
l

strong
Information Processing Letters 86 (2003) 299–302

www.elsevier.com/locate/ip

From a simple elimination ordering to a strong
elimination ordering in linear time

J. Sawadaa,∗,1, J.P. Spinradb,2

a Department of Computer Science, University of Toronto, Canada
b Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA

Received 25 September 2002; received in revised form 13 January 2003

Communicated by K. Iwama

Abstract

We present a linear time algorithm for transforming a simple elimination ordering of a strongly chordal graph into a
elimination ordering.
 2003 Elsevier Science B.V. All rights reserved.

Keywords: Graph algorithms; Strongly chordal graph; Simple elimination ordering; Strong elimination ordering; Graph recognition

1. Introduction
N[y] ⊆ N[x]. An orderingv1, v2, . . . , vn is called a
x

nd
a

s.

t

.

simple elimination ordering if for each 1� t � n, the

ly
dal
ring

h

is a
on

ll rig
Let G = (V ,E) be an undirected graph with verte
set V and edge setE where |V | = n and |E| = m.
A graph is strongly chordal if it is chordal (every
cycle of length 4 or more contains a chord) a
if every even cycle of length 6 or more contains
chord splitting the cycle into two odd length path
Let N(v) denote the neighborhood of a vertexv and
let N[v] denote the closed neighborhoodN(v) ∪ {v}.
For A ⊆ V , we let G(A) denote the subgraph ofG
induced byA. A vertexv is said to besimple if the
set {N[u]: u ∈ N(v)} can be linearly ordered by se
inclusion. Alternatively, a vertexv is simple if for
any two verticesx, y ∈ N(v) eitherN[x] ⊆ N[y] or

* Corresponding author.
E-mail addresses: jsawada@cs.toronto.edu (J. Sawada),

spin@vuse.vanderbilt.edu (J.P. Spinrad).
1 Research supported by NSERC.
2 Supported by National Science Foundation Grant 9820840

0020-0190/03/$ – see front matter 2003 Elsevier Science B.V. A
doi:10.1016/S0020-0190(03)00228-X
vertexvt is simple inG({vt , . . . , vn}).

Theorem 1 [2]. A graph G is strongly chordal if and
only if it has a simple elimination ordering.

Simple elimination orderings are not the on
vertex orderings that characterize strongly chor
graphs, as we see in the next theorem. An orde
v1, . . . , vn is called a strong elimination ordering
if it is a simple elimination ordering and for eac
i < j < k where vj , vk ∈ N(vi) we haveN[vj] ⊆
N[vk] with respect toG({vi, . . . , vn}). From this
definition we see that a strong elimination ordering
simple elimination ordering, but a simple eliminati
ordering is not necessarily a strong one.

Theorem 2 [2]. A graph G is strongly chordal if and
only if it has a strong elimination ordering.

hts reserved.

300 J. Sawada, J.P. Spinrad / Information Processing Letters 86 (2003) 299–302

Currently, the fastest algorithms for recognizing
strongly chordal graphs run in time O(m logn) due to

o
ear
n-
ly
rval
cog-
gly
ost
dal
lin-

st-

cy
di-
or-
s
the

le

gs
o-

le
lem
r
g,
en
his
ear
n

f a
n
ed,
dal

the
le
nd

s-
g

f a

h

r-
the

ing
Paige and Tarjan [5] and O(n2) for dense graphs due t
Spinrad [6]; Uehara has retracted his claim of a lin
time algorithm to solve the problem, citing fundame
tal flaws in the algorithm of [7]. Since many close
related classes of graphs like chordal graphs, inte
graphs and chordal comparability graphs can be re
nized in linear time, it seems plausible that stron
chordal graphs can be as well. Thus, one of the m
interesting open problems regarding strongly chor
graphs is whether or not we can recognize them in
ear time.

Strong elimination orderings also have an intere
ing matrix interpretation. Theaugmented adjacency
matrix of G is the matrix obtained from the adjacen
matrix by substituting 1 entries for 0s on the main
agonal. A vertex ordering is a strong elimination
dering if and only if using this ordering for the row
and columns of the augmented adjacency matrix,
resulting matrix contains no induced

(11
10

)
(also called

a Γ). Lubiw [4] was able to show that it is possib
to determine whether a matrix isΓ -free in linear time.
Therefore, any algorithm for finding strong orderin
in linear time would immediately give a linear alg
rithm for recognizing strongly chordal graphs.

Since every strong elimination ordering is simp
but not vice-versa, a potentially easier open prob
is to find a simple elimination ordering in linea
time. However, given a simple elimination orderin
it was previously not known whether we could th
recognize strongly chordal graphs in linear time. T
paper addresses this issue by developing a lin
time algorithm for transforming a simple eliminatio
ordering into a strong elimination ordering. Thus, i
linear time algorithm for finding a simple eliminatio
ordering of a strongly chordal graph is discover
then we will also be able to recognize strongly chor
graphs in linear time.

For a special class of strongly chordal graphs,
chordal comparability graphs, a linear time simp
elimination scheme was developed by Borie a
Spinrad [1].

2. Algorithm

In this section we present an algorithm for tran
forming a simple elimination ordering into a stron
Fig. 1. A strongly chordal graph.

elimination ordering. We start with an example o
simple elimination ordering that isnot a strong elim-
ination ordering. Observe that the orderinga, b, c, d,

e, f, g is a simple elimination ordering for the grap
shown in Fig. 1. Now consider the vertexb in the or-
dering. It has neighborse andf such thate < f in the
ordering. But since the vertexc is a neighbor ofe and
notf , and sinceb < c, the ordering is not a strong o
dering. In this example we see that the problem is
relative ordering of the higher neighbors (e andf) of
the vertexb.

Assume that we have a simple elimination order
v1, v2, . . . , vn of a strongly chordal graphG. The
following function partitions the vertices into a listL
of disjoint sets.

Function MakeSets
(G: strongly chordal graph,
[v1, . . . , vn]: simple elimination ordering)

returns ordered list of sets that partitionV ;
(1) L := empty list of sets;
(2) for t := 1 to n do begin
(3) if vt ∈ V then begin
(4) S := {u | u ∈ N[vt] and deg(u) = deg(vt)};
(5) appendS to L;
(6) removeS from V , updating

the neighborhoods and degrees;
(7) end;
(8) end;
(9) return(L);

J. Sawada, J.P. Spinrad / Information Processing Letters 86 (2003) 299–302 301

To illustrate, the functionMakeSets(G, [a, b, c,
d, e, f, g]), whereG is the graph from Fig. 1, returns

he
ring
l

at
.

ow

t

t
e

e
ut
.

There is, however, an ordering of the vertices within
each set ofL that will result in a strong elimination

er-
a-

ne

of
the

-

er

c-
the list of setsL = {a}, {b,g}, {c}, {d, e, f }. Now by
visiting each set in order and arbitrarily outputting t
vertices within each set, we can obtain a new orde
a, b, g, c, d, e, f . To simplify the discussion, we wil
let 〈L〉 denote an arbitrary ordering obtained fromL
in this fashion. In the following lemma we prove th
an ordering〈L〉 is also a simple elimination ordering

Lemma 1. If L = S1, S2, . . . , Sr is returned from
the function MakeSets(G, [v1, . . . , vn]) then 〈L〉 =
u1, . . . , un is a simple elimination ordering. Moreover,
if there exists i < j < k such that (ui, uj), (uj , uk),
and (ui, uk) are edges in G and there exists i < l such
that (uj , ul) is an edge in G, but (uk, ul) is not, then
uj and uk must belong to the same set in L.

Proof. Clearly the setS1 containsv1, which is a
simple vertex inG. Any other vertexx ∈ S1 must
be a neighbor ofv1 and have the same degree. N
suppose thatN[x] �= N[v1]. This implies that there
exists some vertexy adjacent tov1 that is not adjacen
to x. This contradicts the fact thatv1 is a simple vertex
in G. ThusN[x] = N[v1] which implies thatx (and
every vertex inS1) is simple inG. Using this same
argument, it follows that each vertex inSi is simple in
the graphG(V − S1 − S2 − · · · − Si−1). Thus〈L〉 is a
simple elimination ordering.

Now suppose there existsi < j < k such that
(ui , uj), (uj , uk), and (ui, uk) are edges inG and
there existsi < l such that(uj , ul) is an edge inG,
but (uk, ul) is not. If uj anduk are in different sets
in the list L, then sincej < k, uj must appear in a
set that precedes the set containinguk in L. Sinceuj

is simple inG({uj , . . . , un}) it must be the case tha
l < j . This implies thatuk must be adjacent to som
vertexz that is not adjacent touj in G({uj , . . . , un});
otherwiseuk would be in the same set asuj . This
however contradicts the fact thatui is simple in
G({ui, . . . , un}). Thusuj anduk must belong to the
same set inL. ✷

Recall that we can obtain a new orderinga, b, g, c,

d, e, f from the list of sets returned byMakeSets(G,

[a, b, c, d, e, f, g]) for the graph in Fig. 1. We hav
proved that this is a simple elimination ordering, b
notice that it isnot a strong elimination ordering
ordering, namelya, b, g, c, f, d, e. In fact, it turns out
that there will always be such an ordering of the v
tices within each set that will lead to a strong elimin
tion ordering. We verify this claim by construction.

Function SimpleToStrong
(G: strongly chordal graph,
[v1, . . . , vn]: simple elimination ordering);

returns strong elimination ordering;
(10) L := L′ := MakeSets(G, [v1, . . . , vn]);
(11) v1, . . . , vn := 〈L〉;
(12) for t := n down to 1 do begin
(13) for each setS ∈L containing a vertex

in N[vt] do begin
(14) if S − N[vt] �= ∅ then
(15) replaceS in the listL with

the two setsS − N[vt], S ∩N[vt];
(16) end;
(17) end;
(18) return(〈L〉);

This function starts by obtaining a list of setsL re-
turned byMakeSets(G, [v1, . . . , vn]). A copy of this
list L′ is made for discussion purposes only. In li
(11) the simple elimination orderingv1, . . . , vn is up-
dated to one that can be obtained fromL. Then in
lines (12)–(17) each set is partitioned into a list
sets by visiting each vertex in reverse order of
new simple elimination ordering. As a vertexvt is vis-
ited, we replace each setS ∈ L that contains a neigh
bor of vt with two sets (as long asS − N[vt] is non-
empty)S − N[vt] andS ∩ N[vt]. It is important that
the setS − N[vt] is placed beforeS ∩ N[vt] in the
list L. This process effectively places a partial ord
on the vertices of each setS in the original listL′.
Thus, the ordering〈L〉 we return in line (18) is one
that can also be obtained fromL′ and hence it is a
simple elimination ordering. As an example, the fun
tion SimpleToStrong(G, [a, b, c, d, e, f, g]), whereG
is the graph from Fig. 1, returns〈L〉 where L =
{a}, {b,g}, {c}, {f }, {d}, {e}.

Theorem 3. If v1, . . . , vn is a simple elimination
ordering of a strongly chordal graph G, then the
function SimpleToStrong(G, [v1, . . . , vn]) outputs a
strong elimination ordering of G.

302 J. Sawada, J.P. Spinrad / Information Processing Letters 86 (2003) 299–302

Proof. Let u1, u2, . . . , un be the ordering returned in
line (18). This is a simple elimination ordering that

al-
r-
n

run

ent
t
ex
es

is
hus

ch

set
we

in time O(N[vi]). This procedure is equivalent to
the step of subdividing sets into neighbors and non-

ils
3].
is

for
a
e
e,
ar
dal
is

le

ion
e,

is-

hs,

.

ms,

es,

nd
can also be obtained from the listL′. Now suppose
there existsi < j < k such that(ui, uj), (ui, uk),
and (uj , uk) are edges inG and there existsi < l

such that(uj , ul) is an edge inG, but (uk, ul) is
not. From Lemma 1,uj and uk must belong to the
same set inL′. Also, sinceui is simple in G′ =
G({ui, . . . , un}) we must haveN[uk] ⊂ N[uj] with
respect toG′. Thus, after the iteration of thefor loop
in (12) whent = l, the vertexuk will be in a set that
precedes the set containinguj . This contradictsj < k.
Thus, by definition,u1, . . . , un is a strong elimination
ordering. ✷

3. Analysis

In the previous section we have outlined an
gorithm for transforming a simple elimination orde
ing into a strong elimination ordering via the functio
SimpleToStrong(G, [v1, . . . , vn]). We will show in this
section that the algorithm can be implemented to
in linear time.

First we must analyze the functionMakeSets(G,

[v1, . . . , vn]). Notice that when we create each setS,
we need only consider the neighbors of the curr
vertexvi . Thus, to create all setsS ∈L we consider a
most a total ofm vertices. As we remove each vert
from a setS from V , we must update the degre
and neighborhoods of each vertex. Again this work
proportional to the number of edges in the graph. T
MakeSets(G, [v1, . . . , vn]) runs in time O(m).

We now examine the code in lines (12)–(17). Ea
vertex belongs to exactly one setS. By maintaining
an appropriate data structure, we can obtain the
a given vertex belongs to in constant time. Thus,
can obtain the sets containing the vertices inN[vi]
and create the new setsS ∩ N[vi] and S − N[vi]
neighbors ofv as in chordal graph recognition; deta
of the chordal graph implementation are given in [
Thus the total amount of work done in this step
O(m).

Theorem 4. The functions SimpleToStrong(G, [v1,

. . . , vn]) and MakeSets(G, [v1, . . . , vn]) can be imple-
mented to run in O(m) time.

4. Future work

In this paper we have presented an algorithm
transforming a simple elimination ordering into
strong elimination ordering. Using this result, if w
can find a simple elimination ordering in linear tim
then we can find a strong elimination ordering in line
time, and thus we can recognize strongly chor
graphs in linear time. Thus, a critical open problem
to discover a linear time algorithm for finding a simp
elimination ordering of a strongly chordal graph.

References

[1] R.B. Borie, J.P. Spinrad, Construction of a simple eliminat
scheme for a chordal comparability graph in linear tim
Discrete Appl. Math. 91 (1999) 287–292.

[2] M. Farber, Characterizations of strongly chordal graphs, D
crete Math. 43 (1983) 173–189.

[3] M.C. Golumbic, Algorithmic Graph Theory and Perfect Grap
Academic Press, New York, 1980.

[4] A. Lubiw, Doubly lexical orderings of matrices, SIAM J
Comput. 16 (1987) 854–879.

[5] R. Paige, R.E. Tarjan, Three partition refinement algorith
SIAM J. Comput. 16 (1987) 973–989.

[6] J.P. Spinrad, Doubly lexical ordering of dense 0–1 matric
Inform. Process. Lett. 45 (1993) 229–235.

[7] R. Uehara, Linear time algorithms on chordal bipartite a
strongly chordal graphs, in: ICALP, 2002, pp. 993–1004.

