Available at

ELSEVIER

www.ComputerScienceWeb.com

POWERED BY SCIENCE

Information Processing Letters 86 (2003) 299-302

Information
Processing
Letters

DIRECT®

www.elsevier.com/locatefipl

From a simple elimination ordering to a strong
elimination ordering in linear time

J. Sawada*?, J.P. Spinra8?

@ Department of Computer Science, University of Toronto, Canada
b Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA

Received 25 September 2002; received in revised form 13 January 2003

Communicated by K. lwama

Abstract

We present a linear time algorithm for transforming a simple elimination ordering of a strongly chordal graph into a strong

elimination ordering.
00 2003 Elsevier Science B.V. All rights reserved.

Keywords: Graph algorithms; Strongly chordal graph; Simple elimination ordering; Strong elimination ordering; Graph recognition

1. Introduction

Let G = (V, E) be an undirected graph with vertex
setV and edge sef where|V| =n and |E| = m.
A graph isstrongly chordal if it is chordal (every
cycle of length 4 or more contains a chord) and
if every even cycle of length 6 or more contains a
chord splitting the cycle into two odd length paths.
Let N(v) denote the neighborhood of a vertexand
let N[v] denote the closed neighborhotydv) U {v}.
For A C V, we letG(A) denote the subgraph @
induced byA. A vertexv is said to besimple if the
set{N[u]: u € N(v)} can be linearly ordered by set
inclusion. Alternatively, a vertex is simple if for
any two verticesy, y € N(v) either N[x] € N[y] or

* Corresponding author.
E-mail addresses: jsawada@cs.toronto.edu (J. Sawada),
spin@vuse.vanderbilt.edu (J.P. Spinrad).
1 Research supported by NSERC.
2 Supported by National Science Foundation Grant 9820840.

N[y] € N[x]. An orderingvsy, v, ..., v, is called a
simple elimination ordering if for each 1< < n, the
vertexv, is simple inG({v;, ..., v,}).

Theorem 1 [2]. A graph G is strongly chordal if and
only if it has a simple elimination ordering.

Simple elimination orderings are not the only
vertex orderings that characterize strongly chordal
graphs, as we see in the next theorem. An ordering
v1,...,V, IS called astrong elimination ordering
if it is a simple elimination ordering and for each
i < j <k wherev;, v € N(v;) we haveN[v;] C
N[vx] with respect toG({v;,...,v,}). From this
definition we see that a strong elimination ordering is a
simple elimination ordering, but a simple elimination
ordering is not necessarily a strong one.

Theorem 2 [2]. A graph G is strongly chordal if and
only if it has a strong elimination ordering.

0020-0190/03/$ — see front mattér 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0020-0190(03)00228-X

300 J. Sawada, J.P. Spinrad / Information Processing Letters 86 (2003) 299-302

Currently, the fastest algorithms for recognizing g /e_\ ¢
strongly chordal graphs run in time(@logn) due to
Paige and Tarjan [5] and@?) for dense graphs due to
Spinrad [6]; Uehara has retracted his claim of a linear
time algorithm to solve the problem, citing fundamen-
tal flaws in the algorithm of [7]. Since many closely
related classes of graphs like chordal graphs, interval b /f\ d
graphs and chordal comparability graphs can be recog- _/
nized in linear time, it seems plausible that strongly
chordal graphs can be as well. Thus, one of the most
interesting open problems regarding strongly chordal
graphs is whether or not we can recognize them in lin-

ear time.
Strong elimination orderings also have an interest- @
ing matrix interpretation. Thaugmented adjacency
matrix of G is the matrix obtained from the adjacency Fig. 1. A strongly chordal graph.

matrix by substituting 1 entries for Os on the main di-

agonal. A vertex ordering is a strong elimination or-
S L .) elimination ordering. We start with an example of a
dering if and only if using this ordering for the rows . o . . ;
simple elimination ordering that isot a strong elim-

and cplumns 9f the aggmen.ted adjalcency matrix, the ination ordering. Observe that the ordering, c, d,
resulting matrix contains no mduce@o) (also called . . ST .

a I'). Lubiw [4] was able to show that it is possible e f.8 IS a §|mple e||m|nat|pn ordering fo'r the graph
to determine whether a matrix J&-free in linear ime. ~ S1°WN in Fig. 1. Now consider the vertéxn the or-

Therefore, any algorithm for finding strong orderings de(;ing. It réas ngighbr?lasandf .SUCh thaﬁb< f i; thz
in linear time would immediately give a linear algo- ordering. But since the vertexis a neighbor ot an

rithm for recognizing strongly chordal graphs. not_f, and S|_nceb < ¢, the ordering is not a strong_or-
Since every strong elimination ordering is simple 9€Ng. In this example we see that the problem is the
but not vice-versa, a potentially easier open problem rélative ordering of the higher neighboesgnd f) of
is to find a simple elimination ordering in linear (he Verex. _ . _
time. However, given a simple elimination ordering, ~ ASSume that we have a simple elimination ordering
it was previously not known whether we could then V1 V2, ---, v, Of @ strongly chordal graplG. The
recognize strongly chordal graphs in linear time. This following function partitions the vertices into a lit
paper addresses this issue by developing a linearf disjoint sets.
time algorithm for transforming a simple elimination
ordering into a strong elimination ordering. Thus, if a Function MakeSets
linear time algorithm for finding a simple elimination (G: strongly chordal graph,
ordering of a strongly chordal graph is discovered, [v1, ..., v,]: simple elimination ordering)
then we will also be able to recognize strongly chordal returnsordered list of sets that partitioi;
graphsin linear time. (1) £:=empty list of sets;
For a special class of strongly chordal graphs, the (2) for ¢ := 1 ton do begin
chordal comparability graphs, a linear time simple (3) if v, € V then begin

elimination scheme was developed by Borie and (4) S :={u|u € N[v;] and dequ) = deqv;)};
Spinrad [1]. (5) appends to £;

(6) removeS from V, updating
2. Algorithm the neighborhoods and degrees;

(7) end;

In this section we present an algorithm for trans- (8) end;
forming a simple elimination ordering into a strong (9) return(L);

J. Sawada, J.P. Spinrad / Information Processing Letters 86 (2003) 299-302

To illustrate, the functionMakeSets(G, [a, b, c,
d,e, f,gl), whereG is the graph from Fig. 1, returns
the list of setsC = {a}, {b, g}, {c}, {d, e, f}. Now by
visiting each set in order and arbitrarily outputting the

301

There is, however, an ordering of the vertices within
each set ofZ that will result in a strong elimination
ordering, namely:, b, g, c, f,d, e. In fact, it turns out
that there will always be such an ordering of the ver-

vertices within each set, we can obtain a new ordering tices within each set that will lead to a strong elimina-

a,b,g,c,d,e, f. To simplify the discussion, we will
let (£) denote an arbitrary ordering obtained frain
in this fashion. In the following lemma we prove that
an ordering L) is also a simple elimination ordering.

Lemma 1. If £ = S1,S57,...,S, is returned from
the function MakeSets(G, [v1, ..., v,]) then (L) =
ui, ..., u, isasmpleeimination ordering. Moreover,
if there exists i < j < k such that (u;,u;), (uj, ur),
and (u;, uy) areedgesin G and thereexistsi <[such
that (u;,u;) isanedgein G, but (ux, u;) is not, then
u;j and u; must belong to the same set in L.

Proof. Clearly the setS; containsvi, which is a
simple vertex inG. Any other vertexx € S must
be a neighbor ob1 and have the same degree. Now
suppose thaiV[x] # N[v1]. This implies that there
exists some vertex adjacent ta1 that is not adjacent
to x. This contradicts the fact thai is a simple vertex
in G. ThusN[x] = N[v1] which implies thatx (and
every vertex inS1) is simple inG. Using this same
argument, it follows that each vertex # is simple in
the graphG(V — §1 — S —---— S§;_1). Thus(L) is a
simple elimination ordering.

Now suppose there exists< j < k such that
(ui,uj), (uj,ux), and (u;, u;) are edges inG and
there exists < I such that(u;, ;) is an edge inG,
but (uy, u;) is not. If u; anduy are in different sets
in the list £, then sincej < k, u; must appear in a
set that precedes the set containingn £. Sinceu ;
is simple inG({u, ..., u,}) it must be the case that
[< j. This implies that;, must be adjacent to some
vertexz that is not adjacent to; in G({uj, ..., u,});
otherwiseu; would be in the same set ag. This
however contradicts the fact that is simple in
G({ui,...,un}). Thusu; andu; must belong to the
same setirC. 0O

Recall that we can obtain a new ordering, g, c,
d,e, f from the list of sets returned hyakeSets(G,
[a,b,c,d,e, f,g]) for the graph in Fig. 1. We have
proved that this is a simple elimination ordering, but
notice that it isnot a strong elimination ordering.

tion ordering. We verify this claim by construction.

Function SimpleToStrong
(G: strongly chordal graph,
[v1, ..., v,]: simple elimination ordering);
returns strong elimination ordering;
(10) £ := L' :=MakeSets(G, [v1, ..., v,]);
(12) vy, ..., v, :=(L);
(12) for ¢t :=n down to 1 do begin

(13) for each sefS € £ containing a vertex
in N[v;] do begin
(14) if S— N[v]# @ then
(15) replaces in the list £ with
the two setss — N[v;], S N N[v];
(16) end;
(17) end;

(18) return((L));

This function starts by obtaining a list of sefge-
turned byMakeSets(G, [v1, ..., v,]). A copy of this
list £’ is made for discussion purposes only. In line
(11) the simple elimination ordering, ..., v, IS up-
dated to one that can be obtained frain Then in
lines (12)—(17) each set is partitioned into a list of
sets by visiting each vertex in reverse order of the
new simple elimination ordering. As a vertexis vis-
ited, we replace each s8te £ that contains a neigh-
bor of v, with two sets (as long aS — N[v;] is non-
empty)S — N[v,] and S N N[v]. It is important that
the setS — N[v,] is placed before§ N N[v;] in the
list £. This process effectively places a partial order
on the vertices of each sétin the original list£'.
Thus, the orderind£) we return in line (18) is one
that can also be obtained froff and hence it is a
simple elimination ordering. As an example, the func-
tion SimpleToStrong(G, [a, b, ¢, d, e, f, gl), whereG
is the graph from Fig. 1, returngl) where £ =
{a}, (b, g}, {c}. {f}. {d}, {e}.

Theorem 3. If v1,...,v, is a simple elimination
ordering of a strongly chordal graph G, then the
function SimpleToStrong(G, [v1, ..., v,]) outputs a
strong elimination ordering of G.

302

Proof. Letus,uz,...,u, be the ordering returned in
line (18). This is a simple elimination ordering that
can also be obtained from the list. Now suppose
there existsi < j < k such that(u;,u;), (u;,uy),
and (u;,u;) are edges inG and there exists </
such that(u;,u;) is an edge inG, but (uy,u;) is
not. From Lemma 1y; andu;, must belong to the
same set inl’. Also, sinceu; is simple in G’ =
G({ui,...,us}) we must haveN[u;] C N[u;] with
respect toG’. Thus, after the iteration of tHer loop
in (12) whent = [, the vertexu; will be in a set that
precedes the set containing. This contradicty < k.
Thus, by definitionyuy, ..., u, is a strong elimination
ordering. O

3. Analysis

In the previous section we have outlined an al-
gorithm for transforming a simple elimination order-
ing into a strong elimination ordering via the function
SimpleToStrong(G, [v1, ..., v,]). We will show in this
section that the algorithm can be implemented to run
in linear time.

First we must analyze the functiaviakeSets(G,
[vi,...,v:]). Notice that when we create each Set

J. Sawada, J.P. Spinrad / Information Processing Letters 86 (2003) 299-302

in time O(N[v;]). This procedure is equivalent to
the step of subdividing sets into neighbors and non-
neighbors ofv as in chordal graph recognition; details
of the chordal graph implementation are given in [3].
Thus the total amount of work done in this step is
O@(m).

Theorem 4. The functions SimpleToStrong(G, [v1,
..., Uy]) and MakeSets(G, [v1, ..., v,]) canbeimple-
mented to runin O(m) time.

4. Futurework

In this paper we have presented an algorithm for
transforming a simple elimination ordering into a
strong elimination ordering. Using this result, if we
can find a simple elimination ordering in linear time,
then we can find a strong elimination ordering in linear
time, and thus we can recognize strongly chordal
graphs in linear time. Thus, a critical open problem is
to discover a linear time algorithm for finding a simple
elimination ordering of a strongly chordal graph.

References

we need onIy consider the ne'ghbors of the current [1] R.B. Borie, J.P. Spinrad, Construction of a simple elimination

vertexv;. Thus, to create all setse £ we consider at

most a total ofn vertices. As we remove each vertex
from a setS from V, we must update the degrees
and neighborhoods of each vertex. Again this work is

proportional to the number of edges in the graph. Thus

MakeSets(G, [vy, ..., v,]) runsin time Qm).
We now examine the code in lines (12)—(17). Each
vertex belongs to exactly one s&t By maintaining

an appropriate data structure, we can obtain the set

a given vertex belongs to in constant time. Thus, we
can obtain the sets containing the verticesMw;]
and create the new setsN N[v;] and S — NJ[v;]

scheme for a chordal comparability graph in linear time,
Discrete Appl. Math. 91 (1999) 287-292.

[2] M. Farber, Characterizations of strongly chordal graphs, Dis-
crete Math. 43 (1983) 173-189.

[3] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs,
Academic Press, New York, 1980.

[4] A. Lubiw, Doubly lexical orderings of matrices, SIAM J.
Comput. 16 (1987) 854-879.

[5] R. Paige, R.E. Tarjan, Three partition refinement algorithms,
SIAM J. Comput. 16 (1987) 973-989.

[6] J.P. Spinrad, Doubly lexical ordering of dense 0-1 matrices,
Inform. Process. Lett. 45 (1993) 229-235.

[7] R. Uehara, Linear time algorithms on chordal bipartite and
strongly chordal graphs, in: ICALP, 2002, pp. 993-1004.

