
Maximum Network Flow with Floating Point Arithmetic

Ernst Althaus

�

Kurt Mehlhorn

y

October 7, 1997

Abstract

We discuss the implementation of network 
ow algorithms in 
oating point arithmetic. We give an

example to illustrate the di�culties that may arise when 
oating point arithmetic is used without care.

We describe an iterative improvement scheme that can be put around any network 
ow algorithm

for integer capacities. The scheme carefully scales the capacities such that all integers arising can

be handled exactly using 
oating point arithmetic. For m � 10

9

and double precision 
oating point

arithmetic the number of iterations is always bounded by three and the relative error in the 
ow

value is at most 2

�19

. For m � 10

6

and double precision arithmetic the relative error after the �rst

iteration is bounded by 10

�3

.

1 Introduction

Network algorithms, e.g., shortest paths or maximum network 
ow, are usually formulated for the real

number model of computation in which all arithmetic operations are exact and incur no rounding error.

Floating point arithmetic (FPA) incurs rounding error and it is therefore not surprising that network

algorithms designed for the real number model of computation may malfunction when implemented with

FPA. Malfunctioning can either mean non-termination or production of an incorrect result. We discuss

this phenomenon in the context of the maximum 
ow problem.

Let G = (V;E) be a directed graph, let s and t be vertices of G called the source and the sink,

respectively, and let c : E ! R

�0

be a non-negative real-valued capacity function on the edges. A 
ow f

is a function from the edges to the real numbers satisfying

(1) the non-negativity constraint f(e) � 0 for all e 2 E,

(2) the capacity constraint f(e) � c(e) for all e 2 E, and

(3) the 
ow conservation constraint

P

ff(e) ; e ends in vg =

P

ff(e) ; e starts in vg for all vertices

v distinct from s and t.

The value j f j of a 
ow f is de�ned as the 
ow out of s minus the 
ow into s. The maximum
ow problem

asks for the computation of a 
ow of maximum value.

All algorithms for the maximum 
ow problem compute the 
ow incrementally; see [AMO93] for a

survey of 
ow algorithms. The �nal 
ow across an edge e is computed as a sum of 
ow portions; 
ow

portions may be positive or negative. In a 
oating point evaluation of this sum there may be cancellation.

Figure 1 illustrates this point for the pre
ow-push algorithm of Goldberg and Tarjan [GT88]. Due to

the cancellations the algorithm may not terminate, or terminate and return a function f which is not a


ow (because it violates one of the constraints) or is a 
ow but not a maximal 
ow. The current paper

was inspired by the observation that the implementation of the pre
ow-push algorithm distributed in

LEDA [MN95, MNU97] does not always terminate when run with FPA.

What can be done to remedy the situation?

1. We may resort to arbitrary precision integer arithmetic. This will solve all problems, imply a certain

loss of e�ciency (since the integers might be quite large) and convenience (because of the necessary

conversion), but otherwise solve all problems. We will not consider this solution any further since

we want to stay within FPA.

�

Max-Planck-Institute f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken

y

Max-Planck-Institute f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken

1



0:27

0:32

0:71

s v t

Figure 1: A network of three nodes and four edges. The capacities of the edges are as shown. The pre
ow

push algorithm of Goldberg-Tarjan starts by saturating all edges out of s. This will create an excess of

0:27 + 0:32 + 0:71 = 1:3 in v. In the course of the execution, the algorithm will determine that none of

this excess can be forwarded to t and hence the excess will be shipped back to s by sending 0:27, 0:32,

and :71, respectively, across the three edges (v; s). The �nal excess in v is 1:3� 0:27� 0:32� 0:71 = 0.

Assume now that all calculations are carried out in a 
oating point system with a mantissa of two decimal

places and rounding by cut-o�. Then the excess in v after saturating all edges out of v will still be 1:3 as

there is no cancellation in the summation. However, when the 
ow is pushed back to s the 
oating point

computation the �rst subtraction 1:3	 0:29 yields 1:1 as the last digit of 0:29 is dropped when the two

summands are aligned for the subtraction. The e�ect of this is that v ends up with an excess of 0:09 but

no outgoing edge across which to push 
ow. This may put the algorithm into an in�nite loop.

2. We may change the algorithm, e.g., by replacing all tests for zero by comparisons with a carefully

chosen epsilon (or maybe di�erent epsilons for di�erent tests). This is probably the most popular

approach. However, several questions arise? How should the epsilons be chosen as a function of

the input? What properties does the computed 
ow have, e.g, in what sense does it satisfy 
ow

conservation and how close to the optimal 
ow value is the computed 
ow value? Is there a generic

way to choose the epsilons that works for any 
ow algorithm or at least for a large class of 
ow

algorithms? This approach was used in the LEDA implementation of the pre
ow-push algorithm

mentioned above. Apparently the choice of the epsilons was not made carefully enough. We have

no advice on what a careful choice is.

3. We may misuse 
oating point arithmetic as an implementation of integer arithmetic for integers

whose absolute value is bounded by M = 2

ML+1

� 1 where ML is the mantissa length of the


oating point system. According to the IEEE standard [IEE87] we have ML equal 26 for single

precision FPA and equal to 52 for double precision FPA. We follow the last approach in this paper.

Throughout the paper we use M to denote the maximum integer that can be represented in the

mantissa of the 
oating point system.

We describe an iterative algorithm that computes a 
ow f that approximates the optimal 
ow f

�

. The

algorithm uses any 
ow algorithm A for integral capacities as a subroutine. The subroutine is exercised

with 
oating point arithmetic and the quality of approximation depends on the particular 
ow algorithm

used. For many algorithms, e.g., all augmenting path algorithms and all push-relabel algorithms, we have

� f = 0 i� f

�

= 0 and

� (j f

�

j � j f j)=j f

�

j � 8m=M if f

�

6= 0.

� The scheme performs at most 2 + blogm= log(M=2m)c 
ow computations.

For m � 10

9

and double precision 
oating point arithmetic the number of iterations is always bounded

by three and the relative error in the 
ow value is at most 2

�19

. For m � 10

6

and double precision

arithmetic the relative error after the �rst iteration is bounded by 10

�3

.

The algorithm �rst computes the so-called bottleneck capacity c

B

for s and t; this is the largest

capacity such that there is a path from s to t all of whose edges have capacity at least c

B

. We show

that c

B

� j f

�

j � m � c

B

. We then use this estimate for the maximum 
ow to scale the capacities. The

scaling depends on the algorithm A. We scale all capacities to integers such that A when run on the

2



scaled capacities will only operate on integers whose absolute value is bounded by M . Thus the integer

arithmetic required by A can be realized by 
oating point arithmetic. We run A on the scaled capacities

and obtain a better estimate for the value of the maximum 
ow. We repeat until the relative error is

less than 8m=M or until no further scaling is necessary. For m � 10

9

and double precision 
oating point

arithmetic the number of iterations is always bounded by three.

2 Bottleneck Shortest Paths

The bottleneck capacity gives a crude approximation of j f

�

j.

Lemma 1 c

B

� j f

�

j � m � c

B

Proof: There is a path from s to t all of whose edges have capacity at least c

B

. Thus c

B

� j f

�

j. Let

S be the set of nodes that are reachable from s by paths all of whose edges have capacity more than c

B

.

Then t =2 S and any edge in the cut (S; V n S) has capacity at most c

B

. Thus the capacity of the cut is

bounded by m � c

B

and hence the value of the maximum 
ow is bounded by the same quantity.

The bottleneck capacity can be computed in time O(m+n logn) by Dijkstra's algorithm, see [AMO93,

exercise 4.37], or in time O(m logn) by sorting the edges by capacity and then performing an incremental

connectivity computation. The details of the second approach are as follows. We sort the edges in order

of decreasing cost, declare s reached, and all other vertices unreached. We then insert the edges one-by-

one. When an edge e = (v; w) is inserted we distinguish cases according to whether v is reached already

or not. If v is not reached yet we simply add e to the list of outgoing of edges of v. If w is already

reached we do nothing, and if v is was already reached but w was not we declare w reached and start a

depth-�rst-search from w. We stop as soon as t is reached.

3 An Approximation Algorithm when an Upper Bound on the

Flow is Known

In this section we show how to compute an approximate 
ow when an upper bound on the 
ow is known.

The quality of the approximation depends on the quality of the upper bound.

Consider any network algorithm A for integral weights. Let L(G; s; t; c) be the largest absolute value

of any integer handled by A when it is run on input G with source s, sink t, and capacity vector c. Let

C be the maximal capacity and let U be an upper bound on the value of the maximum 
ow, e.g. m � c

B

.

We give some examples.

1. Augmenting path algorithms compute a 
ow as a sum of \simpler" 
ows; the simpler 
ows are

either 
ows along paths or so-called blocking 
ows. It is easy to see that all numbers handled by

augmenting path algorithms are bounded by the maximum of j f

�

j and C. Thus L(G; s; t; c) �

max(C; j f

�

j) � max(C;m � c

B

).

2. The �rst term in the upper bound in the previous item can be arbitrarily larger than the maximum


ow. This is undesirable. The bound can be reduced to U by replacing all capacities larger than U

by U .

3. Pre
ow-push algorithms deal with so-called pre
ows. Most of them start by saturating all edges

out of s and then redistribute the excess created in the initialization step. Thus the numbers

handled by the algorithms might be as large as the sum of the capacities of the edges out of s. Thus

L(G; s; t; c) � nC.

4. The bound in the previous item can be improved to U as follows. As before, we replace all capacities

larger than U by U . In addition, we add an arti�cial source s

0

and an edge (s

0

; s) of capacity U to

G and run the algorithm on the resulting network. All numbers handled will be smaller than U .

Let (G; s; t; c) be a 
ow problem with integral capacities and let U be an upper bound on the maximum


ow; at the end of the section we show how to handle non-integral capacities. Let G

0

be obtained from G

as in the examples above, i.e., by reducing all capacities larger than U and by maybe adding an arti�cial

3



source. Call the resulting capacity vector c

0

. When A would be run on (G

0

; s; t; c

0

) the largest integer

handled by the algorithm would be L = L(G

0

; s; t; c

0

). Let l be the minimal non-negative integer such

that L2

�l

�M = 2

ML+1

� 1 and de�ne the capacity vector c

00

by

c

00

(e) =

�

bc(e) � 2

�l

c if c(e) � U

bU � 2

�l

c if c(e) > U;

i.e, capacities larger than U are replaced by U and then the last l bits of all capacities are dropped.

How does algorithm A perform on input G(

0

; s; t; c

00

), in particular, what is L(G

0

; s; t; c

00

)? We make

the following assumption.

Scaling Assumption: L(G

0

; s; t; c

00

) � L(G; s; t; c

0

)=2

l

.

The assumption is satis�ed for all augmenting path and all pre
ow-push algorithms. We assume for

the sequel that the assumption holds. Then all numbers handled by A on (G

0

; s; t; c

00

) are bounded by

M and hence A when executed with 
oating point arithmetic will compute the exact solution f

0

to the

problem (G

0

; s; t; c

00

). Let f(e) = f

0

(e) � 2

l

for all e. Then f is a feasible solution for (G; s; t; c) since

c(e) � c

00

(e) � 2

l

for all e. Moreover, f satis�es the 
ow conservation constraints even in FPA since the

multiplication by 2

l

is only an adjustment of the exponent but does not a�ect the mantissa.

We next estimate the quality of f . Clearly, j f j � j f

�

j.

To bound j f

�

j in terms of j f j we consider a minimal s; t-cut (S; T ) in (G; s; t; c

00

). Then

j f j = j f

0

j � 2

l

= c

00

(S; T ) � 2

l

=

X

e2(S�T )

c

00

(e) � 2

l

�

X

e2(S�T )

c(e) � 2

l

� j f

�

j �m2

l

;

where the next to last inequality follows from the fact that the 
ow across edge e is bounded by

min(U; c(e)) which in turn is bounded by (c

00

(e) + 1)2

l

, and the last inequality follows from the fact

that the value of any 
ow is bounded by the capacity of any cut.

We summarize our discussion. For simplicity we formulate the summary under the assumption that

L is bounded by U .

Lemma 2 If the scaling assumption holds and L � U then the algorithm above computes a 
ow f with

f = f

�

if U � M and

j f j � j f

�

j � bj f j+ 2mU=Mc

otherwise. The algorithm works with FPA. The relative error (j f

�

j � j f j)=j f

�

j is bounded by

2mU=(j f

�

jM ).

Proof: If U � M then no scaling is necessary and the claim follows. If scaling is necessary then the

error is bounded by m2

l

where l is minimal such that U2

�l

� M . Then l = dlogU=Me and hence the

error is bounded by 2mU=M . Since j f

�

j is integral we may round down to the next integer.

With U = m � c

B

and c

B

� j f

�

j we obtain that the relative error is bounded by 2m

2

=M . In the case

of double precision 
oating point arithmetic the relative error is bounded by 10

�3

for m � 10

6

. This

su�ces for most practical purposes. For single precision FPA the bound is unsatisfactory.

4 An Iterative Improvement Scheme

We describe an iterative improvement scheme that guarantees a relative error of 8m=M . For this scheme

we need the additional assumption that � = 2m=M � 1=2; this is no restriction for practical values of m.

Let U

0

= m � c

B

, let f

0

= f be the 
ow computed above, and let i = 0. If j f

i

j � U

i

=4 or l = 0 was

chosen in the i-th iteration stop and return f

i

. Otherwise, let U

i+1

= bj f

i

j + 2mU

i

=Mc, compute f

i+1

with the algorithm of the preceding section and upper bound U

i+1

, increment i and repeat.

4



When the algorithm stops we either have f = f

�

or j f

i

j � U

i

=4. In the former case the relative error

is zero and in the latter case the relative error can be bounded as

(j f

�

j � j f

i

j)=j f

�

j � 2mU

i

=(M j f

�

j) � 2mU

i

=(M j f

i

j) � 8m=M:

If j f

i

j < U

i

=4 then U

i+1

� j f

i

j + 2mU

i

=M � U

i

=2 and hence a smaller l will be chosen in iteration

i + 1 than in iteration i. This proves termination.

We want to bound the number of iterations. We claim that U

i

� (1+ 2�+�

i

m)j f

i

j for all i � 1. For

i = 1 this follows from U

1

� j f

0

j+ �U

0

, U

0

� mj f

0

j, and j f

0

j � j f

1

j. For i > 1, we have

U

i

� j f

i�1

j+ (2m=M )U

i�1

� (1 + �(1 + 2�+ �

i�1

m))j f

i�1

j

� (1 + 2�+ �

i

m)j f

i

j:

Assume now that a total of i+ 2 
ows are computed, i.e., 
ows f

0

, . . . , f

i+1

are computed. Then we

have j f

i

j < U

i

=4 and hence (1 + 2�+ �

i

m) > 4. Thus �

i

m > 1 and hence i � logm= log(M=2m). Since

i is an integer we may round down.

We summarize the discussion.

Theorem 1 If the scaling assumptions holds, if L = U , and if � = 2m=M � 1=2 then the iterative

improvement scheme computes a 
ow f such that (j f

�

j � j f j)=j f

�

j is bounded by 4�. The scheme

performs at most 2 + blogm= log(M=2m)c 
ow computations. All 
ow computations are performed with

FPA.

For m � 10

6

< 2

20

and single precision arithmetic and for m � 10

9

< 2

30

and double precision arith-

metic and all augmenting path and pre
ow-push algorithms the conditions of the theorem are satis�ed.

The number of iterations is bounded by 2 + b20=6c = 5 in the �rst case and by 2 + b30=22c = 3 in the

second case.

For the development above we assumed that all capacities are integers. This assumption is easily

removed. If the capacities are given as 
oating point numbers that are not necessarily integral we simply

scale up all capacities by a suitable power of two and then apply the above.

References

[AMO93] R. K. Ahuja, T. L. Magnanti, and J.B. Orlin. Network Flows. Prentice Hall, 1993.

[GT88] A.V. Goldberg and R.E. Tarjan. A new approach to the maximum-
ow problem. JACM,

35:921{940, 1988.

[IEE87] IEEE standard 754-1985 for binary 
oating-point arithmetic. SIGPLAN Notices, 2:9{25, 1987.

[MN95] K. Mehlhorn and S. N�aher. Leda, a platform for combinatorial and geometric computing.

Communications of the ACM, 38:96{102, 1995.

[MNU97] Kurt Mehlhorn, S. N�aher, and Ch. Uhrig. The LEDA User Manual (Version R

3.5). Technical report, Max-Planck-Institut f�ur Informatik, 1997. http://www.mpi-

sb.mpg.de/LEDA/leda.html.

5


