
Enumerating submultisets of multisets

Jurriaan Hage∗

Abstract

In this paper we consider the problem of enumerating the submultisets of a
multiset, in which each element has equal multiplicity. The crucial property is
that consecutive submultisets in this listing differ one in the cardinality of only
one of the elements. This is a generalization to k-ary numbers of the so-called
Gray Codes for binary numbers. In the special case of binary numbers there is
also a link to the Game Of Hanoi.

We give an example where these results were put to good use, and indicate
when in general the method described can be applied.

1 Introduction

Given the fact that similar bitstrings yield widely different decimal numbers led
Frank Gray to define and patent the Gray Code [2]: he devised a coding of decimal
numbers into bitstrings such that two decimal numbers k and k + 1 are coded by
bitstrings that differ in exactly one position. This code was used to reduce the
importance of transmission errors.

In this paper we generalize this method to codings of decimal numbers by k-ary
numbers for arbitrary k. We start with this general result, specializing later to Gray
Codes. The result for Gray Codes (and through this result, the link to the Game
of Hanoi), is well-known [5], but the proof given here for the more general case, is
quite different from known proofs. Maybe the proof method gives some inspiration
for problems still remaining for the Game of Hanoi [4].

As an application of our result, we continue then with a method for generating
all the graphs in a switching class in an efficient way. Abstractly, a switching class
can be generated from an undirected graph, by performing the switching operation
to the graph G for all subsets σ of the vertices V (G) of G. The general result proved
in this paper also allows for graphs labelled with elements from a group (see the
books of Ehrenfeucht, Harju and Rozenberg [1] and Hage [3]). The complexity of
doing the switching operation (for a fixed graph) grows proportional with the size
of selector. The theory developed here allows for an algorithm in which all possible
switchings of a graph are generated in an incremental fashion, using switches of
constant size (being, in this case, the constant one).
∗Inst. of Information and Computing Sci., Univ. Utrecht, P.O.Box 80.089, 3508 TB Utrecht,

Netherlands

1

We conclude with some experimental timing results for the improvements ob-
tained by exploiting our method and give a simple rule which can be used to detect
opportunities where this technique can also be applied.

A more detailed exposition including examples is given in Hage [3].

2 Enumerating submultisets

In this section we devise a way to sequence all submultisets of a certain type of
multiset. In this multiset all elements have the same cardinality. This restriction
is not necessary, but makes the exposition clearer and the algorithms more consise.
We conclude with a few remarks about enumerating submultisets of any multiset.

A multiset S over V is a function S : V → N0. The value S(v) for v ∈ V is
the multiplicity of v in S. A multiset S′ over V is a submultiset of S if for all
v ∈ V , S′(v) ≤ S(v). The cardinality or size of a multiset includes multiplicity:
|S| = ∑

v∈V S(v).
For m > 1, let S(m,n) be the multiset over V = {v0, . . . , vn−1} so that S(v) =

m− 1 for all v ∈ V . If we linearly order the elements of V from vn−1 to v0, then we
can code any submultiset by the multiplicities, S(vn−1) . . . S(v0), in other words, a
number with base m. We can also consider these numbers to be strings of length n
over M = {0, . . . ,m − 1}. Because of the obvious bijections between submultisets,
numbers with base m and these strings, we shall use them interchangeably. We note
that there are exactly mn submultisets of S(m,n).

Example 2.1
For m = 3 and n = 4, S = S(m,n) = {v0, v0, v1, v1, v2, v2, v3, v3}. The submulti-
set {v0, v0, v1, v2} can be written as number with base 3 as 0112 or as its decimal
equivalent 1 · 9 + 1 · 3 + 2 · 1 = 14. It is important to remember that our strings are
zero-indexed and position zero is at the extreme right. Hence 2 has position zero in
0112. ¦

First we introduce some notation for rooted edge-labelled trees T where the root
of T is designated by root(T). The trees we consider have arity m and are complete.
In other words, every internal vertex has exactly m children and the leaves are all
at the same level. The children are ordered from left to right; we shall refer to them
as child i for i ∈ M . The labels we shall use for the edges are the elements of M
and we demand that for each internal vertex, the edge to every child is labelled with
a unique element of M . Hence the labels on the edges to the children of a certain
internal vertex are a permutation of M .

Recall that the level of a vertex v in a tree is the number of vertices on the path
from the root to v. Hence the level of the root is 1. The height of a tree is the
level of the lowest leaf in the tree minus one. Hence the height of the trivial tree,
consisting of a single node, is 0.

In the following, a : (a1, . . . , ac) denotes the sequence (a, a1, . . . , ac). Let T be a
tree of height n and let π = (a1, . . . , an′) be a sequence over M with n′ ≤ n. Then
π determines a vertex C(π, T), as follows: C(λ, T) = root(T), and C(a : π′, T) =
C(π′, T ′) where T ′ is the subtree rooted at child a. Similarly we define L(π, T)

2

as follows: L(λ, T) = root(T) and L(a : π′, T) = L(π′, T ′) where T ′ is the subtree
reachable from root(T) by an edge labelled with a. As a mnemonic, C stands for
Child directed and L for Label directed.

Because the labels on the edges form a permutation of M , it should be clear
that in both cases there is a bijection between sequences π = a1, . . . , an′ over M for
n′ ≤ n and vertices in the tree. Hence we may define for a vertex v in T , L(v, T) = π
if L(π, T) = v and C(v, T) = π if C(π, T) = v. Remember that we can interpret
the value of C(v, T) and L(v, T) as a string, as a number with base k, and as the
corresponding natural number.

The least common ancestor of two different vertices v1, v2 ∈ V (T) is the unique
vertex v = lca(v1, v2), so that the paths from the root to v1 and v2 split up in v.

If v1 and v2 are on the same level of the tree, we say that v2 follows v1 in T if
C(v2, T) = C(v1, T) + 1. This means that v2 is the first vertex to be encountered
starting at v1 and going to the right on the same level. Note that in this case, the
labels on the edges to the subtrees of lca(v1, v2) containing v1 and v2 respectively
differ at most one in their labels.

For natural numbers m and k, define ρ(m, k) = maxi(mi|k) where q|k means
that q divides k. In words, ρ(m, k) yields the number of powers of m dividing k. A
basic property of this function is the following:

Lemma 2.2
For p ≥ 0 and mp < k < mp+1, ρ(m, k) = ρ(m, k −mp).
Proof:
Let j = ρ(m, k), that is, k = mjq, where m | q. Then j ≤ p and k − mp =
mj(q−mp−j). In particular, ρ(m, k−mp) ≥ ρ(m, k). For inequality we should have
m|(q−mp−j), that is, p = j and m|q− 1, because m | q. But now, remember in this
case p = j, m < q contradicts the assumption k < mp+1. 2

Lemma 2.3
Let v1 and v2 be leaves so that v2 follows v1. Then the leftmost position in which
c1 = C(v1, T) and c2 = C(v2, T) differ is ρ(m,C(v2, T)).
Proof:
Let v1 and v2 be leaves so that v2 follows v1. Let c1 = C(v1, T) and c2 = C(v2, T)
and let v = lca(v1, v2) and w = C(v, T). Now

c1 = wi

p︷ ︸︸ ︷
(m− 1) . . . (m− 1) and c2 = w(i+ 1)

p︷ ︸︸ ︷
0 . . . 0

for some p and i. This follows because for v2 to follow v1, v2 is the leftmost child in
its subtree (of r) and v1 is the rightmost child in its subtree (of r).

Note that the first position in which c1 and c2 differ is the pth. Because c2 ends
in p zeroes, mp|c2 and, because i+ 1 > 0, also mp+1 6 |c2. Hence p = ρ(m,C(v2, T)).
2

Let T be a tree of the kind described above. The mirror of T , denoted by ←−T ,
is the tree where, for each internal vertex, the label of child i is exchanged with the
label of child m − 1 − i, for i = 0, . . . , bm/2c, where bac is the largest integer less

3

than or equal to a. Note that only the labels are changed and for the rest the tree
stays intact. Also note that

←−←−
T = T .

We shall now define recursively the type of trees we are interested in. The tree
Tm0 is equal to the trivial tree; the tree Tmn is the tree consisting of a vertex, say v,
with m subtrees Tmn−1,

←−−
Tmn−1, T

m
n−1,
←−−
Tmn−1, · · · ordered from left to right. The edge to

child i of v, for i ∈M , is labelled with i. In Figure 1 this construction is pictorially
represented, where T = Tmn−1 if m is odd and T =

←−−
Tmn−1 if m is even.

Given a complete m-ary tree of height n there is also a non-recursive way to
obtain the tree Tmn making it easy to recognize whether the tree is correctly con-
structed: between each pair of levels the edges are labelled from left to right

0, 1, . . . ,m−1,m−1,m−2, . . . , 0, 0, 1, . . .

Tmn−1 Tmn−1

2 3

Tmn−1 Tmn−1 T· · · · · ·

10 m−1

Figure 1: The tree Tmn schematically

Lemma 2.4
Let T = Tmn for natural numbers m,n and let v1, v2 ∈ V (T) be such that v2 follows
v1. Then `1 = L(v1, T) and `2 = L(v2, T) differ only in position p = ρ(m,C(v2, T)).
Moreover, `2(p) = `1(p) + 1 if the number of odd numbers occuring in `1 to the left
of p is even, and `2(p) = `1(p)− 1 otherwise.
Proof:
Let v = lca(v1, v2). From the root to v there are obviously no differences between
L(v1, T) and L(v2, T). Because the path splits up at v and the edges to its children
are labelled with different elements of M , the sequences differ in this position. From
then on the paths are the same: because v2 follows v1 the subtrees of v to which
they belong are mirrors of each other and in these subtrees, v1 and v2 are rightmost
and leftmost vertex of their respective subtrees.

The first position at which C(v1, T) and C(v2, T), and L(v1, T) and L(v2, T)
differ obviously coincide and so p = ρ(m,C(v2, T)) follows from Lemma 2.3.

The last claim follows from the fact that every odd number on the path to the
least common ancestor implies a mirroring of the subtree. If this number is even,
then an even number of mirror operations yields a tree where the labels to the
children are in the original ascending order; otherwise they are in descending order.
2

The result of this section can be summed up as follows

4

Corollary 2.5
Let m,n be integers. A list of all submultisets of S(m,n), say S0 = ∅, S1, . . . , Smn−1,
can be constructed so that Si and Si+1 differ only in the multiplicity of vp where
p = ρ(m, i+ 1). Also, Si+1(vp) = Si(vp) + 1 if

∑n−1
k=p+1 Si(k) is even and Si+1(vp) =

Si(vp)− 1 otherwise.

Specializing for m = 2 we obtain

Corollary 2.6
For an integer n, a list of all subsets of {v0, . . . , vn−1}, say S0 = ∅, S1, . . . , S2n−1, can
be constructed so that Si ª Si+1 = {vp} for 0 ≤ i ≤ 2n − 2 where p = ρ(2, i+ 1) =
maxj(2j |(i+ 1)).

The corollaries also imply an algorithm which in the case of Corollary 2.6 is an
algorithm to construct the Gray Code for n bits.

3 The computation of the switches of a graph

For a graph G = (V,E) and a function σ : V → Z2 (called a selector) the switch of
G by σ is defined as the graph Gσ = (V,E′), where for each uv ∈ E(V) with exactly
one of u and v in σ, we add uv to E if uv /∈ E, and we remove uv from E if uv ∈ E.
The set

[G] = {Gσ | σ ⊆ V }
is called the switching class of G.

It is easy to see that switching is a reflexive, symmetric and transitive operation.
Hence a switching class is an equivalence class of graphs.

The obvious way to generate all graphs in the switching class of a graph G
on V = {v0, . . . , vn−1} is to switch with respect to all selectors σ ⊆ V that do not
contain a fixed vertex, say vn−1. The need for omitting vn−1 comes from the fact that
Gσ = GV−σ. We get an improvement if we apply V −σ if |σ| > n/2. Notwithstanding
this improvement, on average O(n2) edges must change. To generate the entire
switching class we need time O(n22n−1).

The results of the previous section allow us to apply a singleton selector every
time and still obtain all possible switches of G exactly once. This method is graph-
ically depicted by the solid lines in Figure 2. The original method of switching is
also graphically present in this picture: take the dotted edges, and the solid edge
from G to G1.

The index of the vertex to be switched can be determined using Corollary 2.6
for the set {v0, . . . , vn−2}. Notice that we can in fact return to the original graph
by switching with respect to vn−2 at the end. This implies that we do not need to
make a copy of G before starting to switch. This holds in general if m (in Tmn) is
even: the leftmost and rightmost path in the tree Tmn for any n > 0 differ only in
the edges from the root.

Note that we can formulate our result as follows: define a graph where the
vertices are the graphs in a certain switching class, where two graphs are adjacent
if they can be switched to each other by a singleton selector. The results obtained

5

G

. . .

. . .
{v0}

{vn−2}

G2n−1−1G1 G3G2

{v0}

{v2}{v1} {v0}

{v0, v1}
{v1} V −{vn−2}

Figure 2: Cumulative switching

so far imply that this graph has a hamiltonian path – if m is even, a hamiltonian
cycle.

The overall effect of the improvement of switching singleton selectors instead of
arbitrary ones is to reduce the number of edges to be changed in each switch to n−1,
yielding an average and worst-case complexity of O(n2n−1) instead of O(n22n−1).
It should be clear that this is optimal: every switch modifies at least n − 1 edges.
However, we still need an efficient way to compute ρ(2, k). This can be done by
looking for the first bit (from the right) that is set in the binary representation of
k. The loop that does this is bounded by O(log(k)).

Some experimental results were obtained running on a computer with an Intel
Pentium I 120Mhz running under Linux. The measurements were obtained using the
program gprof 2.9.1. It excludes the time spent in mcount, which is time spent on
profiling. In the row “simple” we give timings for a switching algorithm that simply
applies half the selectors to a fixed graph in the switching class, while the optimized
version uses the just described algorithm for sequentially generating all switches by
applying singleton selectors consecutively. The timings for the optimized version are
given in the row “cumulative”.

Times spent in the actual function that does the switching (in seconds):

n→ 8 9 10 11
simple 0.16 3.54 136.21 9609.93

cumulative 0.05 0.75 24.41 6739.49

4 Various generalizations

Although we will not give an example here, the above can also be used when listing
selectors mapping the vertices into some carrier set Γ (assume for simplicity that
Γ = {0, . . . ,m − 1}). Essentially what is needed is to use Tmn to compute the
sequence of selectors from left to right in the tree. The algorithm for computing the
vertex whose value is to change is computationally more involved, because instead
of finding the number of 2-divisors we have to obtain the number of m divisors. (See
Hage [3] for an extensive example.)

Another main difference is that instead of alternating between 0 and 1 as the
selected values, we increment a certain element from 0 to m−1 and then go back to
0 and so on. The only extra information to keep for each level of the tree is whether

6

we are currently ascending to m− 1 or descending to 0.
Some remarks on the general problem of sequentializing every possible multiset

are now in order.
For a multiset S over V = {v0, . . . , vn} we have for each element vi a cardinality

ki = S(vi). For the multisets S(m,n) we have ki = kj for all 0 ≤ i, j ≤ n.
The generalization to arbitrary arities for different elements, is that nodes on

the same level of the tree still have the same arity, but now nodes on different levels
may have different arities. The difference between the two algorithms is not large:
instead of incrementing on each level to m − 1 we increment on level j to kn+1−j
before going back to zero.

Example 4.1 The situation in illustrated in Figure 3. Here n = 2 and we find
that on level 1 we increment from 0 to kn+1−1 = k2 = 2. Also k1 = k0 = 1, and
we can clearly see the alternation of ascending and descending on those levels. For
instance, the path 110 is followed by 111 (both made bold in the picture), because,
by Corollary 2.5, the path leading up to their common ancestor contains an even
number of odd numbers. ¦

0 1 0 1

10 1 0 1010 1 0 1 0

1 0

0 2

v0

v1

v2 1

Figure 3: The general picture for the multiset {v0, v1, v2, v2}.

Although the method has only been applied to generating switching classes by
the author, it is obvious that the method can be applied wherever one has to do
something ”for all submultisets”.

Let P(S) be the set of submultisets of S. Let f : G × P(V)→ G be a function
that is transitive, i.e., f(f(G,T), U −T)) = f(G,U). Depending on the dependance
of the complexity of f on the size of the subset we can decide to use either of the
two. The method described above was employed in the example of switching classes,
because the complexity of switching is quadratic in the size of the subset. In case f
is linear it does not really matter, if f is sublinear, then using U directly is advised.
Also take into account that especially in the case of multisets (that are not sets),
computing the element of which the cardinality should be changed, may take more
time than is warranted.

Acknowledgements
We thank Tero Harju and A.M. Hinz for suggestions and improvements in writing
this paper. The seed for the paper was sown during my visit to TUCS, Finland in
1998.

7

References

[1] A. Ehrenfeucht, T. Harju, and G. Rozenberg. The Theory of 2-Structures. World
Scientific, 1999.

[2] F. Gray. Pulse code communication, Mar. 17 1953. U.S. patent no. 2,632,058.

[3] J. Hage. Structural Aspects Of Switching Classes. PhD thesis, LIACS, 2001.

[4] A.M. Hinz. The Towers of Hanoi. Enseign. Math., 2:289–321, 1989.

[5] D. Wood. The Towers of Brahma and Hanoi revisited. J. Recreational Math.,
14:17–24, 1981-82.

8

