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Abstract

We consider strongly-connected, directed networks of
identical synchronous, finite-state processors with in-
and out-degree uniformly bounded by a network con-
stant. Via a straightforward extension of Ostrovsky and
Wilkerson’s Backwards Communication Algorithm[7],
we exhibit a protocol which solves the Global Topol-
ogy Determination Problem, the problem of having
a root processor map the global topology of a net-
work of unknown size and topology, with running time
O(ND) where N represents the number of processors
and D represents the diameter of the network. A sim-
ple counting argument suffices to show that the Global
Topology Determination Problem has time-complexity
Ω(N logN) which makes the protocol presented asymp-
totically time-optimal for many large networks.

1 Introduction

1.1 The Network Model. We consider strongly-
connected directed networks of identical synchronous
finite-state automata with in- and out-degree bounded
by a constant. These automata are meant to model
very small, very fast processors. The network itself
has unknown topology and potentially unbounded size
N . Throughout this paper, we use the term “-port”
to refer to one of a number of unidirectional conduits
through which constant-size messages may pass from
one processor to another. An in-port to a processor will
allow messages to flow unidirectionally in towards the
processor. Out -port is defined similarly. We assume
throughout that the number of in-ports and out-ports
for each processor is uniformly bounded above by a
network constant δ ≥ 2. The network is formed
by connecting out-ports from processors to the in-
ports of other processors with wires. Not all in-
ports or out-ports of a given processor need necessarily
be connected to other processors; however, any given
processor must have at least one connected in-port and
out-port. Note that even though the communication
links are unidirectional, a pair of processors is allowed
to be connected with two communication links, one in

either direction, simulating a bidirectional link.
We assume that each processor in the network is

initially in a special “quiescent” state, in which, at
each time-step, the processor sends a “blank” character
through all of its out-ports. A processor remains in the
quiescent state until a non-blank character is received
by one of its in-ports.

The network has a global clock, the pulses between
which each processor performs its computations. Pro-
cessors synchronously, within a single global clock pulse,
perform the following actions in order: read in the in-
puts from each of their in-ports, process their individual
state changes, and prepare and broadcast their outputs.

The reason for modeling the processors by identical
finite-state automata is simple. In practice, many
network protocols are expected to run extremely fast.
(One particular reason for this is that the network
topology or size might change if the protocol takes
too long thereby potentially rendering the computation
obsolete. Obviously, if a processor is randomly added or
removed from the topology of the network in the middle
of the computation, a global topology determination
is likely to produce an incorrect result.) Commonly,
a memory access can take orders of magnitude longer
than a simple state-change processor calculation. It is
therefore assumed that the processors involved will not
have time to access a large memory cache. The current
technological trend is to merge the memory functions
that one generally associates with a computing machine
into the processor itself.

The protocol described below is presumed to begin
when a certain processor is signaled by some outside
source. We call this processor the root, and assume that
every processor knows whether or not it is the root. A
protocol ends when the root enters a special terminal
state indicating that the computation has successfully
completed. In our computational model, we calculate
the time-complexity of a protocol in terms of the total
number of global time steps between initiation and
termination. Of course, the aim is to minimize this
time-complexity.

http://arxiv.org/abs/cs/0310004v1


Definition 1.1. Throughout this paper, we will use
N to represent the total number of processors in the
network. D will represent the diameter of the directed
network.

1.2 The Global Topology Determination Prob-

lem

1.2.1 Statement of the Problem. As previously
mentioned, our computational model is designed to re-
alistically simulate a large network of small and fast
processors with only the capacity for reliable unidirec-
tional communication. More specifically, we have a large
network of powerful computers each equipped with a
very fast communication processor (a communication
device separate from the main processor of the computer
which is presumably engaged in tasks other than simple
communication protocols). These communication pro-
cessors are modeled by the finite-state automata. (We
think of finite-state machines as having a small/constant
amount of memory which allows them to work faster
than a larger, more complex machine.) One such com-
puter initiates the protocol by nudging its communica-
tion processor out of quiescence thereby forcing the de-
vice to take on the role of the root. The protocol then
commences via messages passing between the various
communication processors. At each step of the proto-
col, the root is piping its computational transcript to
the computer to which it is attached. By the time the
protocol has completed execution (i.e. the root has re-
entered quiescence after informing its master computer
that the algorithm has completed), the root’s computer
has enough information in the form of input symbols
read from its communication device to reconstruct the
global topology of the network.

One point should be clarified: When considering ex-
plicit protocols on finite-state processors, an important
characteristic of the processors is the ability to recog-
nize whether their in-ports and out-ports are connected
to other processors or not. The ability of a processor
to recognize whether its in-ports are connected to other
processors is called in-port awareness. A similar defini-
tion applies to out-port awareness. When dealing with
practical applications it is natural to assume that pro-
cessors have in-port awareness. (The quiescent (resting)
state of a processor is to constantly send out the blank
character b. If a processor is receiving ∅ (nothing) and
not b through one of its in-ports, the processor knows
immediately that there cannot be a processor connected
to that in-port.) However, out-port awareness is not
necessarily a given in some communications systems.
We will assume throughout this paper that processors
have both in-port and out-port awareness as did Ostro-

vsky and Wilkerson in [7].

1.2.2 Previous Research. Mapping the global net-
work topology is an extremely important primitive uti-
lized for message routing as well as investigated for its
intrinsic theoretical interest. The literature on the sub-
ject of message routing and topology mapping is im-
mense. The most obvious example of practical network
topology determination is Internet mapping. Internet
mapping protocols are not in short supply. Mainwar-
ing et al. in [5], for example, present and prove the
theoretical correctness of a protocol for mapping the
Myrinet system-area network at U.C. Berkeley. More
ambitiously, R. Govindan and H. Tangmunarunkit [4]
present and discuss a program called Mercator which
performs “informed random address probing”, a heuris-
tic useful for mapping the entire Internet topology. And
perhaps most impressively, in [1], Cheswick, Burch, and
Branigan actually map the Internet topology almost en-
tirely. (In fact, they even perform an analysis of the
NATO bombing campaign on Yugoslavia’s network con-
nectivity.) Numerous other mapping protocols and re-
sults can be found in these respective bibliographies.

Of course, the Internet is commonly considered a
bidirectional network with a fairly predictable overall
topology (from a theoretician’s point of view). We will
focus on directed networks of totally unknown topology
and potentially unbounded size, and the processors are
assumed to be finite-state. The fact that our network as-
sumptions are so general make our results applicable to
other, more specific networks (e.g. any of the above ref-
erences). However, our solution might not be the most
efficient from a practical point of view for these other
specific network types; this is especially true if one has
the foreknowledge that the network in question has par-
ticular properties such as bidirectionality, greater pro-
cessor memory, or an easy-to-map hypercube topology.
On the other hand, networks of the more general kind
occur more often than one might think (e.g. GPS satel-
lites, encrypted one-way radio military networks, bidi-
rectional networks with in-port or out-port shutdown
failures at individual processors, etc.). Network restric-
tions such as unidirectional communication and finite-
state processors make outlining a general topology map-
ping protocol a nontrivial exercise. Luckily, Even, Lit-
man, and Winkler’s “snake” data structure [2] (used in
Ostrovsky and Wilkerson’s BCA in [7] and the equiva-
lence proof in [3] and modified for use in the protocol
below) is virtually tailor-made for the purpose.

2 Data Structures

2.1 Speed. The protocols about to be presented
make use of several computational constructs, each of



which is assigned a certain characteristic “speed.” (The
“speed” concept can be referenced as far back as [6].)
This is not to say that certain messages move faster
through the network than others. All computations
and outputs are strictly synchronous with respect to
the global network clock.

In the protocol that follows, the speeds that we
utilize are speed-1 and speed-3. The method by which
we implement a speed is as follows: A speed-1 construct
will enter a processor. It will then remain there for 3
global clock ticks. At the third clock tick, it will proceed
along its designated path. Similarly, a speed-3 construct
will wait only 1 global clock tick. Thus, in reality, the
implementation specifies that a speed-1 construct moves
3 times slower than a speed-3 construct.

2.2 Tokens. Tokens are the simplest data structure
possible on networks of finite-state machine. They
should be thought of as markers that can be passed from
one processor to another via the edges of the network.
The token concept has been in use since the first solution
to the Firing Squad Synchronization Problem for the
bidirectional line [6]. The definitions we give below of
“breadth-first” and “loop” tokens were first outlined in
[3] though the behaviors were also utilized in [2, 7].

We employ two main varieties of tokens. Breadth-
first tokens can be thought of as moving within a
“breadth-first-search tree” in the following sense: We
arrange it so that each relevant processor in the net-
work has a “parent” marker associated with one of
its in-ports. (The method by which various breadth-
first-search trees are constructed by snakes, as well as
how each processor designates its “parent” in-port, is
discussed in Section 2.3.2.) We then declare that a
breadth-first token will only be accepted by a given pro-
cessor when either (a) the processor creates the token, in
which case the processor will not have a parent in-port,
or (b) the token comes through the processor’s parent
in-port. If a breadth-first token is received through a
non-parent in-port or by a quiescent processor, it is
ignored. Breadth-first tokens are passed out of every
out-port; thus, breadth-first tokens multiply in number
as time goes on (as long as they stay within the con-
fines of the breadth-first-search tree.) In summary, if a
breadth-first token is created at the root of its associ-
ated breadth-first tree, then t time steps later there will
be a token at each processor that is a distance of t from
the root, and none elsewhere. (If the tree has length less
than t, of course, there will be no tokens anywhere.)

Loop tokens travel along a specified marked loop
within the network. (How loops get marked is described
in Section 2.4.) A processor on the loop that receives
a loop token simply passes it to the next processor on

the loop. Thus, t time steps after its creation, a loop
token will be t processors away from the processor that
created it, along the marked loop. When any loop token
reaches it creator processor, it is absorbed (i.e., not sent
around again).

Note that tokens can only carry along with them a
constant (very small) amount of information since they
are only of constant size. The next data structure takes
care of this problem.

2.3 Snakes. Our description of the snake data
structure closely follows that in [3]. The concept of a
data-carrying snake was invented by Even, Litman, and
Winkler in [2]. Snakes are the solution to the problem
of the limited data-carrying capabilities of tokens. A
snake is capable of carrying an arbitrarily large amount
of data, but for this reason, it must reside in a collection
of adjacent processors rather than a single processor.

A “snake” is a string – which may be arbitrarily long
– made up of an alphabet of 2(δ2 + δ) + 1 characters,
namely δ2 + δ head characters, δ2 + δ body characters,
and a unique tail character. (Recall that δ is a fixed
constant of the network.) The characters comprising the
string are stored in adjacent processors, one character
per processor. These characters encode a path by
specifying a series of in- and out-ports. (Note that a
token could never do such a thing, since a path in the
network can grow arbitrarily long.)

We require two main snake types, which we call
growing and dying. Growing snakes are used to gen-
erate encoded paths of the network, and dying snakes
are used to mark encoded paths. Our protocol requires
two kinds of each of the two snake types; specifically,
we will need out-growing, in-growing, out-dying, and in-
dying snakes. “Out” and “in” are meant as a mnemonic;
out-snakes are generated at the root and proceed out-
ward from it, while in-snakes are generated elsewhere
and trigger some action when they reach the root. Out-
growing, in-growing, out-dying, and in-dying snakes will
be referred to as OG-snakes, IG-snakes, OD-snakes, and
ID-snakes in what follows.

Each of the four kinds of snake gets its own alphabet
of characters to describe it; this allows processors to
determine with which kind of snake they are dealing.
We will spend a section on each type, elucidating its
respective behavior. First, we need to go over some
general rules common to all snake types.

2.3.1 General Snake-handling Rules.

• All snakes are speed-1.

• Snakes of different types do not interact. A pro-
cessor can handle different snake types simulta-



neously without getting confused because snake
types are distinguished by their alphabets. Note
that this does not impose arduous memory con-
straints upon the processors (which are finite-state
machines) since there is only a constant number of
snake types.

2.3.2 Growing Snakes.Growing snakes function as
information generators. We define the initiator to be
the processor from which the growing snakes first em-
anate. The terminator is defined to be the proces-
sor that the snakes are attempting to reach. Growing
snakes grow in a breadth-first manner; the first growing
snake to reach the terminator processor will have en-
coded within its body a minimal-length path from the
initiator to the terminator. Upon reaching the termi-
nator, a growing snake head might then initiate some
further action based on the protocol and the state of
the terminator. The rules for handling growing snakes
are outlined below; the rules for handling in-growing
and out-growing snakes are identical (just replace “IG”
with “OG”). We assume that we are using in-growing
snakes in most of the discussion below for concreteness.

• First, the head characters of the baby growing
snakes are generated by the initiator. This proces-
sor sends an IG-snake head character out of every
out-port during the first time step. The particu-
lar head character to be sent will correspond to the
out-port from which it is being sent. For every i

between 1 and δ, the growing head snake character
IGH(i, ∗) will be sent through out-port i. When a
processor receives any growing snake character with
∗ as its second parameter (and this applies to body
as well as head characters), the processor notes the
in-port j through which the character arrived and
changes the ∗ to j. Thus, when the IGH(i, ∗) is
received, it is changed to IGH(i, j) where j is the
number of the receiving in-port. During the next
time step, the initiator will send a tail character
IGT through every out-port. Thus a baby snake is
born.

• When a processor receives an in-growing snake
character (again, for concreteness) for the first
time, it marks itself IG-visited, and marks the in-
port through which the growing snake character
was passed as its IG-parent1. (These marks will
be used later by certain breadth-first tokens; see
Section 4.2.1.) Only this first IG-snake will be

1If two or more IG-snakes arrive simultaneously, the one

arriving through the lowest-numbered in-port is deemed “first.”

allowed to pass through the processor; all other IG-
snake characters will be ignored. Thus, an IG-snake
will carve out a breadth-first-search tree. Growing
snake characters are periodically removed from the
network. Until this removal occurs, however, each
growing snake carves out a breadth-first-search
tree.

• When a processor receives a non-tail IG-snake
character, it simply sends this character through
all out-ports during the next time step. Once the
processor sends the character out, it need not retain
it in “memory.” (In this way, the processor simply
passes the head and body through every out-port.
Thus arbitrarily long paths can be generated.)

• Once a processor receives the tail of an IG-snake,
instead of simply passing it through like the other
body characters, the processor generates a new
body character. For all i between 1 and δ, it simul-
taneously sends the character IG(i, ∗) through out-
port i; thus a new body character is generated to
mark the current processor’s position in the path.
Only after this new character is passed along does
the processor send the tail through. Note that the
∗ is changed to reflect the appropriate in-port when
the body character is received by the next processor
in turn.

2.3.3 Dying Snakes.Dying snakes function as path
markers. After a path is generated by the growing
snakes, it is the responsibility of the dying snake to
mark the generated path so that the processors on it
will know (a) that they lie along a special path and (b)
which in-port and out-port they should use for funneling
information along the path. In our protocol, ID-snakes
will be formed by converting the characters of an OG-
snake into ID-snake characters as they pass through one
particular processor; OD-snakes will be created from
ID-snakes in a manner to be described in Section 4.2.1.
The rules for handling ID-snakes are outlined below; the
rules for handling OD-snakes are identical (just replace
“ID” with “OD”), except where noted.

• An ID-snake will mark a path generated by an
OG-snake (see Section 2.3.2); thus, since an OG-
snake carves out a breadth-first-search tree, the
path will never self-intersect. Similarly, neither will
a path that an OD-snake is to mark. However,
the concatenation of the two paths (which, in our
protocol, will always be a loop that includes the
root) may self-intersect; any processor will appear
at most twice on the concatenation. We will,
eventually, want to consider the concatenation as



a whole; to this end, we imbue each processor with
two “predecessor in-ports” (numbered 1 and 2) and
two “successor out-ports” (ditto).

• Whenever a processor receives the head character
IDH(i, j) of an ID-snake, it sets predecessor in-
port #1 equal to the number of the in-port through
which it received the character, and sets successor
out-port #1 equal to i. These two values indicate
the two edges of the path incident to the processor.
OD-snakes work identically, except that they use
predecessor in-port #2 and successor out-port #2.
The head character is then discarded (not sent
through any out-port).

• If the next ID-snake character that the processor re-
ceives through the predecessor in-port is ID(i′, j′),
it gets sent through the successor out-port as
IDH(i′, j′). (In other words, the next ID-snake
body character that comes through gets converted
to the new head.) The processor then passes all fur-
ther ID-snake characters received through its pre-
decessor in-port to its successor out-port exactly as
received. If the next character happens to be a tail,
then it gets sent through the successor out-port as
is. In our protocol, ID-snakes will be converted
into OD-snakes at the root; this will provide an ex-
ception to these rules, for at the root all ID-snake
characters are converted into OD-snake characters
instead. In addition, as might be expected, the
root will set predecessor in-port #1 and successor
out-port #2 appropriately as the dying snakes go
through; its other two ports will not be needed, as
we will show in Section 4.2.1.

• An ID-snake only propagates along the path it is
marking, and a maximum of one will be in the
network at any given time, so we need not worry
about ID-visited markings.

2.4 Marked loops.As mentioned in Section 2.3.3, we
will be using dying snakes to mark certain loops (not
necessarily simple) that include the root. We will refer
to this structure repeatedly throughout the paper, and
thus make the following definition:

Definition 2.1. A marked loop will be a loop marked
by dying snakes in the manner described in Section
2.3.3. The root must be one of the processors on the
loop. The loop may or may not be simple, but no
processor or edge can appear more than twice on it.

Each processor will have its predecessor and suc-
cessor port (or, if necessary, ports) set by the dying
snakes. A processor with only predecessor in-port #1

set will only accept a loop token through that in-port; it
will subsequently pass the token through successor out-
port #12. Similarly, a processor with only predecessor
in-port #2 set will only accept a loop token through
that in-port; it will subsequently pass the token through
successor out-port #2. Finally, a processor with both
predecessor in-ports set will initially accept a given loop
token only through predecessor in-port #1 (it will pass
the token through successor out-port #1, of course); it
then waits for the token to come through predecessor
in-port #2 (at which point it passes the token through
successor out-port #2); it then will expect the next such
loop token through predecessor in-port #1 again.

We will hereon refer to the predecessor in-port
(resp. corresponding successor out-port) through which
a loop processor awaits a loop token as the appropriate
predecessor in-port (resp. successor out-port).

3 The Global Topology Determination

Algorithm

3.1 Description of the Algorithm. In the discus-
sion to follow, we will assume that two auxiliary proto-
cols, the Backwards Communication Algorithm (BCA)
and the Root Communication Algorithm (RCA), are
available for use. The BCA is a method for sending
information “backwards” along a unidirectional edge in
the network, and the RCA is a method for communica-
tion information from any given node to the root. We
defer more complete descriptions of each until Sections
4.1 (BCA) and 4.2 (RCA).

After initiation by its master computer, the root
releases a DFS (Depth First Search) token through
its lowest-numbered connected out-port. This token
performs a depth first search of the entire network
remembering along the way through which out-port it
has been most recently passed and through which in-
port it was most recently received. (The DFS token is
to be thought of as having the same basic structure as
a snake character with two entries where in-port and
out-port labels can be stored.) The information stored
in this token is conveyed to the root as the depth-first-
search progresses.

We assume that the reader is somewhat familiar
with the mechanics of depth-first search on directed
graphs. We will give a brief overview of the depth-
first search using finite-state processors. In the following
discussion, a “forward edge” refers to an existing edge of
the network representing a path along which messages
are passed unidirectionally. The reason we even bother

2Once again, the root will provide an exception to this rule; it

will accept a loop token only through predecessor in-port #1, but

will pass it through successor out-port #2;



making this distinction is that because of the BCA,
we have a method of passing information backwards
through an edge. When a piece of information gets
passed through a legitimate edge of the network, we
say that it gets passed forward through the edge.

To perform the depth-first search, any given pro-
cessor, after receiving the DFS token for the first time3,
notes the in-port through which it received the DFS to-
ken. The processor also marks that in-port as its parent
and then passes the DFS token out its lowest-numbered
connected out-port. After the processor gets the DFS
token back via the BCA4, it marks that out-port finished
and sends the DFS token out of the lowest-numbered
unfinished connected out-port, and so on. When all of
the processor’s out-ports are finally finished, the proces-
sor sends the DFS token back through its parent in-port
via the BCA. Once the root has finished all of its out-
ports, the depth-first search is over.

The root is updated as to the progress of the
protocol via the following. Upon receipt of the DFS
token, a processor initiates one of the following two
tasks. Once the task is completed, the DFS token is
passed on according to the rules of depth-first-search
outlined above. (As indicated above, whenever the DFS
token needs to move backwards along an edge of the
network, it uses the BCA.)

• If the token was not received through use of the
BCA, the processor performs the RCA using the
FORWARD token. We assume that there are
δ2 possible FORWARD tokens. The FORWARD
token that gets sent depends on which out-port
sent the DFS token and which in-port received the
DFS token. For example, if the DFS token was
passed out of out-port 4 of one processor and into
in-port 1 of another, then FORWARD token (4, 1)
is sent. (The FORWARD token has the same basic
structure as a snake character.)

• If the DFS token was received via a backwards edge
(i.e. if the token was passed to the processor by the
BCA), the processor performs the RCA using the
BACK token.

The algorithm terminates when the root has completed
the depth first search of the network (i.e. finished all of
its out-ports).

3If a processor is receiving the DFS token for the first time, it

must be through a forward edge of the network.
4A processor may get the DFS token back through a forward

edge of the network after it already has marked its parent in-port.

In that case, the processor would use the BCA to send the DFS

token back since a processor never wants more than one parent.

What is the master computer’s strategy for map-
ping the network given the computational transcript of
its communication processor at the root? We will de-
scribe the strategy as if the computer were drawing a
topological map as the algorithm was proceeding. The
computer always keeps track of the processors in the
network that have performed previous RCA’s, allocat-
ing them names as new processors are “discovered” by
the algorithm. (Recall that the computer at the root
has the ability to assign processors unique names even
though the communicating devices at the processors
themselves cannot.) It will keep a stack of processor
positions as well. When a processor performs an RCA
with a FORWARD token, the computer pushes it onto
the stack. The processor at the top of the stack then
points to the processor that has most recently performed
a RCA. (If the root has just initiated the Global Topol-
ogy Determination Protocol then we consider the root
itself as having performed the last RCA; the stack will
initially consist of only the root.) Whenever an RCA is
run, the computer notes the characters of the IG-snake
that passes through the root as it is converted to an
OG-snake (see Lemma 4.1). From the characters of the
IG-snake, the root computer can accurately map both
the in-ports and the out-ports of the canonical shortest
path to the current processor A, the processor running
the RCA. Because the protocol is deterministic and al-
ways produces the same canonical shortest path from
any given processor A to the root and back again, the
computer can tell whether the current processor A has
already been marked on the map. If it has not yet been
marked on the map, the computer marks it and cre-
ates a name for it. At the end of the RCA, the com-
puter notes whether a FORWARD or BACK token is
being passed around the loop. If it is a FORWARD to-
ken, then the computer should draw a directed arrow
from the top processor on the stack to the current pro-
cessor A through the appropriate out-port and in-port.
Afterwards, the computer pushes processor A onto the
stack. (Recall that a FORWARD token indicates that
the depth first search has moved forward along an edge.)
If it is a BACK token, the computer simply pops the top
processor off the stack. Note that the top processor on
the stack tracks the position of the DFS token at any
given point in time.

4 Auxiliary Protocols and Correctness Proofs

4.1 The Backwards Communication Algo-

rithm. The Backwards Communication Algorithm
(BCA) first appeared in [7] and accomplishes the fol-
lowing: Assume there is a directed edge from processor
A to processor B in the network. The BCA is a method
for sending a message from processor B to processor A



(backwards through the directed edge) such that A gets
the message, B knows when A has gotten the message,
and at the end of the transaction, the rest of the graph
is left undisturbed5. The running time for each use of
the BCA is O(D).

Definition 4.1. Given two distinct processors in the
network, processor A and processor B, we define the
canonical shortest path from processor A to processor
B to be the unique path along which the first growing
snake released from processor A that survives to reach
processor B would travel.

4.2 The Root Communication Algorithm. In
this section we will outline another algorithm, which we
call the Root Communication Algorithm (RCA), based
on the idea of Ostrovsky and Wilkerson’s BCA, which
we will use as part of the Global Topology Determi-
nation Protocol presented in Section 3. The RCA ac-
complishes the following: processor A communicates a
message to the root such that the root gets the message,
processor A is aware of the completion of the algorithm,
the computer at the root is able to reconstruct the se-
quence of in-ports and out-ports along the canonical
shortest paths leading from the the root to processor
A and from processor A to the root, and at the end
of the transaction, the graph is left undisturbed. This
auxiliary algorithm will be used to send one of the two
signals FORWARD or BACK to the root and to allow
the root computer to track the movement of the DFS
token. The Global Topology Determination Protocol
is guaranteed to only be running the RCA at a single
processor at any given time. Throughout this section,
we will assume that processor A is the processor that
wishes to communicate with the root.

4.2.1 The Steps of the Root Communication

Algorithm. For the sake of brevity, we will abbreviate
the snake types.

1. Processor A becomes aware that it wishes to com-
municate with the root (via a process outlined in
the steps of the Global Topology Determination
Algorithm in Section 3) and sends IG-snakes to
search for the root. Any processor receiving an IG-
snake character for the first time marks itself as
“IG-visited”, thus preventing any subsequent IG-
snakes from entering it. It will also designate the

5It is important to note that the names A and B are just names

for the reader’s convenience. Processors cannot all simultaneously

assign themselves unique names because of their finite-stateness.

Processor B only recognizes Processor A as the processor that is

on the other end of one of Processor B’s in-ports.

in-port from which it received the IG-snake as its
“IG-parent” in-port. These markings will not be
cleared until the release of KILL tokens (in step 4);
hence, the IG-snakes carve out an IG-breadth-first-
search tree.

2. Upon receipt of the head of the first IG-snake to
reach it, the root performs two actions simultane-
ously. First, the root closes itself off to all other
IG-snakes, ignoring any that attempt to enter. The
root will accept no further IG-snakes during this ex-
ecution of the algorithm. Second, the root begins
to convert the IG-snake to an OG-snake which it
broadcasts out all out-ports. (To convert an IG-
snake to an OG-snake, the root simply converts
the IG-snake characters it receives as input to OG-
snake characters when they are sent out.) When
the root receives the tail of the IG-snake that it is
converting, it simply holds onto the tail and con-
tinues growing the OG-snake normally: The root
holds onto the tail character while it sends out the
character OG(i, ∗) out of each of its out-ports for
every i between 1 and δ. Only after this character
is broadcast does the root send out the tail of the
snake as OGT . OG-snakes leave “OG-visited” and
“OG-parent” markings (and thus create an OG-
breadth-first-search tree) similar to the IG-snakes
discussed in Step 1. However, the OG-snakes do
not respect the IG-breadth-first-search tree and are
therefore guaranteed to make it back to processor
A.

3. When processor A receives the first OG-snake
head that survives, processor A closes itself off to
any subsequent OG-snakes and converts the OG-
snake to an ID-snake (note that processor A must
therefore eat the head character of the OG-snake
as if it were an ID-snake character, then send the
rest of the snake through the appropriate out-port).
The ID-snake then marks the path from processor
A to the root. Eventually the root receives the head
of an ID-snake and converts it to an OD-snake as
previously described. This OD-snake then marks
the path from the root back to processor A which
will only receive the tail character ODT . At this
point in the protocol, there is a marked path in
the network from processor A to the root and back
again.

4. As soon as processor A receives the tail of the
OD-snake, processor A performs two tasks simul-
taneously. First, it releases a speed-3 breadth-
first KILL token. The function of the KILL to-
ken is to completely eradicate all traces of grow-
ing snake characters in the network; both IG- and



OG-snake characters and markings are erased upon
contact with a KILL token. KILL tokens are ig-
nored by those processors that do not have any
growing snake markings or characters in their mem-
ory. (KILL tokens do not affect the marked path.)
Second, processor A releases a speed-1 loop token.
This token will either be a FORWARD or BACK
token depending on the current state of the net-
work. Upon reception of the FORWARD/BACK
token, processor A is guaranteed that one time step
later, there will be no further growing snake charac-
ters or KILL tokens percolating uselessly through
the network.

5. Processor A finally releases a speed-3 UNMARK
token around the marked path. Each processor
the old marked loop, upon receiving the token
through its appropriate predecessor in-port, passes
the token through the appropriate successor out-
port, then forgets those predecessor and successor
designations. Upon reception of this UNMARK
token, the root reopens itself to IG-snakes. After
the token makes it all the way around the marked
path back to processorA, processorA reopens itself
to OG-snakes and terminates the algorithm.

4.2.2 Proof of Correctness of the RCA. In this
section, we prove the non-trivial claims made about the
RCA presented in Section 4.2.1.

Lemma 4.1. The root’s master computer is able to
determine the canonical shortest paths leading to and
from processor A by the completion of the algorithm.

Proof. Note that the canonical shortest path from pro-
cessor A to the root is unique and is encoded in the
body of the first (and only) IG-snake to safely reach the
root. Thus, to track this path, the master computer
can simply read off the in-ports and out-ports encoded
in the body of the IG-snake as it is converted to an OG-
snake in Step 2. Similarly the canonical shortest path
from the root to processor A is also unique and is en-
coded in the body of the ID-snake that reaches the root
in Step 3. The master computer can again simply read
off the relevant in-ports and out-ports as the ID-snake
is converted to an OD-snake.

Lemma 4.2. After processor A terminates the algo-
rithm in Step 5, the network is left completely undis-
turbed by any data construct created by the algorithm
(snake characters/markings, tokens, etc.).

Proof. Because KILL tokens travel three times faster
than snakes, it is obvious that the tokens will eventually
catch up with and eliminate the growing snakes. To

see that the KILL tokens will catch up precisely when
claimed (see step 4), note that if L is the length of
the current marked loop in the network, then the snake
heads have at most a 2L head start. This implies that
the KILL tokens will catch up with the snake heads after
a speed-1 token (i.e. the FORWARD/BACK token)
makes it around the loop once.

Lemma 4.3. Each execution of the RCA by any given
processor A takes time O(D).

Proof. By inspection of the steps, the running-time
is proportional to the length of loop marked by the
algorithm: d(A, root)+d(root, A). This quantity is itself
trivially O(D).

4.3 Correctness Proof of the Global Topology

Determination Algorithm

Lemma 4.4. The Global Topology Determination Algo-
rithm terminates in time O(ND).

Proof. Each processor in the network performs at most
δ RCA’s and at most δ BCA’s. The running time
for each of these subalgorithms is O(D) and the result
follows.

Theorem 4.1. The computer at the root of a network
performing the Global Topology Determination Algo-
rithm accurately maps the given directed network.

Proof. First, we claim that any time a FORWARD
token is noted by the root computer, the two processors
between which it draws the directed arrow have both
already been mapped. Every time an RCA is run,
processor A must be mapped before the token is sent
out because a IG-snake must be sent through the root
before a FORWARD token. The previous processor (i.e.
the processor on top of the stack) has already been
mapped by a previous execution of the RCA and thus
a FORWARD token can always be traced between two
processors already on the network map at the time it
is sent. Now we note that the DFS token must be sent
forward through every edge of the network and hence
a FORWARD token token is sent for every edge of the
network. Thus all edges get accurately mapped.

5 The Lower Time Bound

Lemma 5.1. Let G(N) be the number of bounded-degree
strongly connected networks of N processors and diame-
ter less than or equal to 2 logN +1 with distinct topolo-
gies. Then there exists some constant C such that, for
large enough N , G(N) ≥ NCN . (i.e. There are a great
many networks with small diameter.)



Proof. We only present a quick justification and leave
the interested reader to fill in the details. Consider
the family of networks that consist of a full binary
tree emanating from a single node with bidirectional
edges (i.e. unidirectional edges in both directions) with
a simple loop that includes every processor on the
bottom level of the tree. Note that all such networks
are of bounded-degree and strongly connected. Every
rearrangement of the processors included in the loop on
the bottom levels yields a distinct topology. A simple
counting argument suffices to complete the proof.

We make the convention that the processors’ in-
put/output set is called I. The number of elements of
the set I is |I|.

Lemma 5.2. For any given algorithm, after x global
clock ticks, the root can have had one of a maximum
of |I|δx possible computational transcripts.

Theorem 5.1. Any algorithm which solves the Global
Topology Determination Problem has a time-complexity
lower bound of Ω(N logN).

Proof. Fix an algorithm which solves the Global Topol-
ogy Determination Problem. Let us assume that the
algorithm terminates on graphs with N processors in
less than or equal to T (N) global clock ticks.

In order for the root to distinguish between different
global topologies, for any given network size N , there
must be at least as many computational transcripts as
there are distinct network topologies. Otherwise, by
the pigeonhole principle, two distinct network topologies
would have to be distinguished by exactly the same
computational transcript which is, of course, impossible.

By Lemma 5.1, we know that for large enough
N , there exists a constant C such that the number
of distinct network topologies is greater than or equal
to NCN . By Lemma 5.2, the number of possible
computational transcripts the root can have had is at
most |I|δT (N). Thus we get:

|I|δT (N) ≥ NCN ⇒ T (N) = Ω(N logN)
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