coding theory is to find A,(n, d), the largest size
M such that a g-ary (n, M, d)-code exists. This problem is so important that it is refered to
as the main coding theory problem. In case ¢ = 2, we will write A(n,d) instead of As(n,d).
The following theorems are standard results in coding theory and the reader is refered to

[3] for proofs.

Theorem 1 A(n,2t+1) = A(n + 1,2t + 2)

Theorem 2

An,2t+1) <




Theorem 2 is a special case of the Johnson bound [3].

It is clear that all n-dimensional vectors over {0, 1} form an n-dimensional vector space,
which we denote by V,,(2). A code C C V,,(2) is called a linear code if C is a linear subspace
of V,(2). Moreover, C is called a [n, m]-code if it has dimension m. As expected, if C also
has minimum distance d then it is called an [n,m, d]-code. Notice that the square brackets
automatically refer to linear codes. A m X n matrix G is called the generator matriz of
an [n, m]-code C if its rows form a basis of C. In other words, every codewords in C is
a linear combination of some rows of G. Given an [n,m]-code C, an (n —m) X n matrix
H is called the parity check matriz of C if ¢ € C < ¢H' = 0. From coding theory, we
know that specifying a linear code using generator matrix and using parity check matrix are
equivalent. In fact, there are ways to construct the parity check matrix from the generator
matrix of a code and vice versa. For a vector z € Va(n), the syndrom of xz associated with
a parity check matrix H is defined to be synd(z) = zH.

Given an [n,m,d]-code C, the standard array of C is a 2"~ ™ x 2™ table where each
row is a (left) coset of C. This table is well defined since elements of C' form an Abelian
subgroup of V5(n) under addition, and from basic algebra we know that the cosets of a
group partition the group uniformly. The first row of the standard array contains C' itself.
The first column of the standard array contains the minimum weight elements from each
coset. These are called coset leaders. Each entry in the table is the sum of the codeword
on the top of its column and its coset leader. Since each pair of distinct codewords has
Hamming distance at least d, each pair of elements in the same row also has Hamming
distance at least d. It is a basic fact from coding theory that all elements on the same row
of the standard array have the same syndrom and different rows have different syndroms.

We conclude this section by an important theorem. Again, the reader is refered to [3]

for a proof.

Theorem 3 If H is an (n — m) x n matriz where any d — 1 columns of H are linearly

independent and there exist d linearly dependent columns in H, then H is the parity check



matriz of an [n,m,d]-code.

3 Main Results

Lemma 1 If k is even, lettzgwe have
t
n 1 n n—t n—t
GOEDY () +T<t> (i1 1))
= B
If k is odd, lett:k%we have
¢
n—1 1 n—1 n—1—1 n—1—1
Xk(”)>2(z< i )“LE( t )( t+1 _{ t+1 D)
i=0 I+1

Proof: Given a valid coloring of the n-cube with parameters n and k using m colors,
let S;,1 <4 < m be the set of vertices which were colored i. Clearly for each 7, S; forms an

(n,]S;|,d)-code where d > k + 1. With the note that A(n,d) is a decreasing function in d,

we have
m m
2" = Z|Sl\ < ZA(n,k—i—l) =mA(n,k+1)
i=1 i=1
Thus, inparticular we have xz(n) > %. When £k is even, let £k = 2t then by

theorem 2 we get
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Lemma 2 Let (()) denotes Y7 (). Then we have
n—1
Xip(n) < 2Ll (GZD) I phen & is even

Xip(n) < o082 (22142 when & s odd

Proof: Let C be an [n,m,k + 1]-code. As we have noticed in the previous section,
every two elements on the same row of the standard array of C' are at least k + 1 apart.
Thus, coloring each row of of C’s standard array by one separate color would give us a

2"~™ _ the number of rows of C’s standard

valid coloring. The number of colors used is
array. Consequently, one way to obtain a good coloring of the n-cube is to find a linear
[n,m, k + 1] code with as large an m as possible. Moreover, by theorem 3 we can construct
a linear [n,m, d] code by trying to build its parity check matrix H, which is an (n —m) xn
matrix with the property that d is the largest number such that any d — 1 columns of H
are linearly independent and there exist d dependent columns. Also, since all elements of
a coset of the code (a row of its standard array) have the same syndrom, we can use H to

color each vector = € Va(n) with synd(z) = xH'.

Let

() () ) bl )

then clearly we have

n—1 n—1 n—1
2P —1

Now, we describe a procedure to construct a p x n parity check matrix H by trying
to choose the column vectors of H. The first column vektor can be any non-zero vector.
Suppose we already had a set V' of i vectors so that any d—1 of them are linearly independent.
The (i 4 1) vector can be picked as long as it is not in the span of any d — 2 vectors in V.
In otherwords, since we’re working over the field F,, the new vector can’t be the sum of any

d— 2 or less vectors in V. The total number of invalid vector is at most (;) + (;) +... (diQ)



(this is an increasing function in i). Consequently, as long as (1) + (2) +... (,*,) <2? —1

then we can still add a new column into H.

)+ ()

so we can choose n column vectors of H. This bound in coding thery literature is a

As we’ve noticed,

special case of the Gilbert- Varshamov Bound on the existence of linear codes.

The linear code C whose parity check matrix is H has minimum distance at least d (and
size |C| = 2""P). The number of rows of the standard array of C' is 2.

For our problem of looking for an upper bound of x;(n), we want d = k + 1. The linear

code C constructed gives a valid coloring using 2P colors, so
xi(n) < 20 = 2llom (1 (" )+ (" )+ GE) 41— glloea((71)) ]+

This inequality holds regardless of k being odd or even and thus it proves our lemma
for the even k case. However, when k is odd we are able to do better than that.

We notice that if we add an even parity bit to each vector of V,(n — 1) then we get
half of V5(n). Adding an odd parity bit would give us the other half. When & is odd, we
just proved that we can color the (n — 1)-cube using a = 2Llog2((2‘:§))J+1 colors so that if
two vertices have the same color then their distance is at least k. From this, we can obtain
a coloring of the n-cube as follows. We first add an even parity bit to each vertex of the
(n — 1)-cube, color them using a colors, and then add an odd parity bit and color them
using a completely different set of a colors. This is clearly a coloring of the n-cube using
2a = 2“05{2((2:3))J+2 colors. What remained to be shown is that this coloring is valid with
parameters n and k.

For z being any vertex of the n-cube, let 2’ be the vector obtained from z by deleting
the parity bit added. By the way we constructed the coloring, if two vertices x and y of
the n-cube have the same color then d(z',y') > k, and the same type of parity bit (even

or odd) was added to them to get x and y. It is clear that if d(z',y') > k + 1, then



d(z,y) > k+ 1. If d(z',y') = k, then since k is odd, z’ and y’ must have had different bits
added to; consequently, d(z,y) = k + 1. In sum, if two vertices = and y of the n-cube have
the same color then d(z,y) > k + 1, and so we had a valid coloring with parameters n and
k.

Lemma 1 and 2 can be summarized by the following theorem.

Theorem 4 Let t = | %] and ((1')) denotes 3" (7). Then, when k is even, we have
¢
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and when k is odd, we have
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Note that since
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and

91082 ((523)) ] +2 — gllogs(n—1)]+2 _ g[logy n]+1

inequalities (1) and (2) are dirrect consequences of this theorem.

4 Concluding Remarks

The key to get a good coloring is to find the parity check matrix H when k is even. As can
be seen, the proof of theorem 4 implicitly gave us an algorithm to construct H, but it is still
not very constructive. However, in the case k = 2 (and thus in case k = 3) we can explicitly
construct H. To see this, consider the Hamming code Ha(r), whichisa [2" —1,2" —1 —r, 3]
code. Its parity check matrix H(r,2) has dimensions r x (2" — 1). Let r = [logy(n + 1)],
then 2" — 1 > n. So, if we remove the last 2" — 1 — n columns of H(r,2), then we get a

parity check matrix of an [n,n — [logy(n + 1)], 3] code. This code gives us a coloring of the



n-cube with parameters n and 2 using 2/°82("+11 ¢olors. This proves the upper bound of
(1).

Besides the Johnson bound we used, other known upper bounds of A(n,d) might give
us better lower bound of xj(n) such as the Plotkin bound, the Elias bound and the Linear
Programming bound. However, applying these bounds breaks the problem into various cases

and doesn’t give us a significantly better result.
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