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Abstract

Uni�cation modulo the theory of Boolean algebras has been investi-

gated by several autors. Nevertheless, the exact complexity of the deci-

sion problem for uni�cation with constants and general uni�cation was not

known. In this research note, we show that the decision problem is �

p

2

-

complete for uni�cation with constants and PSPACE-complete for general

uni�cation. In contrast, the decision problem for elementary uni�cation

(where the terms to be uni�ed contain only symbols of the signature of

Boolean algebras) is \only" NP-complete.

1 Introduction

Boolean uni�cation, i.e., uni�cation modulo the theory of Boolean algebras or

rings, has been considered by several authors [5, 14, 13]. On the one hand, this

problem is of interest for research in uni�cation theory since, unlike theories such

as associativity-commutativity, the theory of Boolean algebras is unitary even

for uni�cation with constants (where the terms to be uni�ed may contain addi-

tional free constant symbols). In addition, well-known results from mathematics

[2, 12, 16] can be used to compute the most general uni�er of a given (solvable)

uni�cation problem. General Boolean uni�cation (where the terms to be uni�ed

may contain additional free function symbols) is still �nitary, but no longer uni-

tary [17]. From a practical point of view, a Prolog system enhanced by Boolean

uni�cation can, e.g., be used to support hardware veri�cation and design tasks

[5, 18].

�
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The emphasis in the work on Boolean uni�cation was on developing algorithms

that compute a most general uni�er for uni�cation problems with constants [5, 14,

13], or �nite complete sets of uni�ers for general uni�cation problems [17, 3]. Of

course, such algorithms can also be used to decide solvability of a given uni�cation

problem. However, the complexity of a decision procedure obtained this way need

not be optimal. In fact, to the best of our knowledge, the exact complexity of the

decision problem for Boolean uni�cation is only known for elementary uni�cation,

where it is easily seen to be NP-complete.

In this research note, we will determine the complexity of the decision prob-

lem for more general kinds of Boolean uni�cation problems, namely uni�cation

problems with constants, uni�cation problems with linear constant restrictions

(which were introduced in the context of combination of uni�cation algorithms

[1]), and general uni�cation problems. To be more precise, we will show that the

decision problem for Boolean uni�cation with constants is �

p

2

-complete whereas

the decision problems for Boolean uni�cation with constant restrictions and for

general Boolean uni�cation are PSPACE-complete. We will prove these results

by establishing a close relationship between the respective uni�cation problems

and (certain types of) quanti�ed Boolean formulae [19]. On the one hand, we

will make use of a logical characterization [1] of uni�cation problems by certain

classes of positive sentences, called conjunctive sentences in the following. On

the other hand, we need to show that validity in the theory of Boolean algebras

of a special class of such conjunctive sentences, called simple sentences in the

following, is equivalent to validity of these simple sentences in the two-element

Boolean algebra B

2

.

In the next section, we will introduce the relevant de�nitions from uni�cation

theory, and recall the logical characterizations of the di�erent types of uni�cation

problems. The third section introduces Boolean uni�cation, shows the connection

between Boolean uni�cation and validity of simple sentences, and proves the

above mentioned result on the validity of simple sentences in the theory of Boolean

algebras. The fourth section puts all these result together, and thus proves the

complexity results for Boolean uni�cation.

2 Uni�cation modulo equational theories

An equational theory is de�ned by a set E of identities between terms, i.e., a

subset of T (�; V ) � T (�; V ) for a set of function symbols (signature) � and a

(countably in�nite) set of variables V . With =

E

we denote the equational theory

de�ned by E, that is, the least congruence relation on the term algebra T (�; V )

that is closed under substitutions and contains E. The signature Sig(E) of E is

the set of all function symbols occurring in E.
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De�nition 1 Let E be an equational theory and � a signature. An E-uni�cation

problem over � is a �nite set of equations

P = fs

1

?

=

E

t

1

; : : : ; s

n

?

=

E

t

n

g

between �-terms with variables in a (countably in�nite) set of variables V . An

E-uni�er of P is a substitution � such that s

1

� =

E

t

1

�; : : : ; s

n

� =

E

t

n

�. The

problem P is E-uni�able i� it has an E-uni�er.

The decision problem for E-uni�cation is the question whether a given E-uni�ca-

tion problem over a signature � is E-uni�able or not. Depending on the signature

�, there are three di�erent kinds of instances of the decision problem:

De�nition 2 Let E be an equational theory, � a signature, and P an E-

uni�cation problem over �.

� P is an elementary E-uni�cation problem i� � � Sig(E).

� P is an E-uni�cation problem with constants i� � n Sig(E) is a set of

constant symbols.

� In a general E-uni�cation problem P , the set � n Sig(E) may contain ar-

bitrary function symbols.

The constant and function symbols in � n Sig(E) are called free constant and

function symbols since their interpretation is not constrained by the identities

in E. In [1], an additional type of uni�cation problems was introduced, called

uni�cation problems with linear constant restrictions:

De�nition 3 An E-uni�cation problem with linear constant restrictions (lcr)

consists of an E-uni�cation problem with constants, P , and a linear ordering

< on the variables and free constants occurring in P . A substitution � is an

E-uni�er of (P;<) i� it is an E-uni�er of P that satis�es

x < c implies c does not occur in x�

for all variables x and free constants c in P .

This kind of uni�cation problems is of interest since a procedure that solves the

decision problem for E-uni�cation with lcr can always be turned into a decision

procedure for general E-uni�cation. This can be achieved using the nondeter-

ministic combination algorithm described in [1].

The decision problems for elementary uni�cation, uni�cation with constants, and

uni�cation with lcr are (polynomial time) equivalent to logical decision problem.
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Before we can state these correspondences, we must introduce the relevant classes

of sentences. Let E be an equational theory, and � := Sig(E) be the set of func-

tion symbols occurring in E. An atomic �-formula is an equation s = t. A

conjunctive �-matrix is a conjunction of atomic �-formulae. A conjunctive �-

sentence is a quanti�er-pre�x followed by a conjunctive �-matrix that contains

only variables introduced in the pre�x. Without loss of generality we assume

that the variables occurring in the pre�x are all distinct. An existential conjunc-

tive �-sentence is a conjunctive �-sentence whose pre�x contains only existential

quanti�ers, and a conjunctive AE �-sentence has a pre�x consisting of a block of

universal quanti�ers, followed by a block of existential quanti�ers. The conjunc-

tive (existential conjunctive, conjunctive AE) fragment of the equational theory

E consists of the set of all conjunctive (conjunctive existential, conjunctive AE)

�-sentences that are valid in E, i.e., true in all models of E. The decision prob-

lem for the conjunctive (conjunctive existential, conjunctive AE) fragment of E

is the question whether a given conjunctive (conjunctive existential, conjunctive

AE) �-sentence belongs to this fragment or not.

Theorem 4 Let E be an equational theory and � := Sig(E).

1. The decision problems for elementary E-uni�cation and for the conjunctive

existential fragment of E can be reduced to each other in linear time.

2. The decision problems for E-uni�cation with constants and for the conjunc-

tive AE fragment of E can be reduced to each other in linear time.

3. The decision problems for E-uni�cation with lcr and for the conjunctive

fragment of E can be reduced to each other in linear time.

4. The decision problem for E-uni�cation with lcr can be reduced to the deci-

sion problem for general uni�cation in linear time. The nondeterministic

polynomial combination algorithm of [1] can be used to reduce the decision

problem for general E-uni�cation to the decision problem for E-uni�cation

with lcr.

We just sketch the reductions that can be used to obtain these results. Detailed

proofs of the correctness of these reductions can found in [1].

(1) The �rst statement should be obvious since an elementary E-uni�cation prob-

lem can be seen as a conjunction of equational atoms, which is (implicitly) exis-

tentially quanti�ed.

(2) By Skolemizing the universally quanti�ed variables, a given conjunctive AE

sentence can be turned into a conjunctive existential sentence over a signature

enlarged by Skolem constants, and this sentence obviously corresponds to an E-

uni�cation problem with constants. Conversely, the free constants of a given

E-uni�cation problem with constants can be turned into the universally quanti-

�ed variables of a corresponding conjunctive AE sentences.
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(3) A given E-uni�cation problem with lcr can be turned into a conjunctive

sentence as follows: the matrix of this sentence is just the conjunction of the

equations in the problem; the variables become existentially quanti�ed variables

in the pre�x and the free constants universally quanti�ed variables; the order of

the quanti�ers in the pre�x is determined by the linear ordering of the lcr. This

reduction can be reversed in the obvious way.

(4) A given E-uni�cation problem with lcr can be turned into the correspond-

ing conjunctive sentence, and from there by Skolemization into an existential

sentence over a signature enlarged by Skolem functions, which obviously corre-

sponds to a general E-uni�cation problem. The second statement is an immediate

consequence of the fact that the combination algorithm of [1] can be seen as an

NP-algorithmwhich decomposes a given general E-uni�cation problem into a pair

consisting of an E-uni�cation problem with lcr and a syntactic uni�cation prob-

lem with lcr. Since the syntactic uni�cation problem with lcr can be decided in

polynomial time, the remaining problem to be solved is the E-uni�cation problem

with lcr. Viewed as a deterministic algorithm, the combination algorithm builds

a binary branching search tree of polynomial depth, where at each leaf the above

mentioned pair of uni�cation problems must be solved. The original problem is

solvable i� there exists a leaf such that both components of its pair are solvable.

3 Boolean uni�cation and validity of simple sen-

tences

The signature �

BA

of Boolean algebras consists of two binary function symbols

+ and �, a unary function symbol , and two constant symbols 0 and 1. The

equational theory of Boolean algebras is de�ned by the following identities:

E

BA

:=

8
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>

>

>

:

x + y = y + x; x � y = y � x;

(x+ y) + z = x + (y + z); (x � y) � z = x � (y � z);

x+ (y � z) = (x + y) � (x+ z); x � (y + z) = (x � y) + (x � z);

x + (x � y) = x; x � (x + y) = x;

x + x = x; x � x = x;

x+ 0 = x; x � 0 = 0;

x+ 1 = 1; x � 1 = x;

x + x = 1; x � x = 0;

x + y = x � y; x � y = x+ y;

x = x

9
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>

>

>

>

>
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>

>

>
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>

>

>

>

>

>

>

;

In many textbooks, one considers 0 6= 1 as an additional axiom. We de�ne

T

BA

:= E

BA

[ f0 6= 1g. Obviously, T

BA

is not a set of identities and thus does

not de�ne an equational theory. However, the only di�erence between T

BA

and

E

BA

is that the former excludes the trivial one-element model of E

BA

. The
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initial model of E

BA

is the two-element Boolean algebra B

2

, which consists of

(the interpretations of) the constants 0 and 1.

Under Boolean uni�cation we understand uni�cation modulo E

BA

. It should

be noted that most authors consider the theory of Boolean rings instead of the

theory of Boolean algebras. However, since there are linear translations between

Boolean ring terms and Boolean algebra terms, this is not a relevant di�erence.

We may restrict our attention to E

BA

-uni�cation problems of the form P :=

fs=

?

E

BA

1g. This is an obvious consequence of the following simple lemma:

Lemma 5 Let s and t be terms over a signature containing �

BA

.

1. s =

E

BA

t i� (s+ t) � (s + t) =

E

BA

1.

2. s =

E

BA

1 and t =

E

BA

1 i� s � t =

E

BA

1.

For the logical characterization of uni�cation problems introduced in the previ-

ous section, this means that one can restrict the attention to conjunctive �

BA

-

sentences whose matrix consists of a single atomic equation of the form s = 1.

In the following, we will call such a sentence a simple �

BA

-sentence. The main

result of this section is the following theorem for simple �

BA

-sentences:

Theorem 6 Let ' be a simple �

BA

-sentence. Then following statements are

equivalent:

1. ' is valid in E

BA

, i.e., it is valid in all models of E

BA

.

2. ' is valid in the initial model B

2

of E

BA

.

Proof. (1! 2) is trivial since B

2

is a model of E

BA

. For the proof of (2! 1) we

use results from model theory, which can, for example, be found in [6]. Assume

that ' is valid in B

2

.

(a) Since every simple �

BA

-sentence is a Horn sentence (in the sense introduced

in [6], p. 407), we can apply Proposition 6.2.2 of [6], which states that validity

of Horn sentences is preserved under reduced products. Thus, ' is valid in all

reduced products S(!)=D

�

=

�

D

B

2

of B

2

(see also p. 406 of [6]).

(b) Thus, there does not exist a reduced product S(!)=D in which T

BA

[ f:'g

holds. Ershov's theorem (Theorem 6.3.20 of [6]) implies that T

BA

[ f:'g is

inconsistent, i.e., ' is valid in T

BA

.

(c) Since T

BA

= E

BA

[ f0 6= 1g, this implies that 0 = 1 _ ' is valid in E

BA

.

Now assume that B is a model of E

BA

. If this model satis�es 0 = 1, then it is of

cardinality 1, and thus it trivially satis�es every simple �

BA

-sentence. If it does
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not satisfy 0 = 1, then it must satisfy ' since it satis�es 0 = 1_'. Consequently,

' is valid in E

BA

.

It should be noted that this theorem need not hold for sentences that are not

simple. In particular, the argument in (a) does not apply to sentences that are

not Horn, and (c) does not apply to sentences that may contain negation.

4 The complexity results

In complexity theory, so-called quanti�ed Boolean formulae have been introduced

to obtain a class of problems that is complete for PSPACE [19, 7]. A quanti�ed

Boolean formula (QBF) is of the form (Q

1

x

1

) � � � (Q

n

x

n

)E, where E is a Boolean

expression involving the propositional variables x

1

; : : : ; x

n

and Q

i

2 f8; 9g. Va-

lidity of such a formula is de�ned by induction on n: For n = 0, the expres-

sion E does not contain variables, and it is valid if it evaluates to 1. The for-

mula (8x

1

)(Q

2

x

2

) � � � (Q

n

x

n

)E is valid i� both (Q

2

x

2

) � � � (Q

n

x

n

)Efx

1

7! 1g and

(Q

2

x

2

) � � � (Q

n

x

n

)Efx

1

7! 0g is valid, and (9x

1

)(Q

2

x

2

) � � � (Q

n

x

n

)E is valid i� one

of (Q

2

x

2

) � � � (Q

n

x

n

)Efx

1

7! 1g and (Q

2

x

2

) � � � (Q

n

x

n

)Efx

1

7! 0g is valid.

Obviously, a term s over the signature �

BA

can be seen as a Boolean expression

E

s

. The following lemma is an easy consequence of the de�nition of validity of a

QBF:

Lemma 7 The simple �

BA

-sentence sentence (Q

1

x

1

) � � � (Q

n

x

n

)(s = 1) is valid

in B

2

i� the corresponding QBF (Q

1

x

1

) � � � (Q

n

x

n

)E

s

is valid.

An existential QBF is a QBF that contains only existential quanti�ers, and an

AE QBF is a QBF whose quanti�er pre�x consists of a (possibly empty) block

of universal quanti�ers followed by a (possibly empty) block of existential quan-

ti�ers. It is well-known [7] that validity of existential QBFs is NP-complete,

validity of AE QBFs is �

p

2

-complete, and validity of QBFs is PSPACE-complete.

Thus, Lemma 7, Theorem 6, and Theorem 4 immediately imply:

Theorem 8 Depending on the kind of uni�cation problems considered, the deci-

sion problem for Boolean uni�cation belongs to the following complexity classes:

1. Elementary E

BA

-uni�cation is NP-complete.

2. E

BA

-uni�cation with constants is �

p

2

-complete.

3. E

BA

-uni�cation with lcr and general E

BA

-uni�cation are PSPACE-complete.

For the second statement in (3), one should note that the nondeterministic poly-

nomial combination algorithm can easily be realized such that it needs only poly-

nomial space.
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5 Conclusion

Decision procedures for uni�cation rather than algorithms computing complete

sets of uni�ers or most general uni�ers are, for example, of interest in constraint-

based approaches to theorem proving, term rewriting, and logic programming

[4, 15, 10, 9]. In this research note we have determined the exact complexity

of the decision problem for Boolean uni�cation. Whereas elementary uni�cation

is on the �rst level of the polynomial hierarchy (NP-complete), uni�cation with

constants is on the second level (�

p

2

-complete), and uni�cation with lcr as well

as general uni�cation are above the polynomial hierarchy (PSPACE-complete).

This is a rather unusual situation since for most of the theories considered until

now, the decision problems for uni�cation with constants and uni�cation with lcr

are of the same complexity. For example, for ACI (which axiomatizes associa-

tivity, commutativity, and idempotency of a binary function symbol) and for the

theory of Abelian groups, uni�cation with constants and uni�cation with lcr are

polynomial, whereas general uni�cation is NP-complete.

As already mentioned in Section 3, Theorem 6, which reduces validity of simple

�

BA

-sentences in E

BA

to validity in B

2

, need not hold for more complex sen-

tences. In [11] it is shown that validity of arbitrary �

BA

-sentences is complete

for alternating exponential time with a linear number of alternations.

1

The complexity of computing complete sets of E

BA

-uni�ers for general E

BA

-

uni�cation problems has been investigated by Hermann and Kolaitis [8]. As

already mentioned in the introduction, E

BA

is only �nitary for general uni�cation,

whereas it is unitary for uni�cation with constants. Hermann and Kolaitis show

that even computing the cardinality of a minimal complete set of E

BA

-uni�ers for

a given general E

BA

-uni�cation problem is a #P -hard, which implies that this

function cannot be computed in polynomial time, unless P = NP.

Acknowledgment: I should like to thank Miki Hermann for alerting me to the

fact that the decision procedures for Boolean uni�cation with constants found in

the literature are in �

p

2

and not in NP.
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