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New Bounds on a Hypercube Coloring ProblemHung Quang Ngo� Ding Zhu Du�AbstractOn studying the scalability of optical networks, one problem arising is to color thevertices of the n-cube with as few colors as possible such that any two vertices whoseHamming distance is at most k are colored di�erently. Determining the exact valueof ��k(n), the minimum number of colors needed, is a di�cult problem. In this paper,we improve the lower and upper bounds of ��k(n) and indicate the connection of thiscoloring problem to linear codes.Keywords: hypercube, coloring, codes
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1 IntroductionAn n-cube (or n dimensional hypercube) is a graph whose vertices are vectors of the ndimensional vector space over the �eld f0; 1g. There is an edge between two vertices of then-cube whenever their Hamming distance is exactly 1, where the Hamming distance of twovectors is the number of coordinates they di�er. Given n and k, our problem is to �nd��k(n), the minimum number of colors needed to color the vertices of an n-cube so that anytwo vertices of (Hamming) distance at most k have di�erent colors.Wan [1] proved that n+ 1 � ��2(n) � 2dlog2(n+1)e (1)and conjectured that ��2(n) = 2dlog2(n+1)eKim et al. [2] showed that 2n � ��3(n) � 2dlog2 ne+1 (2)  nk=2!! � ��k(n) � (k + 1)�k + 22 � k(k+2)8 dlog2 ne (3)2  n� 1k�12 !! � ��k(n) � (k + 1)�k + 22 � k(k+2)8 dlog2 ne (4)where ��nm�� =Pmi=0 �ni�The upper bounds in (1) and (2) are fairly tight. In (1), the upper and lower boundscoincide when n+1 is an exact power of 2, while if n is an exact power of 2 upper and lowerbounds of (2) meet. However, upper bounds in (3) and (4) are not tight. In fact, whenk = 2 and k = 3 they are di�erent from those of (1) and (2). A natural approach to get anupper bound of ��k(n) is to �nd a coloring of the n-cube with as few colors as possible. Weshall use this idea and properties of linear codes (to be introduced in the next section) togive tighter bounds for general k which imply (1) when k = 2 and (2) when k = 3. In fact,the upper bounds in (1) and (2) are straight application of the Hamming code [3].2



All existing lower bounds can be improved slightly by applying existing results on themain coding theory problem [3].The remaining of the paper is organized as follows. Section 2 introduces concepts andresults from coding theory needed for the rest of the paper. Section 3 discusses our resultsand section 4 gives general discussions about the problem.2 PreliminariesThe following concepts and results can be found in many standard texts on coding theorysuch as [3].Let A = f0; 1; : : : q�1g where q � 2 is an integer, and An be the set of all n-dimensionalvectors (or strings of length n) over A. Any non-empty subset C of An is called a q-aryblock code. Our main concern is when A = f0; 1g, in which case C is called a binary code.From now on, the term codes refers to binary codes unless speci�ed otherwise. Each elementof C is called a codeword. Let M = jCj then C is called an (n;M)-code. The Hammingdistance between any two codewords c = c1c2 : : : cn and d = d1d2 : : : dn are de�ned to bed(c; d) = jfi : ci 6= digj. For c 2 C, the weight of c denoted by w(c) is the number of1's in c. The minimum distance d(C) of a code C is the least Hamming distance betweentwo di�erent codewords in C. If C � An, jCj = M , and d(C) = d then C is called an(n;M; d)-code.One of the most important problem in coding theory is to �nd Aq(n; d), the largest sizeM such that a q-ary (n;M; d)-code exists. This problem is so important that it is refered toas the main coding theory problem. In case q = 2, we will write A(n; d) instead of A2(n; d).The following theorems are standard results in coding theory and the reader is refered to[3] for proofs.Theorem 1 A(n; 2t+ 1) = A(n+ 1; 2t+ 2)Theorem 2 A(n; 2t+ 1) � 2nPti=0 �ni�+ 1b nt+1c�nt� �n�tt+1 � jn�tt+1 k�3



Theorem 2 is a special case of the Johnson bound [3].It is clear that all n-dimensional vectors over f0; 1g form an n-dimensional vector space,which we denote by Vn(2). A code C � Vn(2) is called a linear code if C is a linear subspaceof Vn(2). Moreover, C is called a [n;m]-code if it has dimension m. As expected, if C alsohas minimum distance d then it is called an [n;m; d]-code. Notice that the square bracketsautomatically refer to linear codes. A m � n matrix G is called the generator matrix ofan [n;m]-code C if its rows form a basis of C. In other words, every codewords in C isa linear combination of some rows of G. Given an [n;m]-code C, an (n �m) � n matrixH is called the parity check matrix of C if c 2 C , cHT = 0. From coding theory, weknow that specifying a linear code using generator matrix and using parity check matrix areequivalent. In fact, there are ways to construct the parity check matrix from the generatormatrix of a code and vice versa. For a vector x 2 V2(n), the syndrom of x associated witha parity check matrix H is de�ned to be synd(x) = xHT .Given an [n;m; d]-code C, the standard array of C is a 2n�m � 2m table where eachrow is a (left) coset of C. This table is well de�ned since elements of C form an Abeliansubgroup of V2(n) under addition, and from basic algebra we know that the cosets of agroup partition the group uniformly. The �rst row of the standard array contains C itself.The �rst column of the standard array contains the minimum weight elements from eachcoset. These are called coset leaders. Each entry in the table is the sum of the codewordon the top of its column and its coset leader. Since each pair of distinct codewords hasHamming distance at least d, each pair of elements in the same row also has Hammingdistance at least d. It is a basic fact from coding theory that all elements on the same rowof the standard array have the same syndrom and di�erent rows have di�erent syndroms.We conclude this section by an important theorem. Again, the reader is refered to [3]for a proof.Theorem 3 If H is an (n � m) � n matrix where any d � 1 columns of H are linearlyindependent and there exist d linearly dependent columns in H, then H is the parity check4



matrix of an [n;m; d]-code.3 Main ResultsLemma 1 If k is even, let t = k2 we have��k(n) � tXi=0 ni!+ 1j nt+1k nt!�n� tt+ 1 � �n� tt+ 1 ��If k is odd, let t = k�12 we have��k(n) � 20@ tXi=0 n� 1i !+ 1jn�1t+1 k n� 1t !�n� 1� tt+ 1 � �n� 1� tt+ 1 ��1AProof: Given a valid coloring of the n-cube with parameters n and k using m colors,let Si; 1 � i � m be the set of vertices which were colored i. Clearly for each i, Si forms an(n; jSij; d)-code where d � k + 1. With the note that A(n; d) is a decreasing function in d,we have 2n = mXi=1 jSij � mXi=1A(n; k + 1) = mA(n; k + 1)Thus, inparticular we have ��k(n) � 2nA(n;k+1) . When k is even, let k = 2t then bytheorem 2 we get ��k(n) � tXi=0 ni!+ 1j nt+1k nt!�n� tt+ 1 � �n� tt+ 1 ��When k is odd, let k = 2t+ 1 and combining theorems 1 and 2 gives us��k(n) � 2nA(n; k + 1)= 2nA(n; 2t+ 2)= 2nA(n� 1; 2t+ 1)� 20@ tXi=0 n� 1i !+ 1jn�1t+1 k n� 1t !�n� 1� tt+ 1 � �n� 1� tt+ 1 ��1A25



Lemma 2 Let ��nm�� denotes Pmi=0 �ni�. Then we have��k(n) � 2blog2((n�1k�1))c+1 when k is even��k(n) � 2blog2((n�2k�2))c+2 when k is oddProof: Let C be an [n;m; k + 1]-code. As we have noticed in the previous section,every two elements on the same row of the standard array of C are at least k + 1 apart.Thus, coloring each row of of C's standard array by one separate color would give us avalid coloring. The number of colors used is 2n�m { the number of rows of C's standardarray. Consequently, one way to obtain a good coloring of the n-cube is to �nd a linear[n;m; k+1] code with as large an m as possible. Moreover, by theorem 3 we can constructa linear [n;m; d] code by trying to build its parity check matrix H, which is an (n�m)�nmatrix with the property that d is the largest number such that any d � 1 columns of Hare linearly independent and there exist d dependent columns. Also, since all elements ofa coset of the code (a row of its standard array) have the same syndrom, we can use H tocolor each vector x 2 V2(n) with synd(x) = xHT .Letp = $log2  1 +  n� 11 !+  n� 12 !+ : : : n� 1d� 2!!%+ 1 = $log2   n� 1d� 2!!%+ 1then clearly we have n� 11 !+  n� 12 !+ : : : n� 1d� 2! < 2p � 1Now, we describe a procedure to construct a p � n parity check matrix H by tryingto choose the column vectors of H. The �rst column vektor can be any non-zero vector.Suppose we already had a set V of i vectors so that any d�1 of them are linearly independent.The (i+1)th vector can be picked as long as it is not in the span of any d� 2 vectors in V .In otherwords, since we're working over the �eld F2, the new vector can't be the sum of anyd� 2 or less vectors in V . The total number of invalid vector is at most �i1�+ �i2�+ : : : � id�2�6



(this is an increasing function in i). Consequently, as long as �i1�+ �i2�+ : : : � id�2� < 2p � 1then we can still add a new column into H.As we've noticed,  n� 11 !+  n� 12 !+ : : : n� 1d� 2! < 2p � 1so we can choose n column vectors of H. This bound in coding thery literature is aspecial case of the Gilbert-Varshamov Bound on the existence of linear codes.The linear code C whose parity check matrix is H has minimum distance at least d (andsize jCj = 2n�p). The number of rows of the standard array of C is 2p.For our problem of looking for an upper bound of ��k(n), we want d = k+1. The linearcode C constructed gives a valid coloring using 2p colors, so��k(n) � 2p = 2blog2(1+(n�11 )+(n�12 )+:::(n�1k�1))c+1 = 2blog2((n�1k�1))c+1This inequality holds regardless of k being odd or even and thus it proves our lemmafor the even k case. However, when k is odd we are able to do better than that.We notice that if we add an even parity bit to each vector of V2(n � 1) then we gethalf of V2(n). Adding an odd parity bit would give us the other half. When k is odd, wejust proved that we can color the (n � 1)-cube using a = 2blog2((n�2k�2))c+1 colors so that iftwo vertices have the same color then their distance is at least k. From this, we can obtaina coloring of the n-cube as follows. We �rst add an even parity bit to each vertex of the(n � 1)-cube, color them using a colors, and then add an odd parity bit and color themusing a completely di�erent set of a colors. This is clearly a coloring of the n-cube using2a = 2blog2((n�2k�2))c+2 colors. What remained to be shown is that this coloring is valid withparameters n and k.For x being any vertex of the n-cube, let x0 be the vector obtained from x by deletingthe parity bit added. By the way we constructed the coloring, if two vertices x and y ofthe n-cube have the same color then d(x0; y0) � k, and the same type of parity bit (evenor odd) was added to them to get x and y. It is clear that if d(x0; y0) � k + 1, then7



d(x; y) � k + 1. If d(x0; y0) = k, then since k is odd, x0 and y0 must have had di�erent bitsadded to; consequently, d(x; y) = k + 1. In sum, if two vertices x and y of the n-cube havethe same color then d(x; y) � k + 1, and so we had a valid coloring with parameters n andk. Lemma 1 and 2 can be summarized by the following theorem.Theorem 4 Let t = bk2c and ��nm�� denotes Pmi=0 �ni�. Then, when k is even, we havetXi=0 ni!+ 1j nt+1k nt!�n� tt+ 1 � �n� tt+ 1 �� � ��k(n) � 2blog2((n�1k�1))c+1and when k is odd, we have20@ tXi=0 n� 1i !+ 1jn�1t+1 k n� 1t !�n� 1� tt+ 1 � �n� 1� tt+ 1 ��1A � ��k(n) � 2blog2((n�2k�2))c+2Note that since 2blog2((n�12�1))c+1 = 2blog2 nc+1 = 2dlog2(n+1)eand 2blog2((n�23�2))c+2 = 2blog2(n�1)c+2 = 2dlog2 ne+1inequalities (1) and (2) are dirrect consequences of this theorem.4 Concluding RemarksThe key to get a good coloring is to �nd the parity check matrix H when k is even. As canbe seen, the proof of theorem 4 implicitly gave us an algorithm to construct H, but it is stillnot very constructive. However, in the case k = 2 (and thus in case k = 3) we can explicitlyconstruct H. To see this, consider the Hamming code H2(r), which is a [2r�1; 2r�1� r; 3]code. Its parity check matrix H(r; 2) has dimensions r � (2r � 1). Let r = dlog2(n + 1)e,then 2r � 1 � n. So, if we remove the last 2r � 1 � n columns of H(r; 2), then we get aparity check matrix of an [n; n�dlog2(n+1)e; 3] code. This code gives us a coloring of the8



n-cube with parameters n and 2 using 2dlog2(n+1)e colors. This proves the upper bound of(1).Besides the Johnson bound we used, other known upper bounds of A(n; d) might giveus better lower bound of ��k(n) such as the Plotkin bound, the Elias bound and the LinearProgramming bound. However, applying these bounds breaks the problem into various casesand doesn't give us a signi�cantly better result.References[1] P.-J. Wan, \Near-optimal conict free channel set assignments for an optical cluster-based hypercubenetwork," Journal of Combinatorial Optimization, pp. 179{186, 1997.[2] D. S. Kim, D.-Z. Du, and P. M. Pardalos, \A coloring problem on the n-cube." Manuscript, 1999.[3] S. Roman, Coding and Information Theory. New York: Springer-Verlag, 1992.
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